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Universidade Estadual de Campinas

13083-859 Campinas - SP, Brasil

garibaldi@ime.unicamp.br

Artur O. Lopes†

Instituto de Matemática
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Abstract

For a topologically transitive subshift of finite type defined by a symmet-
ric transition matrix, we introduce a temperature-based problem related to
the usual thermodynamic formalism. This problem is described by an oper-
ator acting on Hölder continuous observables which is actually superlinear
with respect to the max-plus algebra. We thus show that, for each fixed
absolute temperature, such an operator admits a unique eigenfunction and
a unique eigenvalue. We also study the convergence as the temperature goes
to zero and we relate the limit objects to an ergodic version of Kantorovich
transshipment problem.
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1 Introduction

Given A : {1, . . . , r}2 → R, φ : {1, . . . , r} → R, and β > 0, it is well known
that the unique probability vector

(
µ(1), . . . , µ(r)

)
∈ [0, 1]r that maximizes the

expression ∑
x0∈{1,...,r}

µ(x0)[βA(y0, x0) + φ(x0)]−
∑

x0∈{1,...,r}

µ(x0) logµ(x0) (1)

is the Gibbs state associated to A at temperature β−1 defined by

µy0,β(x0) :=
1

Zy0,β
exp[βA(y0, x0) + φ(x0)] ∀x0 ∈ {1, . . . , r},
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where Zy0,β is a normalization factor.

The analysis of the thermodynamic formalism for a given observable A at zero
temperature is, by definition, the study of the limit behavior when β →∞ of the
corresponding Gibbs states at temperature β−1. For instance, in the previous
elementary example of an equilibrium state for a finite system, it is easy to see
that the family {µy0,β}β>0 converges to the equidistribution on argmax

(
A(y0, ·)

)
.

The aim of this paper is to propose a strategy to contribute to such an anal-
ysis when the observable A depends on countably many coordinates, which cor-
responds, regarding statistical mechanics nomenclature, to the case of long range
interactions. The main point of the approach described here is to consider a gener-
alization of expression (1) as an operator acting on potentials φ (see Definition 1).
In this way, the natural question about the existence of a more suitable potential
will have a counterpart in terms of a functional equation (see Theorem 1).

We introduce thus effective potentials. The terminology is borrewed from the
work of W. Chou and R. Griffiths [4], where, during the study of ground states
of one-dimensional systems, the authors realized that, due to interaction and
temperature, there exists a particular potential, called there effective potential,
which plays an essential role in the problem. In [11], questions also related to the
article of Chou and Griffiths were analyzed in the context of Markov chains on
the interval.

The effective-potential formalism will allow us to present a family of effective
probabilities, each one corresponding to a Gibbs state in the sense of Ruelle’s
thermodynamic setting [14]. We will also consider the limit behavior of this
family of probabilities when the temperature goes to zero. In this case, we relate
our analysis with an ergodic version of Kantorovich transshipment problem. We
recall that, in the classical transport theory [15, 17, 18], there is no assumption
involving the invariance of probabilities.

The method proposed here has similarities with entropy penalization tech-
niques, which were considered, for instance, in [9] and [8] (see the main properties
on these references) in the setting of Aubry-Mather theory. Nevertheless, in this
paper, the entropy to be considered is Kolmogorov-Sinai entropy, which has a
prominent dynamical character.

The central questions addressed here find analogues in other physical domains
(see, for example, section 2.5 of Salmhofer’s book [16]). Finally, we emphasize
that the relation of the effective action problem with the ergodic Kantorovich
transshipment problem (see section 4), as far as we know, is completely new.

2 Setting and results

Let M : {1, . . . , r} × {1, . . . , r} → {0, 1} be an irreducible transition matrix. One
has naturally two subshifts associated to such a matrix. We can introduce the
standard subshift of finite type

ΣM =
{

(x0, x1, . . .) ∈ {1, . . . , r}Z+ : M(xj , xj+1) = 1
}
,
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as well as the dual subshift of finite type

Σ∗MT =
{

(. . . , x1, x0) ∈ {1, . . . , r}Z− : MT (xj , xj+1) = 1
}
.

