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Abstract

In the context of expanding maps of the circle with an indifferent fixed
point, understanding the joint behavior of dynamics and pairs of moduli of
continuity (ω,Ω) may be a useful element for the development of equilib-
rium theory. Here we identify a particular feature of modulus Ω (precisely
limx→0+ supd Ω

(
dx

)
/Ω(d) = 0) as a sufficient condition for the system to ex-

hibit exponential decay of correlations with respect to the unique equilibrium
state associated with a potential having ω as modulus of continuity. This result
is derived from obtaining the spectral gap property for the transfer operator
acting on the space of observables with Ω as modulus of continuity, a property
that, as is well known, also ensures the Central Limit Theorem. Examples of
application of our results include the Manneville-Pomeau family.

1 Introduction and Main Results

In the framework of uniformly hyperbolic systems, the study of statistical properties
of equilibrium states for Hölder potentials has very well established theoretical
foundations [Bal00,Bow75,PP90,VO16,Rue04]. This research has been extended
to multiple different scenarios, and advances beyond a uniformly expanding setting
may be founded, for instance, in [LSV98,You98,LSV99,You99,FL01,Sar02,Go04a,
Go04b,Hol05,CV13,LR14a,LR14b,Klo20].
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Expanding maps on the circle that possess an indifferent fixed point are the
center of attention of this note. Our core contribution is to provide sufficient condi-
tions to show, without any induction intervention, exponential decay of correlations
for these discrete time systems. Essentially we highlight how the regularity classes
of potentials and observables should relate to the dynamics, as we will detail below
when recalling from [GI22] the notion of dynamic compatibility between moduli
of continuity. The main novelty is the understanding of the role of the hypothesis
according to which the module of the observables must vanish orderly. Our assump-
tions allow thus to follow a typical strategy as in the consecrated way for Axiom A
diffeomorphism and Hölder potentials: we focus on proving quasicompactness and a
spectral gap for the associated transfer operator. The considered conditions are at
the same time comprehensive and flexible so that one can easily discuss the results
in meaningful situations.

Here the phase space consists of the circle T = [0, 1) equipped with the standard
metric d(x, y) = min{|x−y|, |x−y±1|}. The dynamics is described by a continuous
map T on T of the form T (x) = x(1 + V (x)) mod 1, where V : [0,∞) → [0,∞),
with V (1) a positive integer, is demanded to be a continuous and increasing function
that obeys the following regularly varying property1:

∃σ ≥ 0 s.t. lim
x→0

V (tx)

V (x)
= tσ, ∀ t > 0.

We do not impose additional constraint on the regularity of V .
We consider in this work continuous potentials f : T → R with a particular

modulus of continuity ω, namely, potentials f such that

|f |ω := sup
x ̸=y

|f(x)− f(y)|
ω(d(x, y))

<∞,

where the continuous function ω : [0,∞) → [0,∞), with ω(0) = 0, is supposed
to be non-decreasing. Let Cω(T) denote the linear space of real-valued continuous
functions on T that admit ω as a modulus of continuity.

Let C(T) be the space of real-valued continuous functions on T equipped with
the uniform norm ∥ · ∥∞. The transfer operator associated with a potential f ∈
Cω(T) is the bounded linear operator that acts on C(T) as

Lfϕ(x) :=
∑

y∈T−1(x)

ef(y)ϕ(y), ∀ x ∈ T,

for a given ϕ ∈ C(T). As is well known, if it is possible to find a positive eigen-
function h for Lf and an eigenmeasure dν for its dual L ∗

f (both with respect to
a common positive maximal eigenvalue χ), taking into account normalization, it is
to be expected that the probability dµ = h dν is an equilibrium state of the sys-
tem: among T -invariant Borel probability measures m, it maximizes the quantity
hm(T )+

∫
f dm, where hm(T ) is the Kolmogorov-Sinai entropy of (T, T,m). When

this is the case, by the variational principle, the maximal value, hµ(T ) +
∫
f dµ,

1For information on these functions, see [Sen76].
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equals the topological pressure of the system, which we denote by P (T, f) (for
details, see [Wal82]).

