UNICAMP – IMECC Departamento de Matemática

Seminário de Sistemas Dinâmicos e Estocásticos

Expositor:	R. Leplaideur (Université de Bretagne Occidentale)
Título:	Renormalization and thermodynamic formalism in subshifts
Data:	Sexta-feira, 11 de março de 2011, 14h
Local:	Sala 321 do IMECC

Resumo. Bowen's work on thermodynamic formalism showed that any subshift of finite type with Hölder continuous potential ϕ admits a unique equilibrium state (which is a Gibbs measure). Moreover, the pressure function $\gamma \mapsto \mathcal{P}(-\gamma \phi)$ is real analytic and there are no phase transitions. Hofbauer was the first to find continuous non-Hölder potentials for the full 2-shift (Σ, σ) allowing a phase transition.

The present work is a joint work with Henk Bruin; it investigates the connections between phase transition in the full 2-shift, renormalization for potentials, renormalization for maps (in complex dynamics) and substitutions in the full 2-shift. The basic questions answered is whether fixed points V of a renormalization operator \mathcal{R} acting on the space of potentials are such that $\gamma \mapsto \mathcal{P}(-\gamma V)$ exhibits phase transition and if they can be realized as a log f' for some good dynamics $f: [0,1] \to [0,1]$.

This extends the work by Baraviera, Leplaideur and Lopes on the Manneville-Pomeau map, where such phase transitions were indeed detected. However, the attractor of renormalization is here a Cantor set (rather than a single fixed point). It is generated in the shift by the Thue-Morse substitution, and is related to the Feigenbaum map in complex dynamics.

Consulte a programação em [www.ime.unicamp.br/ssde].