As topological spaces, both subshifts are always compact metrizable spaces. We
suppose henceforth that the matrix M is symmetric. So we have a canonical
homeomorphism x = (x0, x1, . . .) ∈ ΣM 7→ x∗ = (. . . , x1, x0) ∈ Σ∗M.

Given Λ ∈ (0, 1), we equip as usual ΣM with the metric d(x,y) = Λk, where
x = (x0, x1, . . .),y = (y0, y1, . . .) ∈ ΣM and k = min{j : xj 6= yj}. Hence, for
x∗,y∗ ∈ Σ∗M, we just set d∗(x∗,y∗) := d(x,y).

Let σ be the left shift map acting on ΣM and let σ∗ be the right shift map
acting on Σ∗M, namely,

σ(x0, x1, x2, . . .) = (x1, x2, . . .) and σ∗(. . . , x2, x1, x0) = (. . . , x2, x1).

Clearly, ∗ ◦ σ = σ∗ ◦ ∗. Furthermore, since M is irreducible, notice that the dy-
namics (ΣM, σ) is transitive – and consequently the conjugated dynamical system
(Σ∗M, σ

∗) too.
Let C0(ΣM) and C0(Σ∗M) denote the spaces of continuous real-valued func-

tions on respectively ΣM and Σ∗M, both equipped with the topology of uniform
convergence. Thus, we can obtain from the previous homeomorphism an isometry
∗ : C0(ΣM) → C0(Σ∗M) writing f∗(x∗) := f(x) for every function f ∈ C0(ΣM).
This fact allows us to make the identification C0(ΣM) ' C0(Σ∗M).

The same isometric property is verified for either Hölder or Lipschitz continu-
ous real-valued functions. Since one can simply incorporate the Hölder exponent
into the distance, we remark that to work with the Lipschitz class does not lead
to loss of generality. Therefore, H will denote in this article the Banach space of
Lipschitz continuous real-valued functions on either ΣM or Σ∗M, equipped with
the norm ‖ · ‖H := ‖ · ‖0 + Lip(·), where ‖ · ‖0 denotes the uniform norm and

Lip(φ) = sup
d(x,y)>0

|φ(x)− φ(y)|
d(x,y)

= sup
d∗(x∗,y∗)>0

|φ∗(x∗)− φ∗(y∗)|
d∗(x∗,y∗)

= Lip(φ∗).

Using the standard subshift ΣM and its dual Σ∗M, one may easily introduce

its natural invertible extension (Σ̂M, σ̂):

Σ̂M =
{

(y∗,x) ∈ Σ∗M × ΣM : M(y0, x0) = 1
}
,

σ̂(. . . , y1, y0|x0, x1, . . .) = (. . . , y0, x0|x1, x2, . . .).

Denote by Mσ the weak* compact and convex set of σ-invariant Borel prob-
ability measures. For µ ∈Mσ, let hµ(σ) indicate the Kolmogorov-Sinai entropy.

Definition 1. Given a Lipschitz continuous function A : Σ̂M → R, we consider
then the map G+ = G+

A : H → H defined1 by

G+(φ)(y∗) = sup
µ∈Mσ

[∫
ΣM

(A(y∗,x) + φ(x)) dµ(x) + hµ(σ)

]
1Notice that a more rigorous definition would consider

∫
ΣM

(A(y∗,x)M(y∗,x) + φ(x)) dµ(x),

where M(y∗,x) := M(y0, x0) for any point (y∗,x) = (. . . , y1, y0|x0, x1, . . .). We prefer to sim-
plify the notation.
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It is not difficult to see that Lip(G+(φ)) ≤ ‖A‖0 + Lip(A) for all φ ∈ H.
Moreover, notice that, for all φ, ψ ∈ H and γ ∈ R, clearly G+(φ+ γ) = G+(φ) + γ
and G+(max(φ, ψ)) ≥ max(G+(φ),G+(ψ)), which means that the operator G+ is
superlinear with respect to the max-plus algebra. Our main result assures then
the existence of eigenfunctions and eigenvalue and can be stated as follows.

