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Abstract

We define a reflection in a tree as an involutive automorphism whose set of fixed
points is a geodesic and prove that, for the case of a homogeneous tree of even degree,
the group of even automorphisms may be covered by at most 11 reflections.

Reflections are defined as involutive automorphisms having a geodesic as set of fixed
points. In a previous work ([6]) we studied the structure of reflections in an homogeneous
tree Γ of degree k ≡ 0mod 4. We considered the group 〈R〉 generated by the set of all
reflections R and the (index two) subgroup Aut+ (Γ) ⊂ Aut (Γ) consisting of automorphisms
with even displacement function and proved that the topological closure of 〈R〉 is Aut+ (Γ),
that is, given ϕ ∈ Aut+ (Γ) there is a sequence (ϕn)∞n=1 with ϕn ∈ 〈R〉 and a sequence of
subsets Ai ⊂ Γ with An ⊂ An+1 and Γ = ∪∞n=1An such that ϕn coincides with ϕ on An,
that is, ϕn|An = ϕ|An . The proof given is constructive and actually each ϕn is the product
of n reflections, so we could not say that Aut+ (Γ) is finitely generated by R.

In this work we prove with simple arguments that Aut+ (Γ) is finitely generated by R
(Proposition 2) and go further, proving that every ϕ ∈ Aut+ (Γ) may be expressed as the
product of at most eleven reflections (Theorem 12).

1 Basic Concepts

The free monoid X∗ of words over the alphabet X = {0, ..., n− 1} ordered by the prefix
relation has a n-regular rooted tree structure in which the empty word is the root and the
words of length l constitute the level l in the tree. Denote this n-regular rooted tree by
T . If we consider two copies T ′ and T ′′ of the n-regular rooted tree T and add a single
edge, connecting the root of T ′ to the root of T ′′, we get a k-homogeneous tree Γ, that is,

∗Author supported by CAPES.

1



a tree where the number of vertices adjacent to every vertex x is a constant (in this case
k = n + 1), called the homogeneity degree of Γ, denoted Degree (Γ).

Every k-homogeneous tree Γ comes equipped with a natural metric d. For any two
vertices x, y of Γ we define d(x, y) to be the minimal number of edges in an edge-path from
x to y. If we endow each edge with the metric of the unit interval [0, 1] ⊂ R, then d naturally
extend to a metric on Γ.

We denote by S (x,R) the usual metric sphere of Γ, centered at x with radius R.
By an automorphism of Γ we mean an isometry of (Γ, d) which takes vertices to vertices

(and therefore edges to edges). We denote by Aut (Γ) the group of automorphisms of Γ.
An integer interval is a subset of Z of one of the kinds Z, N or

Ia,b := {m ∈ Z|a ≤ m ≤ b}, with a, b ∈ Z. A subset γ (I) ⊂ Γ is called a geodesic, a geodesic
ray or a geodesic segment if γ : I → Γ is a map defined on an integer interval respectively
of type Z,N or Ia,b such that d (γ (n) , γ (m)) = |n−m| for every n,m ∈ I. We call the map
γ : I → Γ a parametrization but often make no distinction between the map γ and its image
γ (I). We denote by [x, y] the geodesic segment joining the vertices x, y ∈ Γ.

In this work, we will use a labelling of the tree relative to a geodesic. Since it will be
used repeatedly, we will introduce it with some details. Given a geodesic γ ∈ Γ, we consider
(for n ∈ N) the n-level around γ:

Vn := Vn (γ) = {x ∈ Γ|d (x, γ) = n} .

We note that V0 = γ and

Γ =
◦⋃

n≥0

Vn.

Given x ∈ Vn (n > 0) there is a unique vertex x′ ∈ Vn−1 adjacent to x and this defines a
surjective map

pn : Vn −→ Vn−1

x −→ x′ = pn (x)

from Vn onto Vn−1. If
p :

⋃

n≥1

Vn → Γ =
⋃

n≥0

Vn

be such that p|Vn = pn, we say that x is a descendent of x′ if p (x) = x′.
An automorphism µ ∈ Aut (Γ) that leaves the geodesic γ invariant defines a sequence(

µ0, µ1, µ2, ...
)

of permutations, where µn acts on Vn (µn (Vn) = Vn) and satisfies the in-
variance condition:

pn (µn (x)) = µn−1 (pn (x)) ∀n > 0, ∀x ∈ Vn. (1)

Reciprocally, any sequence of permutations
(
µ0, µ1, µ2, ...

)
with µn acting on Vn and

satisfying the invariance condition defines an automorphism µ of Γ that leaves γ invariant.
We note that γ is fixed by µ iff µ0 = Id.
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2 Reflections in Trees

There are many possibilities to define a reflection in a tree. The minimal condition for a map
φ : Γ → Γ to resemble what is commonly known as a reflection in geometry, is to demand
φ to be an involutive automorphism, i.e., φ2 = Id. Indeed, this is the definition adopted by
Moran in [4]. In this work, we adopt a much more restrictive definition:

Definition 1 A reflection in a tree Γ is an automorphism φ : Γ −→ Γ, satisfying:

1. φ is an involution.

2. The set of fixed points of φ is the geodesic γ, i.e., there is a geodesic γ ⊂ Γ such that
φ (x) = x ⇔ x ∈ γ.

In this case we say that φ is a reflection in the geodesic γ and denote by Rγ the set of
all reflections in the geodesic γ.

From here on, we assume that Γ is a k-homogeneous tree of even degree, since there are
no reflections (as defined before) in case the degree of the tree is odd.

Let R be the set of all reflections in the tree Γ and 〈R〉 the subgroup of Aut (Γ) generated
by R. We let

Aut+ (Γ) = {ϕ ∈ Aut (Γ) |dϕ (x) ≡ 0mod2 for every x ∈ Γ} ,

where dϕ (x) := d (x, ϕ (x)) is the displacement function of an automorphism ϕ. We call
Aut+ (Γ) the group of even (displacement) automorphisms and observe it is a normal sub-
group of index 2 of Aut (Γ) ([3, Proposition 1]).

Proposition 2 Let Γ be a k-homogeneous tree and 〈R〉 the group generated by reflections.
Then 〈R〉 = Aut+ (Γ).