The search for Banach subspaces of C(T) preserved by the action of the transfer
operator Lf may therefore provide a possible candidate h for, let us say, a density
of an equilibrium state. Working with pairs of moduli of continuity (ω,Ω), the first
for the regularity of the potential, the second for the regularity of a such possible
density, can prove to be a useful strategy for the study of equilibrium theory.

In [GI22], we have identified an appropriate linear space CΩ(T) to look at the
action of the transfer operator Lf , f ∈ Cω(T), in search of a positive eigenfunction,
which has enabled us to prove existence and uniqueness of the Gibbs-equilibrium
state for the system. Without inducing, a direct Ruelle-Peron-Frobenius theorem
for a non-uniformly hyperbolic system was thus obtained. The key property was
the T -compatibility of a modulus Ω with respect to ω. In this note, we show how
this property can also be useful for directly studying the spectrum of the transfer
operator without coding the system, a strategy that for hyperbolic dynamics was
crystallyzed by [BKL02].

Recall first that by a pre-orbit of x0 we mean any sequence {xk}k≥0 such that
T (xk+1) = xk for all k. We say that a modulus of continuity Ω is T -compatible
with respect to a given modulus ω when there are positive constants ϱ1 and C1 such
that, for any points x0 and y0 with d(x0, y0) < ϱ1, there exists a bijection among
respective pre-orbits {xk} and {yk} fulfilling for all k

d(xk, yk) ≤ d(x0, y0) < ϱ1 and C1

k∑
j=1

ω(d(xj , yj)) ≤ Ω(d(x0, y0))− Ω(d(xk, yk)).

(1)
In particular, the compatibility between moduli of continuity means that, given two
points sufficiently close to each other, for each pre-orbit of one of these points, there
is a unique pre-orbit of the other one so that the above estimates are satisfied. When
Ω is concave, a sufficient condition for T -compatibility (see [GI22, Proposition 7])
is

lim inf
x→0+

V (x)

ω(x)
(Ω((1 + c)x)− Ω(x)) > 0 (2)

for every small enough c > 0.
In the present note, we point out an additional property of a concave mod-

ulus Ω under which, with respect to the equilibrium state dµ = h dν, the sys-
tem satisfies two significant statistical properties: exponential decay of correla-
tions and the Central Limit Theorem. To do so, we follow a traditional method
[Bal00,Bow75,PP90,VO16,Rue04] that consists of showing that the transfer oper-
ator Lf fulfills the spectral gap property, more precisely, the rest of spectrum of
Lf lies inside a disc with radius strictly less than its maximal eigenvalue χ.

The additional attribute to be respected by a concave modulus Ω is the following
limit

lim
x→0+

sup
0<d<1/2

Ω
(
dx

)
Ω(d)

= 0.

Whenever this limit occurs, for brevity we will say that Ω vanishes orderly. The
proposition below (whose proof is straithforward and will be omitted) indicates
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that, from compatible moduli, as long as concavity is ensured, a new dynamically
compatible pair of moduli can be obtained in a canonical way so that the vanishing
property holds. We will use it to provide examples in the last section.

Proposition 1. Suppose that V, ω0 and Ω0 are nonnegative continuous functions,
with ω0 and Ω0 non-decreasing. If the triple (V, ω0,Ω0) satisfies condition (2), then
the triple (V, ωs,Ωs), where ωs(x) := xsω0(x) and Ωs(x) := xsΩ0(x) for s > 0, also
satisfies condition (2) and Ωs vanishes orderly.

We state our main results in the sequel.

Theorem 2 (Spectral Gap Property). Let Ω be a T -compatible modulus of conti-
nuity with respect to ω. Assume also that Ω is concave and vanishes orderly. Then,
concerning any potential f ∈ Cω(T), when acting on complex-valued continuous
functions on T that admit Ω as modulus of continuity, the spectrum of Lf , other
than the maximal eigenvalue χ, is contained in a disc with radius strictly smaller
than this eigenvalue.