Theorem 1. Suppose A : Σ̂M → R is a Lipschitz continuous observable. Then
there exist a unique function φ+ ∈ H (up to an additive constant) and a unique
constant λ+ ∈ R such that

G+(φ+) = φ+ + λ+.

We point out that [8, 9, 11] consider a similar problem but for the so called
entropy penalization method. The proof of this theorem will be presented in the
end of the paper. Obviously the function φ+ and the constant λ+ in the previous
statement depend on A.

Definition 2. Given a Lipschitz continuous observable A : Σ̂M → R, we say
that a constant λ+ ∈ R is the effective constant for A if there exists a function
φ+ ∈ H such that G+(φ+) = φ+ + λ+. Any such a function φ+ is called a
(forward) effective potential for A.

Notice that the characterization via variational principle of the topological
pressure PTOP : H → R, namely,

PTOP (Ψ) = max
µ∈Mσ

[∫
ΣM

Ψ(x) dµ(x) + hµ(σ)

]
∀ Ψ ∈ H,

implies that

G+(φ)(y∗) = PTOP (A(y∗, ·) + φ).

In particular, thanks to the Ruelle-Perron-Frobenius Theorem, for each y∗ ∈ Σ∗M,
there exists a unique probability µy∗ ∈ Mσ (the equilibrium state associated to
A(y∗, ·)+φ ∈ H) achieving the supremum in the definition of the value G+(φ)(y∗).

Definition 3. For a Lipschitz continuous observable A : Σ̂M → R and a point
y∗ ∈ Σ∗M, we say that the unique σ-invariant probability µy∗ = µy∗,A on ΣM with∫

ΣM

(
A(y∗,x) + φ+(x)

)
dµy∗(x) + hµy∗ (σ) = φ+(y∗) + λ+

is the effective probability for A at y∗, where φ+ and λ+ are the effective ones
associated to A. In this way, we get a family of Gibbs states on the variable x
indexed by y∗.

For a fixed A as above, we consider a positive parameter β, the observable
βA, and the corresponding φ+

β , λ+
β and {µy∗,βA}y∗∈Σ∗M

. We investigate then the
limit problem when β → ∞, showing the existence (in the uniform topology) of
accumulation Lipschitz functions for the family {φ+

β /β}β>0, characterizing the
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accumulation probabilities of {µy∗,βA}β>0 for each y∗, and proving that λ+
β /β

converges (see section 3).
We remark at last that one could also consider the (backward) transformation

G− = G−A : H → H defined by

G−(φ)(x) = sup
µ∈Mσ∗

[∫
Σ∗M

(A(y∗,x) + φ(y∗)) dµ(y∗) + hµ(σ∗)

]
,

and all analogous results could be easily stated and similarly proved.
The structure of the paper is the following: in section 3 we discuss the ther-

modynamic properties of the effective objects, in section 4 we consider the ergodic
Kantorovich transshipment problem (which appears in a natural way when the
temperature goes to zero), and finally in section 5 we present the proof of the
main theorem.

3 Thermodynamic formalism at zero temperature

We will analyze the Gibbs probabilities for βA when β →∞. From now on, y∗ is
simply denoted by y and we identify the spaces ΣM and Σ∗M. For each real value β,
we consider the map G+

βA : H → H and the corresponding Lipschitz function φ+
β ,

the forward effective potential for βA, and the corresponding constant λ+
β ∈ R.

For each y, we consider then the effective probability µy,βA as before. In order
to avoid a heavy notation, we will drop the A and the + in this section.

In this way, for each parameter β, we have the equation

Gβ(φβ) = φβ + λβ.