Proof: Given a reflection φ ∈ Rγ ⊂ R and a vertex x ∈ Γ, the (unique) vertex x0 ∈ γ
such that d (x0, x) = d (x, γ) is the middle point of the geodesic segment [x, φ (x)] and so
φ ∈ Aut+ (Γ) and hence 〈R〉 ⊆ Aut+ (Γ). Given ϕ ∈ Aut (Γ) and φ a reflection in the
geodesic γ, we have that ϕ ◦ φ ◦ ϕ−1 is a reflection in the geodesic ϕ (γ) ([6, Proposition
4]). It follows that 〈R〉 is normal in Aut (Γ) and hence also in Aut+ (Γ). But Aut+ (Γ) is a
simple group ([3, Theorem 7]), and it follows that 〈R〉 = Aut+ (Γ). ¤

3 Covering Number by Reflections

We say that a subset A of a group G covers the group if there is a positive integer n such
that G = An with

An := {φ1 ◦ φ2 ◦ · · · ◦ φn|φi ∈ A; i = 1, 2, ..., n} .

In this case, the smallest such integer is called the covering number of G by A:

cn(G,A) := min {n|An = G}
Our main result, that will be proved by the end of this work, is the following:
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Theorem 3 Let Γ be a k-homogeneous tree and R the set of reflections in geodesics of Γ.
Then, Aut+ (Γ) may be covered by R and cn

(
Aut+ (Γ) , 〈R〉) ≤ 11.

Given an involution ϕ ∈ Aut (Γ), if ϕ (x) = x and ϕ (y) = y, then ϕ (z) = z for every
z ∈ [x, y] and it follows that Fix (ϕ) := {x ∈ Γ|ϕ (x) = x} is a sub-tree of Γ. We say that a
non empty sub-tree Γ′ ⊂ Γ is an admissible tree if there is an involution ϕ ∈ Aut (Γ) such
that Fix (ϕ) = Γ′. We say such a tree Γ′ is a trivial admissible tree if Γ′ = Γ,Γ′ = {x} or
Γ = γ (a geodesic). We start characterizing admissible trees.

Proposition 4 Let Γ be a k-homogeneous tree and Γ′ ⊂ Γ a sub-tree. Then, Γ′ is an
admissible tree iff |S (x, 1)|Γ′ ≡ 0mod 2 for every x ∈ Γ′, where |S (x, 1)|Γ′ := |S (x, 1) ∩ Γ′|.

Proof: Assume that Γ′ = Fix (ϕ) for some involution ϕ ∈ Aut (Γ) and let x ∈ Γ′. The
action of ϕ on S (x, 1) fixes every vertex y ∈ S (x, 1) ∩ Γ′ and acts as an involution with no
fixed points in S (x, 1) \Γ′. It follows that the restriction of ϕ to S (x, 1) \Γ′ is the product
of disjoint transpositions, so that |S (x, 1) \Γ′| is even. Since k is also even, we find that
|S (x, 1)|Γ′ = |S (x, 1) ∩ Γ′| = k − |S (x, 1) \Γ′| ≡ 0 mod 2.

Let us assume now that Γ′ ⊂ Γ is a sub-tree such that |S (x, 1)|Γ′ ≡ 0mod 2 for every x ∈
Γ′. We label the vertices of Γ′ as {xi|i ∈ I} where I is any set. Since |S (xi, 1)|Γ′ ≡ 0mod 2,
we have that |S (xi, 1) \Γ′| is also even, and we label those vertices as xi,1, xi,2, ..., xi,2ki ,where
ki depends on xi. Each xi,j ∈ Γ\Γ′ has exactly n−1 adjacent vertex that are descendents of
xi,j relatively to Γ′, in the sense that xi,j is contained in the geodesic segment joining each
xi,j to Γ′, so we label them as xi,j,1, ..., xi,j,...,n−1. By repeating this process, every vertex
in Γ\Γ′ can be labeled as xi,j1,j2,...,jl

where i ∈ I, j1 ∈ {1, 2, ..., 2ki} , jr ∈ {1, 2, ..., n− 1} for
r > 1 and l = d (xi,j1,j2,...,jl

, Γ′). We define a map ϕ : Γ → Γ in the following way:

ϕ (xi,j1,j2,...,jl
) = xi,σi(j1),j2,...,jl

where

σi (j) =
{

ki + j if 1 ≤ j ≤ ki

j − ki if ki + 1 ≤ j ≤ 2ki
.

Since each σi is an involution, we find that ϕ is also an involution. Moreover, it easy to see
that Fix (ϕ) = Γ′. ¤

Our next goal is to prove that every involution may be represented as the product of
5 reflections in geodesics. In order to do so, we need to consider two distinct types of
admissible trees:

Definition 5 Let Γ′ ⊂ Γ be an admissible tree and x ∈ Γ′ a vertex. We say that x satisfies
the

• Γ′-even parity condition (Γ′-EPC) if |S (x, 1)|Γ′ ≡ 0mod 4;

• Γ′-odd parity condition (Γ′-OPC) if |S (x, 1)|Γ′ ≡ 2mod 4.

We also need to define the symmetry condition:
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Definition 6 A sub-tree Γ′ ⊂ Γ is γ-symmetric if there is a reflection σ in the geodesic
γ ⊂ Γ′ such that σ (Γ′) = Γ′.

The next two lemmas will be used to prove our main theorem and could be stated
in a unique proposition, but we prefer to separate the two different cases, according to
homogeneity degree of Γ.

Lemma 7 Let Γ be a k-homogeneous tree with k ≡ 0mod 4, and Γ′ ⊂ Γ an admissible
sub-tree that is γ-symmetric. If every vertex x ∈ γ satisfies the Γ′-EPC, there are µ, τ ∈ Rγ

such that:

1. Fix (µ) = Fix (τ) = γ;

2. Fix (τ ◦ µ) = Γ′.

Proof: The proof consists of making appropriate choices of permutations acting on each
Vn := Vn (γ) and satisfying the invariance condition (1).

Starting at the initial level V0 = γ, we define µ0 = τ0 = Id, so that µ0 (γ) = τ0 (γ) = γ
and, since γ ⊂ Γ′

Fix
(
τ0 ◦ µ0

)
= Γ′ ∩ V0.