It is very well established that the spectral gap property is not the big picture in
the non-uniformly expanding context (see, for instance, [You99,FL01,Sar02,Go04b,
Hol05]).

A fundamental step in proving Theorem 2, which is of its own importance (see
Proposition 7), is a Doeblin-Fortet-Lasota-Yorke-type inequality: for the normal-
ized potential f̃ := f + log h− log h ◦ T − logχ, there exists a constant Γ̃ > 0 such
that ∣∣L n

f̃
ϕ
∣∣
Ω
≤ Γ̃ (τ(n) |ϕ|Ω + ||ϕ||∞), ∀ϕ ∈ CΩ(T), ∀n ≥ 1.

Here τ(n) := sup0<d<1/2
Ω
(
θ(n) d

)
Ω(d) , where θ(n) := 1

χn

∣∣∣∣∣∣L n
f−log(1+V )1

∣∣∣∣∣∣
∞

defines a

sequence that tends to zero as n goes to infinity whenever the hypothesis of T -
compatibility is assumed.

Spectral gap implies exponential decay of correlations and the Central Limit
Theorem. In the following statements, all the hypotheses of Theorem 2 are implied.

Theorem 3 (Exponential Decay of Correlations). There exists ρ ∈ (0, 1) such that,
given ϕ, ψ ∈ CΩ(T), there is a positive constant K = K(ϕ, ψ) for which∣∣∣ ∫ ϕ ψ ◦ Tn dµ−

∫
ϕdµ

∫
ψ dµ

∣∣∣ ≤ K ρn ∀n ≥ 1.

As usual, we denote Snϕ the nth Birkhoff sum ϕ+ ϕ ◦ T + . . .+ ϕ ◦ Tn−1.

Theorem 4 (Central Limit Theorem). For any function ϕ ∈ CΩ(T) which is not
cohomologous to a constant, there is γ = γ(ϕ) > 0 such that

lim
n→∞

µ
{
x ∈ T :

1√
n
Sn

(
ϕ−

∫
ϕdµ

)
(x) < b

}
=

1

γ
√
2π

∫ b

−∞
e−t2/2γ2

dt.

The rest of this note is organized as follows: in the next section we present the
proofs of the main results, in the last section we provide examples of applications.
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2 Proofs of the Main Results

We consider a constant ϱV ∈ (0, 1/2) such that, if x, y ∈ [0, 1] with |x − y| < ϱV ,
then |x − y|NV + |V (x) − V (y)| < 1/2, where NV := 1 + V (1) is the number of
inverse branches of the map T . We also suppose that

ϱV <
1

2
min

0≤i<NV

d(ai+1, ai),

where {a0 < a1 < . . . < aNV −1} is the set of pre-images of a0 := 0 =: aNV
.

Finally we impose that the constant ϱV is small enough in order to ensure that
ϱV + ϱV V (ϱV ) + V (1)− (1− ϱV )V (1− ϱV ) < 1/2. Denote by A0 the set of pairs of
points in T such that the origin belongs to the smallest open arc connecting them.
Define

λV (x, y) := 1A0(x, y) min{V (x), V (y)}+ 1
A0

∁(x, y) max{V (x), V (y)},

where 1S represents the indicator function of a subset S. This terminology is useful
to describe in the following lemma the non-uniformly expanding property of the
system.

Lemma 5. If d(x, y) < ϱV , then d(T (x), T (y)) ≥ d(x, y)
(
1 + λV (x, y)

)
.

Proof. Without loss of generality, we suppose 0 ≤ y ≤ x < 1 in any situation.

Either (x, y) /∈ A0. In this case, |x− y| = d(x, y) < ϱV so that∣∣x(1 + V (x)
)
− y

(
1 + V (y)

)∣∣ ≤ |x− y|NV + |V (x)− V (y)| < 1

2
.