Recall that, for each y, we have Gβ(φβ)(y) = PTOP (βA(y, ·) + φβ), where the
pressure is consider for the setting in the variable x. Therefore, for each y and
β, one verifies

φβ(y) + λβ = PTOP (βA(y, ·) + φβ).

The well known continuity of the topological pressure, in particular, gives us2

∥∥PTOP (βA(y, ·) + ψ)− PTOP (βA(y, ·) + ψ̄)
∥∥

0
≤

≤ β‖A(y, ·)M(y, ·)−A(y, ·)M(y, ·)‖0 + ‖ψ − ψ̄‖0. (2)

It is then easy to see that Lip
(
φβ/β

)
≤ ‖A‖0 + Lip(A), from which we obtain the

following proposition.

Proposition 2. The family {φβ/β} is equilipchitz.

Remember that the effective potential is unique up to an additive constant.
So we will consider the following condition: we fix a point y0 ∈ Σ∗M and we
assume that φβ(y0) = 0 for all β. Via subsequences βn →∞, with n→∞, using
the previous proposition, we get by the Arzela-Ascoli Theorem that there exists

2Recall footnote 1.
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a continuous function V : Σ∗M → R such that V (y0) = 0 and, in the uniform
convergence,

φβn
βn
→ V.

Since Lip (φβ/β) ≤ ‖A‖0 + Lip(A) implies Lip(V ) ≤ ‖A‖0 + Lip(A), the function
V is actually Lipschitz continuous. Notice that, in principle, such a limit could
depend on the chosen subsequence.

Proposition 3. Suppose that in the uniform convergence φβn/βn → V, when
βn → ∞. Let µy,βn be the effective probability for the observable βnA at a fixed
point y. Then, any accumulation probability measure µ∞y ∈ Mσ of the sequence
µy,βn is a maximizing probability for A(y, ·) + V , that is,∫

(A(y, ·) + V ) dµ∞y = max
µ∈Mσ

∫
(A(y, ·) + V ) dµ.

Proof. Take any σ-invariant probability µ. Thus∫
(βnA(y, ·) + φβn) dµ+ hµ(σ) ≤ PTOP (βnA(y, ·) + φβn)

=

∫
(βnA(y, ·) + φβn) dµy,βn + hµy,βn (σ).

Given an accumulation probability measure µ∞y of the sequence µy,βn , from∫ (
A(y, ·) +

φβn
βn

)
dµ+

1

βn
hµ(σ) ≤

∫ (
A(y, ·) +

φβn
βn

)
dµy,βn +

1

βn
hµy,βn (σ),

we get the inequality∫
(A(y, ·) + V ) dµ ≤

∫
(A(y, ·) + V ) dµ∞y .

Therefore, µ∞y is a maximizing probability for A(y, ·) + V .

Proposition 4. Assume that in the uniform convergence φβn/βn → V when
βn →∞. Suppose also that µy,βn, the effective probability for the observable βnA
at a fixed point y, converges in the weak* topology to µ∞y ∈Mσ. Then,

lim
n→∞

λβn
βn

= max
µ∈Mσ

∫
ΣM

(A(y,x) + V (x)− V (y)) dµ(x)

=

∫
ΣM

(A(y,x) + V (x)− V (y)) dµ∞y (x).

Proof. As for any given point y

φβn(y) + λβn =

∫
(βnA(y, ·) + φβn) dµy,βn + hµy,βn (σ),

then dividing this expression by βn, taking limit, and using last proposition, we
immediately get the claim.
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We point out that obviously the limit function V ∈ H and the limit measure
µ∞y ∈ Mσ may depend on the particular choice of the sequence βn. Yet the
previous proposition shows that the value

∫
ΣM

(A(y, ·) + V − V (y)) dµ∞y does
not depend on the point y. Actually it does not even depend on the function V .