Given xm ∈ γ (m ∈ Z) we have that p−1 (xm) ⊂ V1 consists of k − 2 vertices, each of them
adjacent to xm. We label those k − 2 vertices as xm,1, xm,2, ..., xm,k−2. We do so in such a
way that xm,j ∈ Γ′ ⇔ j > (k − 2) − l (m), where l (m) := |S (xm, 1)|Γ′ − 2. We define µm

and τm by the product of disjoint involutions as follows:

µm := (xm,1xm,3) (xm,2xm,4) ...
(
xm,k−l(m)−5, xm,k−l(m)−3

) (
xm,k−l(m)−4, xm,k−l(m)−2

)
(
xm,k−l(m)−1, xm,k−l(m)

) (
xm,k−l(m)+1, xm,k−l(m)+2

)
... (xm,k−3, xm,k−2)

τm := (xm,1xm,4) (xm,2xm,3) ...
(
xm,k−l(m)−5, xm,k−l(m)−2

) (
xm,k−l(m)−4, xm,k−l(m)−3

)
(
xm,k−l(m)−1, xm,k−l(m)

) (
xm,k−l(m)+1, xm,k−l(m)+2

)
... (xm,k−3, xm,k−2) .

Straightforward calculations show that

τm ◦ µm = (xm,1xm,2) (xm,3xm,4) ...
(
xm,k−l(m)−5, xm,k−l(m)−4

) (
xm,k−l(m)−3, xm,k−l(m)−2

)

so that the only vertices of p−1 (xm) fixed by τm ◦ µm are the l (m) vertices xm,j with
j > (k − 2)− l (m), that is, for every xm ∈ γ we find that

Fix (τm ◦ µm) = Γ′ ∩ p−1 (xm) .

We define µ1 and τ1 by

µ1 (xm,i) := µm (xm,i) , τ1 (xm,i) := τm (xm,i)

for m ∈ Z and it follows that
Fix

(
τ1 ◦ µ1

)
= Γ′ ∩ V1

Before we get to the next level, we observe that, since x ∈ Γ′∩V2 implies that p2 (x) ∈ Γ′∩V1.
We are actually interested only on the vertices in V2 that are descendent of the vertices in
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Γ′∩V1. Moreover, the action of µ1 and τ1 restricted to Fix
(
τ1 ◦ µ1

)
coincide (it means, they

permute the same vertices of Fix
(
τ1 ◦ µ1

)
), so that it is enough to show that, restricted to

a pair of vertices xm,i, xm,j ∈ Fix
(
τ1 ◦ µ1

)
such that τ1 (xm,i) = µ1 (xm,i) = xm,j , we can

define involutions µm,i = µm,j and τm,i = τm,j acting on p−1 (xm,i) ∪ p−1 (xm,j) ⊂ V2 such
that

Fix (τm,i ◦ µm,i) = Γ′ ∩ (
p−1 (xm,i) ∪ p−1 (xm,j)

)
.

We recall we are assuming that Γ′ is γ-symmetric, that is, there is σ ∈ Rγ such that
σ (Γ′) = Γ′. If σ (xm,i) = xm,j and label the k − 1 descendents of xm,i and of xm,j

as xm,i,1, xm,i,2, ..., xm,i,k−1 and xm,j,1, xm,j,2, ..., xm,j,k−1 in such a way that σ (xm,i,q) =
xm,j,q for every q ∈ {1, 2, ..., k − 1} with xm,i,q ∈ Γ′ ⇔ xm,j,q ∈ Γ′. We also observe
that since Γ′ is an admissible tree, Proposition 4 assures that, among the k − 1 vertices
xm,j,1, xm,j,2, ..., xm,j,k−1, an odd number must be fixed by the product τm,i ◦µm,i. Let 1 ≤
l (m, i) ≤ k−1 be the number of vertices in Γ′∩p−1 (xm,i). In the same way as we did in the
first level, we may assume without loss of generality that xm,i,q ∈ Γ′ ⇔ q > (k − 1)− l (m, i).
We also observe that since xm,i and xm,j are symmetric relatively to γ, l (m, i) = l (m, j).
We define µm,i and τm,i as

µm,i := (xm,i,1xm,j,2) (xm,i,2xm,j,1) ...
(
xm,i,k−l(m,i)−2xm,j,k−l(m,i)−1

)
(
xm,i,k−l(m,i)−1xm,j,k−l(m,i)−2

)

τm,i := (xm,i,1xm,j,1) (xm,i,2xm,j,2) ...
(
xm,i,k−l(m,i)−2xm,j,k−l(m,i)−2

)
(
xm,i,k−l(m,i)−1xm,j,k−l(m,i)−1

)
.

and note that µm,i = µm,j and τm,i = τm,j . Straightforward calculations show that

τm,i ◦ µm,i = (xm,i,1xm,i,2) (xm,j,1xm,j,2) ...
(
xm,i,k−l(m,i)−2xm,i,k−l(m,i)−1

)
(
xm,j,k−l(m,i)−2xm,j,k−l(m,i)−1

)
,

and so there are exactly 2 (l (m, i)) vertices in p−1 (xm,i) ∪ p−1 (xm,j) that are fixed by the
composition τm,i ◦µm,i, and those are precisely the vertices xm,i,q with q > (k − 1)− l (m, i),
that is,

Fix (τm,i ◦ µm,i) = Γ′ ∩ (
p−1 (xm,i) ∪ p−1 (xm,j)

)

We define
µ2 (xm,i1,i2) := µm,i1 (xm,i1,i2) , τ2 (xm,i1,i2) := τm,i1 (xm,i1,i2)

for m ∈ Z, i1 ∈ {1, 2, ..., k − 2} , i2 ∈ {1, 2, ..., k − 1} and it follows that

Fix
(
τ2 ◦ µ2

)
= Γ′ ∩ V2

The definition of µr and τ r, acting at the level Vr is done in a similar way. Suppose
xm,i1,...,ir−1 , xm,j1,...,jr−1 ∈ Fix

(
τ r−1 ◦ µr−1

)
. If σ is the reflection in γ such that σ (Γ′) = Γ′

and σ
(
xm,i1,...,ir−1,q

)
= xm,j1,...,jr−1,q for every q ∈ {1, 2, ..., k − 1} then, by the invariance

condition we have that xm,i1,...,ir−1,q ∈ Γ′ ⇔ xm,j1,...,jr−1,q ∈ Γ′. Let 1 ≤ l (m, i1, ..., ir−1) ≤
k − 1 be the number of vertices in Γ′ ∩ p−1