Therefore, as V is increasing, we see that

d
(
T (x), T (y)

)
= x

(
1 + V (x)

)
− y

(
1 + V (y)

)
≥ (x− y)

(
1 + V (x)

)
= d(x, y)

(
1 + max{V (x), V (y)}

)
.

Or (x, y) ∈ A0. Note thus that |x− y− 1| = d(x, y) and the last condition required
for the definition of ϱV guarantees∣∣x(1+V (x)

)
−y

(
1+V (y)

)
−
(
1+V (1)

)∣∣ ≤ |x−y−1|+yV (y)+V (1)−xV (x) <
1

2
.

Hence, we have that

d
(
T (x), T (y)

)
= y

(
1 + V (y)

)
− x

(
1 + V (x)

)
+
(
1 + V (1)

)
= d(x, y) + yV (y)− xV (x) + V (1).

Clearly V (1) ≥ xV (x) + (1− x)V (y), which yields

yV (y)− xV (x) + V (1) ≥ (y − x+ 1)V (y) = d(x, y)V (y).

We have shown that, in this case,

d
(
T (x), T (y)

)
≥ d(x, y)

(
1 + V (y)

)
= d(x, y)

(
1 + min{V (x), V (y)}

)
.
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The next result is an immediate consequence of the fact we are dealing with
order-preserving maps. We omit its simple proof.

Lemma 6. Suppose that d(x, y) < ϱV . If λV (x, y) = V (x), then

n−1∏
i=0

(
1 + λV

(
T i(xn), T

i(yn)
))

=
n−1∏
i=0

(
1 + V

(
T i(xn)

))
,

whenever xn ∈ T−n(x) and yn ∈ T−n(y) are a pair of pre-images such that
d(T i(xn), T

i(yn)) < ϱV for i = 0, . . . , n− 1.

We may now present a version of a Doeblin-Fortet-Lasota-Yorke inequality. To
that end, we make use of κf := C−1

1 |f |ω, where C1 is one of the constants that
characterize the T -compatibility of Ω with respect to ω (see (1)). The other key
constant, ϱ1, can and will be supposed smaller than ϱV .

Proposition 7. Let Ω be a T -compatible modulus of continuity with respect to ω.
Suppose that Ω is concave. Given n ≥ 1, ϕ ∈ CΩ(T), and x, y ∈ T with d(x, y) < ϱ1,
for Γ := max{2κfe2κf Ω(1/2), ⌈maxh /minh⌉} the following estimate holds∣∣∣L n

f̃
ϕ(x)− L n

f̃
ϕ(y)

∣∣∣ ≤ Γ
(
|ϕ|Ω Ω

(
θ(n) d(x, y)

)
+ ||ϕ||∞ Ω(d(x, y))

)
,

where θ(n) :=
1

χn

∣∣∣∣∣∣L n
f−log(1+V )1

∣∣∣∣∣∣
∞
. In particular, there exists a positive multiple

Γ̃ = Γ̃(ϱ1) of the constant Γ such that∣∣L n
f̃
ϕ
∣∣
Ω
≤ Γ̃

(
τ(n) |ϕ|Ω + ||ϕ||∞

)
,

with τ(n) := sup
0<d<1/2

Ω
(
θ(n) d

)
Ω(d)

.

Proof. Let {xk}k≥1 be a pre-orbit of x. As d(x, y) < ϱ1, by invoking the T -
compatibility of Ω with respect to ω, consider the unique pre-orbit {yk}k≥1 of
y with respect to which the conditions in (1) are met. Note first that∣∣Snf(xn)− Snf(yn)

∣∣ ≤ κf

(
Ω
(
d(x, y)

)
− Ω

(
d(xn, yn)

))
.

Recall that f̃ = f + log h− log h ◦ T − logχ, where the function h belongs to{
ψ ∈ C0(T) : ψ ≥ 0,

∫
ψ dν = 1, ψ(x) ≤ ψ(y) eκf Ω(d(x,y)) if d(x, y) < ϱ1

}
.