Proposition 5. Suppose that in the uniform convergence φβn/βn → V and
φβ̄n/β̄n → V when βn, β̄n →∞. Then, for all point y,

max
µ∈Mσ

∫
ΣM

(A(y,x) + V (x)− V (y)) dµ(x) =

= max
µ∈Mσ

∫
ΣM

(
A(y,x) + V (x)− V (y)

)
dµ(x).

Proof. Passing to subsequences if necessary, we use the previous proposition to
define c := limn→∞ λβn/βn and c̄ := limn→∞ λβ̄n/β̄n. Notice that, again from
proposition 4,

V (y) + c = max
µ∈Mσ

∫
ΣM

(A(y,x) + V (x)) dµ(x) and

V (y) + c̄ = max
µ∈Mσ

∫
ΣM

(
A(y,x) + V (x)

)
dµ(x),

for all point y. Let y0 be a global maximum point for V − V . Consider then a
probability µ0 ∈ Mσ such that V (y0) + c =

∫
ΣM

(
A(y0,x) + V (x)

)
dµ0(x). It

clearly follows that

V (y0) + c− V (y0)− c̄ ≤
∫

ΣM

[(
A(y0,x) + V (x)

)
−
(
A(y0,x) + V (x)

)]
dµ0(x)

=

∫
ΣM

(
V (x)− V (x)

)
dµ0(x) ≤ V (y0)− V (y0),

which shows that c ≤ c̄. We can proceed in the same way changing in the
reasoning V and V . Therefore c = c̄.

Theorem 6. There exists the limit cA := limβ→∞ λβ/β.

Proof. The previous propositions guarantee that {λβ/β}β>0 has a unique accu-
mulation point as β goes to infinity.

In the next section, we explain how the real constant cA is related with an
ergodic Kantorovich transshipment problem.

4 Ergodic Transshipment

We remark that one may write, for all limit function V ∈ H and for any point y,

cA = max
µ∈Mσ

∫
ΣM

(A(y,x) + V (x)− V (y)) dµ(x). (3)
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Therefore, from ergodic optimization theory, one obtains that

cA = inf
f∈H

sup
x

[A(y,x) + V (x)− V (y) + f(x)− f(σ(x))] .

Moreover, if we fixed a limit function V ∈ H, for each point y, there exists a
function Uy ∈ H (called a sub-action with respect to A(y, ·)+V −V (y)) such that

A(y,x) + V (x)− V (y) + Uy(x)− Uy(σ(x)) ≤ cA, ∀x ∈ ΣM, (4)

and the equality holds on the support of the maximizing measure µ∞y . We refer
the reader to [6, 7, 10] for details on ergodic optimization theory.

Equation (4) implies that V (y) + cA ≥ V (x) + A(y,x) + Uy(x) − Uy(σ(x)),
for all (y,x) ∈ Σ̂M. Furthermore, since the equality holds at (y,x) whenever x
belongs to the support of µ∞y , one has

V (y) + cA = sup
x

[V (x) +A(y,x) + Uy(x)− Uy(σ(x))] , ∀y ∈ Σ∗M. (5)

This equation clearly underlines another max-plus eigenvalue problem. See, for
instance, [1, 3, 5] for more details on such an issue. We get from the above
equation that V is an additive eigenfunction and cA is an additive eigenvalue for
the transformation with kernel map

C(y,x) := A(y,x) + Uy(x)− Uy(σ(x)), ∀ (y,x) ∈ Σ̂M.

By its very construction, the map (y,x) 7→ Uy(x) may depend on the fixed limit
function V . Moreover, we only have information on its Lipschitz regularity on the
x variable. In particular, one cannot say a priori how the map (y,x) 7→ C(y,x)
varies.