(
xm,i1,...,ir−1

)
. We may again assume that

xm,i1,...,ir−1,q ∈ Γ′ ⇔ q > (k − 1)− l (m, i1, ..., ir−1). Since σ
(
xm,i1,...,ir−1,q

)
= xm,j1,...,jr−1,q
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we have that l (m, i1, ..., ir−1) = l (m, j1, ..., jr−1) = Γ′ ∩ p−1
(
xm,j1,...,jr−1

)
. We define

µm,i1,...ir−1,q and τm,j1,...,jr−1,q as:

µm,i1,...ir−1 =
(
xm,i1,...ir−1,1xm,j1,...jr−1,2

) (
xm,i1,...ir−1,2xm,j1,...,jr−1,1

)
...(

xm,i1,...ir−1,k−l(m,i1,...,ir−1)−2xm,j1,...,jr−1,k−l(m,i1,...,ir−1)−1

)
(
xm,i1,...ir−1,k−l(m,i1,...,ir−1)−1xm,j1,...,jr−1,k−l(m,i1,...,ir−1)−2

)

τm,i1,...ir−1 =
(
xm,i1,...ir−1,1xm,j1,...jr−1,1

) (
xm,i1,...ir−1,2xm,j1,...jr−1,2

)
...(

xm,i1,...ir−1,k−l(m,i1,...,ir−1)−1xm,j1,...jr−1,k−l(m,i1,...,ir−1)−1

)

so that

τm,i1,...ir−1 ◦ µm,i1,...ir−1 =
(
xm,i1,...ir−1,1xm,i1,...ir−1,2

) (
xm,j1,...jr−1,1xm,j1,...jr−1,2

)
...(

xm,i1,...ir−1,k−l(m,i1,...,ir−1)−2xm,i1,...ir−1,k−l(m,i1,...,ir−1)−1

)
(
xm,j1,...jr−1,k−l(m,i1,...,ir−1)−2xm,j1,...jr−1,k−l(m,i1,...,ir−1)−1

)
.

We note that µm,i1,...ir−1 = µm,j1,...jr−1 and τm,i1,...ir−1 = τm,j1,...jr−1 . It follows that the
number of vertices in p−1

(
xm,i1,...,ir−1

)∪p−1
(
xm,j1,...,jr−1

)
fixed by τm,i1,...ir−1 ◦µm,i1,...ir−1

is 2 · l (m, i1, ..., ir−1) and those are precisely the vertices xm,i1,...,ir−1,q, xm,j1,...,jr−1,q with
q > (k − 1)− l (m, i1, ..., ir−1), and as we did before, we define

µr (xm,i1,...,ir ) := µm,i1,...ir−1 (xm,i1,...,ir ) and τ r (xm,i1,...,ir ) := τm,i1,...ir−1 (xm,i1,...,ir )

with m ∈ Z, i1 ∈ {1, 2, ..., k − 2} and i2, ..., ir ∈ {1, 2, ..., k − 1} and we have that

Fix (τ r ◦ µr) = Γ′ ∩ Vr.

Finally, if we define

µ :=
(
µ0, µ1, ..., µr, ...

)

τ :=
(
τ0, τ1, ..., τ r, ...

)
,

those are involutions that has γ as set of fixed points, that is, µ, τ ∈ Rγ and by construction

Fix (τ ◦ µ) = Γ′

¤

The same proposition holds if every vertex x ∈ γ satisfies the Γ′-OPC:

Lemma 8 Let Γ be a k-homogeneous tree with k ≡ 2mod 4, and Γ′ ⊂ Γ an admissible
sub-tree that is γ-symmetric. If every vertex x ∈ γ satisfies the Γ′-OPC, there are µ, τ ∈ Rγ

such that:

1. Fix (µ) = Fix (τ) = γ;

7



2. Fix (τ ◦ µ) = Γ′.

Proof: The proof is essentially the same of the preceding lemma, except for the number
of vertices in the first level relatively to γ, since it satisfies the Γ′-OPC instead of Γ′-EPC.
We adopt the same notations used before and show how to proceed in the firs level. Given
xm ∈ γ we have that p−1 (xm) has k−2 vertices, and we label them as xm,1, xm,2, ..., xm,k−2.

Let 0 ≤ l (m) ≤ k − 2 be the number of vertices in p−1 (xm) ∩ Γ′. Since xm satisfies the
Γ′-OPC and two of the vertices adjacent to xm are in γ, we have that l (m) ≡ 0 mod 4. We
define µm and τm as follows:

µm := (xm,1xm,3) (xm,2xm,4) ...
(
xm,k−l(m)−5, xm,k−l(m)−3

) (
xm,k−l(m)−4, xm,k−l(m)−2

)
(
xm,k−l(m)−1, xm,k−l(m)

) (
xm,k−l(m)+1, xm,k−l(m)+2

)
... (xm,k−3, xm,k−2)

τm = (xm,1xm,4) (xm,2xm,3) ...
(
xm,k−l(m)−5, xm,k−l(m)−2

) (
xm,k−l(m)−4, xm,k−l(m)−3

)
(
xm,k−l(m)−1, xm,k−l(m)

) (
xm,k−l(m)+1, xm,k−l(m)+2

)
... (xm,k−3, xm,k−2)

As we did before, we may assume that xm,j ∈ Γ′ ⇔ j > (k − 2) − l1 (m). Direct
computation shows that

τm ◦ µm = (xm,1xm,2) (xm,3xm,4) ...
(
xm,k−l(m)−5, xm,k−l(m)−4

) (
xm,k−l(m)−3, xm,k−l(m)−2

)

so that the vertices in p−1 (xm) fixed by the product τm ◦µm are precisely the l (m) vertices
xm,j with j > (k − 2)− l1 (m). In other words,

Fix (τm ◦ µm) = Γ′ ∩ p−1 (xm)

for every xm ∈ γ. We define

µ1 (xm,i) := µm (xm,i) and τ1 (xm,i) := τm (xm,i)

and it follows that
Fix

(
τ1 ◦ µ1

)
= Γ′ ∩ V1.