(For details, see the proof of Proposition 8 in [GI22].) In particular,∣∣∣( log h− log h◦Tn
)
(xn)−

(
log h− log h◦Tn

)
(yn)

∣∣∣ ≤ κf

(
Ω
(
d(xn, yn

)
+Ω

(
d(x, y)

))
,

so that one clearly obtains∣∣Snf̃(xn)− Snf̃(yn)
∣∣ ≤ 2κfΩ

(
d(x, y)

)
. (3)
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From now on, without loss of generality, we assume the pair of points x and y
is such that λV (x, y) = V (x).

Note that∣∣∣L n
f̃
ϕ(x)− L n

f̃
ϕ(y)

∣∣∣ ≤ ∑
(xn,yn)

∣∣∣eSnf̃(xn)ϕ(xn)− eSnf̃(yn)ϕ(yn)
∣∣∣,

where the sum is taken over pairs of pre-images (xn, yn) associated by the T -
compatibility of Ω with respect to ω. We have the following estimates∣∣∣eSnf̃(xn)ϕ(xn)−eSnf̃(yn)ϕ(yn)

∣∣∣ ≤
≤ eSnf̃(xn) |ϕ|ΩΩ

(
d(xn, yn)

)
+ ||ϕ||∞

∣∣∣eSnf̃(xn) − eSnf̃(yn)
∣∣∣

≤ eSnf̃(xn)
(
|ϕ|ΩΩ

(
d(xn, yn)

)
+ ||ϕ||∞

∣∣∣eSnf̃(yn)−Snf̃(xn) − 1
∣∣∣).

From (3), we thus see that∣∣∣eSnf̃(yn)−Snf̃(xn) − 1
∣∣∣ ≤ 2κfe

2κf Ω(1/2)Ω
(
d(x, y)

)
≤ ΓΩ

(
d(x, y)

)
.

Since Lf̃1 = 1 and Ω is concave, we have∣∣∣L n
f̃
ϕ(x)− L n

f̃
ϕ(y)

∣∣∣ ≤ |ϕ|Ω
∑

(xn,yn)

eSnf̃(xn)Ω
(
d(xn, yn)

)
+ Γ ||ϕ||∞Ω

(
d(x, y)

)
≤ |ϕ|Ω Ω

( ∑
(xn,yn)

eSnf̃(xn)d(xn, yn)
)
+ Γ ||ϕ||∞Ω

(
d(x, y)

)
.

Thanks to the previous lemmas,

d(xn, yn) ≤
1∏n−1

i=0

(
1 + λV

(
T i(xn), T i(yn)

)) d(x, y)
=

1∏n−1
i=0

(
1 + V

(
T i(xn)

)) d(x, y).
Hence, as Ω is increasing, it follows that

Ω
( ∑

(xn,yn)

eSnf̃(xn)d(xn, yn)
)
≤ Ω

(maxh

minh

1

χn

∑
xn∈T−n(x)

eSn(f−log(1+V ))(xn) d(x, y)
)
.

Therefore, since Ω is subadditive, we conclude that, whenever d(x, y) < ϱ1∣∣∣L n
f̃
ϕ(x)− L n

f̃
ϕ(y)

∣∣∣ ≤ Γ
(
|ϕ|Ω Ω

(
θ(n) d(x, y)

)
+ ||ϕ||∞ Ω(d(x, y))

)
,

with θ(n) = 1
χn

∣∣∣∣∣∣L n
f−log(1+V )1

∣∣∣∣∣∣
∞
.

The fact that the sequence {θ(n)} has a null limit is a consequence of the T-
compatibility between moduli.
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Lemma 8. As n goes to infinite, 1
χn

∣∣∣∣∣∣L n
f−log(1+V )1

∣∣∣∣∣∣
∞

tends to 0.

Proof. For the normalized potential f̃ = f + log h − log h ◦ T − logχ, it is easy to
see that Lf̃−log(1+V )1 < 1 everywhere on T. Inductively it turns out that for all n

L n+1

f̃−log(1+V )
1 < L n

f̃−log(1+V )
1.