However, it is not difficult to provide examples of observables defining a con-
tinuous application C as above. For instance, considering any A1, A2 ∈ H, this
is the case for the observable A(y,x) = A1(x) + A2(y), ∀ (y,x) ∈ Σ̂M. Indeed,
if V ∈ H is any possible limit function, let U ∈ H be a sub-action with respect
to A1 + V , that is: A1(x) + V (x) + U(x)− U(σ(x)) ≤ maxµ∈Mσ

∫
(A1 + V ) dµ,

∀x ∈ ΣM. From (3), we then get A(y,x) + V (x)− V (y) +U(x)−U(σ(x)) ≤ cA
everywhere on Σ̂M. In particular, we may choose Uy ≡ U for all y in such a
situation.

In general, by standard selection arguments (see section 2.1 in [13] and ref-
erences therein), one may always assure the existence of a family of sub-actions
{Uy}y for which the corresponding map (y,x) 7→ C(y,x) is Borel measurable.
The main point is to consider just those sub-actions obtained as accumulation
functions of eigenfunctions of Ruelle transfer operator when the temperature goes
to zero through some fixed sequence (see proposition 29 in [6]). Note that these
eigenfunctions are continuous on the observable. We leave the details to the
reader. Finally, it is well known in ergodic optimization theory that these sub-
actions have uniformly bounded oscillation. Hence, for each fixed limit function
V , there exists a family {Uy}y of sub-actions with respect to A(y, ·) + V − V (y)
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such that the the map (y,x) ∈ Σ̂M 7→ C(y,x) = A(y,x) + Uy(x) − Uy(σ(x)) is
Borel measurable and bounded3.

We consider from now on C as a bounded measurable cost function in order to
introduce a transshipment problem. Let then π : Σ̂M → ΣM and π∗ : Σ̂M → Σ∗M
be the canonical projections. We are specially interested in the set of Borel
probabilities η̂(dy, dx) on Σ̂M verifying (π)∗(η̂) = (π∗)∗(η̂).

Definition 4 (The Ergodic Kantorovich Transshipment Problem). Given
A : Σ̂M → R Lipschitz continuous, we define the constant

κerg := sup
(π)∗(η̂)=(π∗)∗(η̂)

∫∫
Σ̂M

C(y,x) dη̂(y,x)

= sup
(π)∗(η̂)=(π∗)∗(η̂)

∫∫
Σ̂M

[A(y,x) + Uy(x)− Uy(σ(x)) ] dη̂(y,x).

An ergodic transshipment measure for A is a probability η̂ on Σ̂M, with (π)∗(η̂) =
(π∗)∗(η̂), that attains such a supremum.

We point out that the classical transport or transshipment problems do not
have an intrinsic ergodic nature. Note that C has a dynamical character. We refer
the reader to [15] for general results (not of ergodic nature) on transshipment. In
[12] an ergodic transport problem is considered.

We claim that cA = κerg, or in a more self-contained statement:

Theorem 7. For the Lipschitz observable βA, β > 0, consider its forward ef-
fective potential φ+

β (normalized by φ+
β (y0) = 0) and its effective constant λ+

β .

Assume that in the uniform convergence φ+
βn
/βn → V when βn →∞. Then there

is a family {Uy}y of sub-actions with respect to A(y, ·) + V − V (y) such that

lim
β→∞

λ+
β

β
= sup

(π)∗(η̂)=(π∗)∗(η̂)

∫∫
Σ̂M

[A(y,x)− Uy(x)− Uy(σ(x)) ] dη̂(y,x).

Proof. We remark that inequality (4) implies that κerg ≤ cA. Indeed, given any
Borel probability η̂ on Σ̂M such that (π)∗(η̂) = (π∗)∗(η̂), one clearly has∫∫

Σ̂M

[A(y,x)− Uy(x)− Uy(σ(x)) ] dη̂(y,x) =

=

∫∫
Σ̂M

[A(y,x)− Uy(x)− Uy(σ(x)) + V (x)− V (y) ] dη̂(y,x) ≤ cA.