The definition of the permutations acting on subsequent levels is done in exactly the same
way it was done in the preceding lemma. ¤

Theorem 9 Let Γ be a k-homogeneous tree, Γ′ ⊂ Γ a non-trivial admissible sub-tree and
R = {ϕ ∈ Aut (Γ) |ϕ is a reflection}. Then, there are at most five reflections µ, τ, σ, ω, φ ∈
R such that Fix (φ ◦ ω ◦ σ ◦ τ ◦ µ) = Γ′ and (φ ◦ ω ◦ σ ◦ τ ◦ µ)2 = Id.

Proof: Since Γ′ is non-trivial, there is a vertex x0 ∈ Γ′ such that at least 2 (and at most
k − 2) vertices adjacent to x0 are not in Γ′. Let we label those vertices as x1 and x−1 and
let η be a geodesic containing both x1 and x−1. Then we have that η ∩Γ′ = {x0}. We label
the vertices of η as

η = ...x−l, ..., x−2, x−1, x0, x1, x2, ..., xl...

with d (xn, xn+1) = 1 for all n ∈ Z. Let γ be a geodesic such that γ ∩ η = x1. We consider
any reflection in γ that keeps the geodesic η invariant and denote by Γ′′ the image of Γ′ under
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such reflection. Since η is invariant under such reflection and it keeps the vertex x1 ∈ γ ∩ η
fixed, we have that x0 is carried to x2, so that Γ′′ is a copy of Γ′ such that Γ′′ ∩ η = {x2}.
We define a tree

Γ̃∗ = η ∪ γ ∪ Γ′ ∪ Γ′′.

By construction we have that Γ̃∗ is γ-symmetric and also admissible, since |S (v, 1)|eΓ∗ ≡
0mod 2 ∀v ∈ Γ̃∗. In order to use one of the preceding lemmas, we must establish the parity
condition (even or odd) for every vertex of γ, depending on the parity of k − 2. First of all
we label the geodesic γ as

γ := ...y−j , ..., y−1, y0, y1, ..., yj , ...

with j ∈ N and x1 = y0.
We now consider two different cases:
Case 1 (k ≡ 0mod4): We consider a family λi, i ∈ Z, i 6= 0 of geodesics such that

λi ∩ γ = {yi} for every i 6= 0

and define
Γ∗ := Γ̃∗

⋃

i∈Z
i 6=0

λi.

Then we have that Γ∗ is an admissible γ-symmetric tree and every vertex of γ satisfies Γ∗-
EPC. So, by Lemma 7, there are µ, τ ∈ R such τ ◦ µ is an involution with Fix (τ ◦ µ) = Γ∗.

Case 2 (k ≡ 2mod4): In this case we just consider a geodesic λ such that

λ ∩ η = λ ∩ γ = {y0}
(this is possible since k ≥ 4 and k ≡ 2mod 4) and define

Γ∗ := Γ̃∗ ∪ λ.

Then we have that Γ∗ is an admissible γ-symmetric tree and every vertex x ∈ γ satisfies
the Γ∗-OPC. So, by Lemma 8, there are µ, τ ∈ R such τ ◦ µ is an involution with Γ′ ⊂
Fix (τ ◦ µ) = Γ∗.

We consider as given two reflections µ, τ ∈ R such that

Γ′ ⊂ Fix (τ ◦ µ) = Γ∗. (2)

Let ω ∈ Aut (Γ) be an automorphism such that ω (η) = η. We label the vertices of Γ
relative to η, so that ω may be described as a sequence ω :=

(
ω0, ω1, ω2, ...

)
of permuta-

tions where ωn acts on Vn := Vn (η) and p (ωr (x)) = ωr−1 (p (x)). If ω (xi0,i1,i2,...,ir,...) =
xj0,j1,j2,...,jr,... we have that the r-th component of the sequence (j0, j1, j2...) depends on the
r first components of the sequence (i0, i1, i2, ...). We state it by using the following notation:

ω (xi0,i1,i2,i3,...) = xω0(i0),ω1
i0

(i1),ω2
i0,i1

(i2),ω3
i0,i1,i2

(i3),...

where the upper index r in ωr
i0,i1,...,ir

is a redundancy that only helps us (we hope) to track
the level where the permutation acts.

9



Direct computation shows that

σω (xi0,i1,i2,...,ik,...) = σ
(
xω0(i0),ω1

i0
(i1),ω2

i0,i1
(i2),ω3

i0,i1,i2
(i3),...

)

= xσ0ω0(i0),σ1
ω0(i0)

ω1
i0

(i1),σ2
ω0(i0),ω1

i0
(i1)

ω2
i0,i1

(i2),σ3
ω0(i0),ω1

i0
(i1),ω2

i0,i1
(i2)

ω3
i0,i1,i2

(i3),...

where ω, σ ∈ Aut (Γ) are any automorphism leaving η invariant.
We recall that the reflections µ and τ in (2) keep η invariant and

µ (xn) = µ0 (xn) = x−n+2

τ (xn) = τ0 (xn) = x−n+2

for every xn ∈ η. Let β1 be a geodesic transversal to η at x1, that is, β1 ∩ η = {x1} . There
is σ ∈ Rβ1 satisfying the following conditions:

σ0 (xn) = x−n+2 for every xn ∈ η (3)
σ (xi0,i1,i2,...) = xσ0(i0),i1,i2,... for i0 6= 1,

since σ0 is an involution fixing β1 ∩ η. The action of σ on the vertices having x1 as prefix
(vertices labelled as x1,i1,i2,...) will be characterized later.

Let β2 be a geodesic transversal to η at x2 and let ω ∈ Rβ2 be a reflection satisfying the
condition:

ω0 (xn) = x−n−4 for every xn ∈ η.

We define now another reflection φ ∈ Rβ1 with φ 6= σ, satisfying

φ0 (xn) = x−n−2 for every xn ∈ η.

To define the action of φ ◦ω ◦σ ∈ R on the descendents of xn (n ∈ Z) we will consider three
different cases.

Descendents of xn,n 6= 0,1: We observe that the action of σ, τ and µ are already
defined when restricted to those vertices. We want to define the action of the reflections ω
and φ in such a way that

φ ◦ ω ◦ σ ◦ τ ◦ µ (xi0,i1,i2,i3...) = x−i0,i1,i2,i3 for i0 6= 0, 1.