Recall that functional equation (5) shows the limit V is an additive eigenfunc-
tion and the constant cA is an additive eigenvalue for the transformation with
kernel C. Actually, since C is bounded, it is easy to obtain that cA is uniquely
determined by

cA = sup
{zk}k≥1

lim sup
k→∞

C(z1, z2) + C(z2, z3) + · · ·+ C(zk, z1)

k
,

3Notice that it obviously follows from (4) that a such map C is bounded from above.
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where the supremum is taken among sequences {zk} of points of ΣM ' Σ∗M. See
theorem 2.1 in [1] for a general result. Notice now that, for the Borel probability
on Σ̂M defined by η̂k := 1

kδ(z1,z2) + 1
kδ(z2,z3) + . . .+ 1

kδ(zk,z1), one has

C(z1, z2) + C(z2, z3) + · · ·+ C(zk, z1)

k
=

∫∫
Σ̂M

C(y,x) dη̂k(y,x).

Since (π)∗(η̂k) = (π∗)∗(η̂k) for all k ≥ 1, it obviously follows that cA ≤ κerg.

5 Contraction properties of G+

We would like to discuss now the proof of Theorem 1. We start pointing out an
immediate contraction property of G+ which also follows from the continuity of
the topological pressure (2).

Proposition 8. For all φ, ψ ∈ H, ‖G+(φ)− G+(ψ)‖0 ≤ ‖φ− ψ‖0.

Let us now identify all functions belongingH which are equal up to an additive
constant. So in order to obtain a fine contraction property, we introduce the norm

‖φ‖c := inf
γ∈R
‖φ+ γ‖0

for each equivalence class φ ∈ H/constants.

Theorem 9. Consider φ, ψ ∈ H satisfying Lip(φ),Lip(ψ) ≤ K for some fixed
constant K > 0. Then, there exist constants C = C(K) > 0 and α = α(K) > 0
such that

‖G+(φ)− G+(ψ)‖c ≤ (1− C‖φ− ψ‖αc ) ‖φ− ψ‖c

We will need the following lemma.

Lemma 10. Let A : Σ̂M → R be Lipschitz continuous observable. Suppose φ ∈ H
satisfies Lip(φ) ≤ K for a constant K > 0. Given a point y ∈ Σ∗M, let µy ∈ Mσ

be the equilibrium state associated to A(y, ·) + φ ∈ H. Then there exist constants
Γ = Γ(K) > 0 and α = α(K) > 0 such that, if Bρ ⊂ ΣM denotes an arbitrary
ball of radius ρ > 0,

µy(Bρ) ≥ Γρα.

Proof. Let µΨ ∈ Mσ be the equilibrium measure associated to Ψ ∈ H. It is well
known that µΨ is a Gibbs state. As a matter of fact, if x is a point belonging to a
ball BΛn of radius Λn, from the very proof of the Gibbs property one can obtain

exp [−Lip(Ψ)R(Λ)− IM(Lip(Ψ) + hTOP (σ))S(Λ)] ≤

≤ µΨ(BΛn)

exp
[∑n−1

j=0 (Ψ− PTOP (Ψ)) ◦ σj(x)
] ,

where R and S are rational functions with R(0, 1), S(0, 1) ⊂ (0,+∞), IM is
a positive integer depending only on the irreducible transition matrix M and
hTOP (σ) denotes the topological entropy. For details we refer the reader to [2, 14].
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From the variational principle, one has Ψ − PTOP (Ψ) ≥ −LipΨ − hTOP (σ).
So we get exp [−Lip(Ψ)R(Λ)− (Lip(Ψ) + hTOP (σ))(IMS(Λ) + n)] ≤ µΨ(BΛn).
Therefore, applying this inequality to Ψ = A(y, ·) + φ, it is straightforward that

Γ(K)Λnα(K) ≤ µy(BΛn),

where α(K) :=
Lip(A) +K + hTOP (σ)

log Λ−1
and

Γ(K) := exp [−(Lip(A) +K)R(Λ)− IM(Lip(A) +K + hTOP (σ))S(Λ)] .