If we manage to do so, we will find that the composition φ ◦ ω ◦ σ ◦ τ ◦ µ will clearly act on
those vertices as an involution.

Direct computations shows that

µ0 (xn) = x−n+2

τ0µ0 (xn) = xn

σ0τ0µ0 (xn) = x−n+2

ω0σ0τ0µ0 (xn) = xn+2

φ0ω0σ0τ0µ0 (xn) = x−n.
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If we denote
φ ◦ ω ◦ σ ◦ τ ◦ µ (xi0,i1,i2,...,ir

) = xj0,j1,j2,...,jr
,

since
j0 = φ0 ◦ ω0 ◦ σ0 ◦ τ0 ◦ µ0 (i0)

it follows that
j0 = −i0.

From the definition of σ (in 3) we have that

j1 = φ1
ω0σ0τ0µ0(i0)

ω1
σ0τ0µ0(i0)

σ1
τ0µ0(i0)

τ1
µ0(i0)

µ1
i0 (i1)

= φ1
i0+2ω

1
−i0+2τ

1
−i0+2µ

1
i0 (i1)

and we want to impose that j1 = i1. To get this equality it is enough to define

φ1
i0+2ω

1
−i0+2 :=

(
τ1
−i0+2µ

1
i0

)−1
.

We move now to the second level. By definition we have that

j2 = φ2
i0+2,ω1

−i0+2τ1
−i0+2µ1

i0
(i1)

ω2
−i0+2,τ1

−i0+2µ1
i0

(i1)
τ2
−i0+2,µ1

i0
(i1)

µ2
i0,i1 (i2)

and in order to get the equality j2 = i2, it is enough to define

φ2
i0+2,ω1

−i0+2τ1
−i0+2µ1

i0
(i1)

ω2
−i0+2,τ1

−i0+2µ1
i0

(i1)
:=

(
τ2
−i0+2,µ1

i0
(i1)

µ2
i0,i1

)−1

.

For the third level, we have that

j3 = φ3
i0+2,ω1

−i0+2τ1
−i0+2µ1

i0
(i1),ω2

−i0+2,τ1
−i0+2µ1

i0
(i1)

τ2
−i0+2,µ1

i0
(i1)

µ2
i0,i1

(i2)

ω3
−i0+2,τ1

−i0+2µ1
i0

(i1),τ2
−i0+2,µ1

i0
(i1)

µ2
i0,i1

(i2)
τ3
−i0+2,µ1

i0
(i1),µ2

i0,i1
(i2)

µ3
i0,i1,i2 (i3)

and again, by defining

φ3
i0+2,ω1

−i0+2τ1
−i0+2µ1

i0
(i1),ω2

−i0+2,τ1
−i0+2µ1

i0
(i1)

τ2
−i0+2,µ1

i0
(i1)

µ2
i0,i1

(i2)

ω3
−i0+2,τ1

−i0+2µ1
i0

(i1),τ2
−i0+2,µ1

i0
(i1)

µ2
i0,i1

(i2)
:=

(
τ3
−i0+2,µ1

i0
(i1),µ2

i0,i1
(i2)

µ3
i0,i1,i2

)−1

we find that j3 = i3. We proceed in this same manner for the other levels, so that we get five
reflections such that the composition φ◦ω ◦σ ◦τ ◦µ acts on Γ\ ({x0,i1,i2,...} ∪ {x1,i1,i2,...}) as
an involution. Moreover, the vertices that are descendents of xn, for n 6= 0, 1 are not fixed
by the composition of the five reflections.

Descendents of x0: We remember that µ and τ are given (in 2) and the restriction of
σ to descendents of x0 is defined as

σ (x0,i1,i2,...) = x2,i1,i2,...
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We still have to define the action of ω and φ on the descendents of x0 in such a way that
the composition of the five reflections becomes an involution that fixes only the vertices of
the admissible tree Γ′. Given x0,i1,i2,i3,... ∈ Γ′ we have that

τ ◦ µ (x0,i1,i2,i3,...) = x0,i1,i2,i3,...

σ (x0,i1,i2,i3,...) = x2,i1,i2i3,...

ω (x2,i1,i2,i3,...) = x2,ω1
2(i1),ω2

2,i1
(i2),ω3

2,i1,i2
(i3),...

φ ◦ ω (x2,i1,i2,i3,...) = x0,φ1
2ω1

2(i1),φ2
2,ω1

2(i1)
ω2

2,i1
(i2),φ3

2,ω1
2(i1),ω2

2,i1
(i2)

ω3
2,i1,i2

(i3),...

If we define φi
... and ωi

... by the equations

φ1
2 :=

(
ω1

2

)−1
, (4)

φ2
2,ω1

2(i1)
:=

(
ω2

2,i1

)−1
,

φ3
2,ω1

2(i1),ω2
2,i1

(i2)
:=

(
ω3

2,i1,i2

)−1
, ...

we find that

φ1
2ω

1
2 (i1) = i1,

φ2
2,ω1

2(i1)
ω2

2,i1 (i2) = i2,

φ3
2,ω1

2(i1),ω2
2,i1

(i2)
ω3

2,i1,i2 (i3) = i3, ...

so that

φ ◦ ω ◦ σ ◦ τ ◦ µ (x0,i1,i2,i3,...) = φ ◦ ω (x2,i1,i2,i3,...)
= x0,i1,i2,i3,...

that is, the vertices of Γ′ descending from x0 are fixed by φ ◦ ω ◦ σ ◦ τ ◦ µ. Moreover, if
x0,i1,i2,i3,... /∈ Γ′, we have that

φ ◦ ω ◦ σ ◦ τ ◦ µ (x0,i1,i2,i3...) = x0,j1,j2,j3,...

where
j1 = φ1

2ω
1
2τ1

2 µ1
0 (i1) .

We observe that if we define
(
φ1

2ω
1
2

)
as in 4, we get that

j1 = τ1
2 µ1

0 (i1)

i.e., j1 is determined by the action of µ and τ . For j2 we have that

j2 = φ2
2,ω1

2τ1
2 µ1

0(i1)
ω2

2,τ1
2 µ1

0(i1)
τ2
2,µ1

0(i1)
µ2

0,i1 (i2)

and by defining

φ2
2,ω1

2τ1
2 µ1

0(i1)
:=

(
ω2

2,τ1
2 µ1

0(i1)

)−1
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we find that
j2 = τ2

2,µ1
0(i1)

µ2
0,i1 (i2)

i.e., j2 is well defined. This is actually the inductive step that should be performed to
complete the proof. The same can be done, for example, for the level 3: We have that

j3 = φ3
2,ω1

2τ1
2 µ1

0(i1),ω
2
2,τ1

2 µ1
0(i1)

τ2
2,µ1

0(i1)
µ2

0,i1
(i2)

ω3
2,τ1

2 µ1
0(i1),τ

2
2,µ1

0(i1)
µ2

0,i1
(i2)

τ3
2,µ1

0(i1),µ
2
0,i1

(i2)
µ3

0,i1,i2 (i3)

So, if we define

φ3
2,ω1

2τ1
2 µ1

0(i1),ω
2
2,τ1

2 µ1
0(i1)

τ2
2,µ1

0(i1)
µ2

0,i1
(i2)

:=
(

ω3
2,τ1

2 µ1
0(i1),τ

2
2,µ1

0(i1)
µ2

0,i1
(i2)

)−1

we find that
j3 = τ3

2,µ1
0(i1),µ

2
0,i1

(i2)
µ3

0,i1,i2 (i3) .

Proceeding in this way we will find that jn 6= in for some n ≥ 1, since x0,i1,i2,i3,... /∈ Γ′ and
the descendents of x0 that are fixed by τ ◦ µ are those ones contained in Γ′.

Descendents of x1: We proceed in a similar way. We recall that the reflections τ and
µ are completely determined and, given xn ∈ η,

µ0 (xn) = x−n+2, τ0 (xn) = x−n+2

σ0 (xn) = x−n+2, ω0 (xn) = x−n−4

φ0 (xn) = x−n−2.

We define the action of ω on the descendents of x1 as

ω (xi0,i1,i2,i3...) = xω0(i0),i1,i2,i3....

If we write
φ ◦ ω ◦ σ ◦ τ ◦ µ (x1,i1,i2,i3...) = x−1,j1,j2,j3,...

we have that

j1 = φ1
3σ

1
1τ1

1 µ1
1 (i1)

j2 = φ2
3,σ1

1τ1
1 µ1

1(i1)
σ2

1,τ1
1 µ1

1(i1)
τ2
1,µ1

1(i1)
µ2

1,i1 (i2)

j3 = φ3
3,σ1

1τ1
1 µ1

1(i1),σ
2
1,τ1

1 µ1
1(i1)

τ2
1,µ1

1(i1)
µ2

1,i1
(i2)

σ3
1,τ1

1 µ1
1(i1),τ

2
1,µ1

1(i1)
µ2

1,i1
(i2)

τ3
1,µ1

1(i1),µ
2
1,i1

(i2)
µ3

1,i1,i2 (i3) , ...

We need to define φ and σ in such a way that ji = ii for every i ∈ N and for this it is enough
to define the action of φ and σ on the descendents of x1 as follows:

φ1
3σ

1
1 :=

(
τ1
1 µ1

1

)−1

φ2
3,σ1

1τ1
1 µ1

1(i1)
σ2

1,τ1
1 µ1

1(i1)
:=

(
τ2
1,µ1

1(i1)
µ2

1,i1

)−1

φ3
3,σ1

1τ1
1 µ1

1(i1),σ
2
1,τ1

1 µ1
1(i1)

τ2
1,µ1

1(i1)
µ2

1,i1
(i2)

σ3
1,τ1

1 µ1
1(i1),τ

2
1,µ1

1(i1)
µ2

1,i1
(i2)

:=
(
τ3
1,µ1

1(i1),µ
2
1,i1

(i2)
µ3

1,i1,i2

)−1

, ...
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Altogether we have 5 reflections such that the composition φ◦ω◦σ◦τ ◦µ is an involution
and Fix (φ ◦ ω ◦ σ ◦ τ ◦ µ) = Γ′ as we wanted. ¤

By definition, an admissible tree is the set of fixed points of an involution. Since all such
involutions are conjugated, if we prove that a single involution is a product of a bounded
number of reflections, the same bound will hold for every involution with the same set of
fixed points. In the next theorem we will prove that, in case of a trivial admissible tree,
such an involution can be attained as the product of 3 reflections.

Let us prove the same Theorem for the case of trivial admissible trees.

Theorem 10 Let Γ be a k-homogeneous tree, Γ′ ⊂ Γ a trivial admissible tree and
R = {φ ∈ Aut (Γ) |φ is a reflection}. Then, there are at most three reflections µ, τ, σ ∈ R
such that Fix (σ ◦ τ ◦ µ) = Γ′ and (σ ◦ τ ◦ µ)2 = Id.

Proof: If Γ′ is a geodesic γ, it is enough to consider µ as any reflection in γ and by
definition we have that Fix (µ) = Γ′. If Γ′ = Γ, we take any reflection µ ∈ R and since a
reflection is an involution, we have that Fix (µ ◦ µ) = Γ = Γ′. So, it is left the case when
the trivial admissible tree Γ′ consists of a single vertex, that is, Γ′ = {x0}. We shall divide
the prove in two cases, according to homogeneity of Γ.

Case 1 (k ≡ 0mod4): Consider two geodesics γ1 and γ2 in Γ such that γ1 ∩ γ2 =
{x0}. We label the vertices adjacent to x0 as x1, x2, ..., xk−1, xk and assume without loss of
generality that x1, x2 ∈ γ1 and xk−1, xk ∈ γ2. Let µ ∈ Rγ1 and τ ∈ Rγ2 be reflections such
that

µ|S(x0,1) = (x3x4) (x5x6) ... (xk−3xk−2) (xk−1xk)
τ |S(x0,1) = (x1x2) (x3x5) (x4x6) ... (xk−5xk−3) (xk−4xk−2) .

The existence of such reflections is assured by the extension property ([6, Proposition 7]).
Direct computations shows that

τ ◦ µ|S(x0,1) = (x1x2) (x3x6) (x4x5) ... (xk−3xk−4) (xk−1xk)

so that Fix (τ ◦ µ) |S(x0,1) = ∅ and it follows that

Fix (τ ◦ µ) = {x0} = Γ′

and (τ ◦ µ)2 = Id.
Case 2 (k ≡ 2mod4): Let σ be a reflection fixing the vertex x0. Let

η = ...x−l, ..., x−2, x−1, x0, x1, x2, ..., xl...

be a geodesic containing the vertex x0. Consider now two geodesics γ1 and γ2 such that
γ1 ∩ η = x1 and γ2 ∩ η = x2.