Proof of Theorem 9. Obviously, for φ ∈ H and γ ∈ R, we have ‖φ+ γ‖c = ‖φ‖c.
Moreover, given φ, ψ ∈ H, there exists γ ∈ R such that ‖φ−ψ‖c = ‖φ−ψ+ γ‖0.

As G commutes with constants, replacing ψ by ψ−minψ and φ by φ+γ−minψ,
without loss of generality, we may assume minψ = 0 and ‖φ−ψ‖c = ‖φ−ψ‖0.
We suppose yet φ 6= ψ, since otherwise there is nothing to argue.

Take then y ∈ Σ∗M satisfying ‖G+(φ) − G+(ψ)‖0 = |G+(φ)(y) − G+(ψ)(y)|.
By interchanging the roles of φ and ψ if necessary, we suppose that

|G+(φ)(y)− G+(ψ)(y)| = G+(φ)(y)− G+(ψ)(y).

Since minψ = 0, taking any point x ∈ ΣM, we get

‖φ− ψ‖c ≤ ‖φ− φ(x)− ψ‖0 ≤ ‖φ− φ(x)‖0 + ‖ψ‖0 ≤ Lip(φ) + Lip(ψ) ≤ 2K.

Note that ‖φ − ψ‖c = ‖φ − ψ‖0 implies min(φ − ψ) = −max(φ − ψ). In
particular, min(φ− ψ) = −‖φ− ψ‖c. So there exists a point x ∈ ΣM such that

(φ− ψ)(x) = −‖φ− ψ‖c < 0.

Hence, when x ∈ ΣM verifies d(x,x) ≤ ‖φ−ψ‖c4K , we obtain

φ(x)− ψ(x) ≤ |φ(x)− φ(x)|+ |ψ(x)− ψ(x)|+ (φ− ψ)(x)

≤ 2K
‖φ− ψ‖c

4K
− ‖φ− ψ‖c = −‖φ− ψ‖c

2
< 0. (6)

Let µy ∈Mσ be such that G+(φ)(y) =
∫

ΣM
(A(y,x) + φ(x)) dµy(x)+hµy(σ).

Notice that G+(φ)(y)− G+(ψ)(y) ≤
∫

ΣM
(φ(x)− ψ(x)) dµy(x).

Thus, if B ‖φ−ψ‖c
4K

(x) denotes the closed ball of radius ‖φ−ψ‖c4K ∈ (0, 1) and center

x ∈ ΣM, from (6) and lemma 10, we verify

G+(φ)(y)− G+(ψ)(y) ≤
∫

ΣM−B ‖φ−ψ‖c
4K

(x)
(φ(x)− ψ(x)) dµy(x)

≤ ‖φ− ψ‖0
(

1− µy
(
B ‖φ−ψ‖c

4K

(x)
))

≤ ‖φ− ψ‖0 (1− C‖φ− ψ‖αc ) ,

where C := Γ/(4K)α > 0. As ‖G+(φ) − G+(ψ)‖c ≤ ‖G+(φ) − G+(ψ)‖0 =
G+(φ)(y)− G+(ψ)(y), the proof is complete.
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Then Theorem 1 results directly from Theorem 9, the fact that Lip(G+(φ)) ≤
‖A‖0 + Lip(A) for all φ ∈ H, and the following fixed point theorem due to D. A.
Gomes and E. Valdinoci (for a proof, see Appendix A of [9]).

A Banach–Caccioppoli-type Theorem. Let F be a closed subset of a Banach
space, endowed with a norm ‖ · ‖. Suppose that G : F→ F is so that

‖G(φ)−G(ψ)‖ ≤ (1− C‖φ− ψ‖α) ‖φ− ψ‖,

for all φ, ψ ∈ F and some given constants C,α > 0. Then there exists a unique
φ+ ∈ F such that G(φ+) = φ+. Moreover, given any φ0 ∈ F, we have

φ+ = lim
n→+∞

Gn(φ0).
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