Let µ, σ ∈ Rγ1 and τ ∈ Rγ2 be reflections satisfying the following conditions

µ0 (xn) = x−n+2, τ0 (xn) = x−n+4 and σ0 (xn) = x−n+2
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for every xn ∈ η where the decomposition of the reflections is considered relative to the
geodesic η, in the same way we did in the proof of Theorem 9. Direct computations shows
that σ0 ◦ τ0 ◦ µ0 (xn) = x−n and it follows that

Fix
(
σ0 ◦ τ0 ◦ µ0

)
= {x0} .

Since x0 is the only fixed point of σ ◦ τ ◦ µ on γ, in order to have Fix (σ ◦ τ ◦ µ) = {x0} it
is enough to define the reflections in such a way that it has no fixed points in S (x0, 1), that
is, considering the labeling from γ, we need the condition

σ ◦ τ ◦ µ (x0,i) 6= x0,i.

Considering the decomposition of the three reflections we get that

σ ◦ τ ◦ µ (x0,i) = στ
(
x2,µ1

0(i)

)
= σ

(
x2,τ1

2 µ1
0(i)

)
= x0,σ1

2τ1
2 µ1

0(i)

and for any choice of σ1
2 , τ1

2 and µ1
0 such that σ1

2τ1
2 µ1

0 6= 1, we will get that Fix (σ ◦ τ ◦ µ) =
{x0}. If we define, for instance,

µ1
0 (i) = i, τ1

2 (i) = k − 1− i and σ1
2 (i) = i

for every i = 1, 2, ..., k − 2, we find that σ1
2τ1

2 µ1
0 (i) = k − 1− i. Moreover,

(σ ◦ τ ◦ µ)2 (x0,i) = (σ ◦ τ ◦ µ) (x0,k−1−i) = x0,i

so that (σ ◦ τ ◦ µ)2 = Id. ¤

Before we prove our main result, we need the following lemma:

Lemma 11 Let Γ be a k-homogeneous tree and ϕ ∈ Aut+ (Γ). Then ϕ may be expressed
as the product of at most three involutions with fixed points, where at least one of those is a
reflection.

Proof: Suppose there is x0 ∈ Γ such that ϕ (x0) = x0. In [4], Moran proved that a rooted
tree has the bi-reflection property, that is, every automorphism of the rooted tree may be
expressed as the product of two involutions. Since ϕ (x0) = x0, the automorphism ϕ may be
seen as an automorphism of the tree with root in x0 and it is the product of two involutions.

Suppose now that ϕ has no fixed point. Given x0 ∈ Γ, since 0 < d (x0, ϕ (x0)) ≡ 0mod 2
there is a vertex w ∈ Γ that is the middle point of the geodesic segment [x0, ϕ (x0)]. So
there is a reflection φ such that φ (ϕ (x0)) = x0. Since ϕ, φ ∈ Aut+ (Γ) we have that
φ ◦ ϕ ∈ Aut+ (Γ) and since φ ◦ ϕ (x0) = x0, as we just proved, there are involutions σ1, σ2

such that φ ◦ ϕ = σ1 ◦ σ2 and we have that

ϕ = φ ◦ (φ ◦ ϕ) = φ ◦ σ1 ◦ σ2.

¤

15



Theorem 12 Let Γ be a k-homogeneous tree and ψ ∈ Aut+ (Γ). Then, ψ may be expressed
as the product of at most 11 reflections in geodesics.

Proof: In the previous Lemma we proved that ψ ∈ Aut+ (Γ) may be expressed as the
product of (at most) two involutions (say ϕ′ and ϕ′′) and one reflection (let us say φ):
ψ = φ ◦ ϕ′ ◦ ϕ′′. Let Γ′ and Γ′′ be the trees of fixed points of the involutions ϕ′ and ϕ′′.
Theorems 9 and 10 assures there are reflections φ̃′1, ..., φ̃

′
5 and φ̃′′1 , ..., φ̃′′5 (eventually less then

5 are needed) such that

Fix
(
φ̃′1 ◦ ... ◦ φ̃′5

)
= Γ′ and Fix

(
φ̃′′1 ◦ ... ◦ φ̃′′5

)
= Γ′′

and
(
φ̃′1 ◦ ... ◦ φ̃′5

)2

=
(
φ̃′′1 ◦ ... ◦ φ̃′′5

)2

= Id. It follows that φ̃′1 ◦ ... ◦ φ̃′5 and φ̃′′1 ◦ ... ◦ φ̃′′5
are involutions that have the same fixed points as ϕ′ and ϕ′′ respectively. But Lemma 3 in
[7] assures that involutions in a homogeneous tree are conjugated if and only if there is an
automorphism that maps the set of fixed points of one to the set of fixed points of the other.
It follows that

ϕ′ = σ′
(
φ̃′1 ◦ ... ◦ φ̃′5

)
(σ′)−1 =

(
σ′φ̃′1 (σ′)−1

)
◦ ... ◦

(
σ′φ̃′5 (σ′)−1

)

ϕ′′ = σ′′
(
φ̃′′1 ◦ ... ◦ φ̃′′5

)
(σ′′)−1 =

(
σ′′φ̃′1 (σ′′)−1

)
◦ ... ◦

(
σ′′φ̃′5 (σ′′)−1

)

and since the conjugate of a reflection is still a reflection, by defining

φ′i = σ′φ̃′i (σ′)−1
, φ′′i = σ′′φ̃′′i (σ′′)−1

for i = 1, 2, ..., 5 we get that

ψ = φ ◦ ϕ′ ◦ ϕ′′

= φ ◦ φ′1 ◦ ... ◦ φ′5 ◦ φ′′1 ◦ ... ◦ φ′′5 .

¤

We can restate the previous Theorem in terms of covering number:

Theorem 13 Let Γ be a k-homogeneous tree and CR the conjugacy class of reflections in
Γ. Then, the covering number satisfies cn

(
Aut+ (Γ) , CR

) ≤ 11, that is, R11 = Aut+ (Γ).
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