Consider then the pointwise limit function 0 ≤ g := limn→∞ L n
f̃−log(1+V )

1. We

claim that g ≡ 0. By Dini’s theorem, the convergence of {L n
f̃−log(1+V )

1} to g is

uniform. Thus clearly Lf̃−log(1+V )g = g. If it held g(x) = ∥g∥∞ > 0 for some
x ∈ T, then

0 < ∥g∥∞ = Lf̃−log(1+V )g(x) ≤ ∥g∥∞ Lf̃−log(1+V )1(x)

would lead to the contradiction 1(x) ≤ Lf̃−log(1+V )1(x).

We have shown that
∣∣∣∣∣∣L n

f̃−log(1+V )
1

∣∣∣∣∣∣
∞

tends to 0. As
∣∣∣∣∣∣L n

f̃−log(1+V )
1

∣∣∣∣∣∣
∞

≥
minh
maxh

1
χn

∣∣∣∣∣∣L n
f−log(1+V )1

∣∣∣∣∣∣
∞
, the proof is complete.

We are able now to prove the spectral gap property.

Proof of Theorem 2. The spectrum of Lf̃ is the spectrum of Lf scaled by χ−1.

Therefore, if we denote by C⊥
Ω the set of complex-valued continuous functions ϕ

on T such that their real and imaginary parts belong to CΩ(T) and
∫
ϕdµ = 0, it

suffices to argue that the spectral radius of the restriction of Lf̃ to C⊥
Ω is strictly

less than 1.
Given ϕ ∈ C⊥

Ω , thanks to [GI22, Proposition 10], we have

L n
f̃
ϕ =

1

h

1

χn
L n

f (hϕ)
n→∞−−−→

∫
ϕdµ = 0 (uniformly). (4)

If we consider now ∥ · ∥Ω = ∥ · ∥∞ + | · |Ω, from the compactness (with respect to
the uniform topology) of

B1(C⊥
Ω) := {ψ ∈ C⊥

Ω : ∥ψ∥Ω ≤ 1},

it is easy to show that, for any ϵ > 0, there exists a positive integer n0 = n0(ϵ) such
that ∥∥L n

f̃
ϕ
∥∥
∞ < ϵ, ∀n ≥ n0, ∀ϕ ∈ B1(C⊥

Ω).

For ϕ ∈ B1(C⊥
Ω), the previous proposition ensures that∣∣L N+n

f̃
ϕ
∣∣
Ω
≤ Γ̃

(
τ(N) |L n

f̃
ϕ|Ω + ||L n

f̃
ϕ||∞

)
≤ Γ̃2

(
τ(n) + 1

)
τ(N) + Γ̃ ||L n

f̃
ϕ||∞.

Thus, as Ω vanishes orderly, for n and N large enough, one obtains ∥L N+n

f̃
ϕ∥Ω ≤

2/3 for all ϕ ∈ B1(C⊥
Ω). Since the spectral radius of Lf̃ |C⊥

Ω
may be compute as

infk≥0 ∥(Lf̃ |C⊥
Ω
)k∥1/kΩ , it is no larger than (2/3)1/(N+n).
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We recapitulate the standard argument to obtain the exponential decay of
correlations from the spectral gap property. As the spectral radius of Lf̃ |C⊥

Ω

is strictly smaller that 1, there are constants ρ ∈ (0, 1) and K0 > 0 such that
∥L n

f̃
ψ∥Ω ≤ K0 ∥ψ∥Ω ρn for all ψ ∈ C⊥

Ω and n ≥ 1. Therefore, for ϕ, ψ ∈ CΩ(T),
with

∫
ψ dµ = 0, one has∣∣∣ ∫ ϕ ψ ◦ Tn dµ

∣∣∣ ≤ ∥ϕ∥L1(µ) ∥L n
f̃
ψ∥∞ ≤ K0 ∥ϕ∥L1(µ) ∥ψ∥Ω ρn,

from which Theorem 3 immediately follows.
With respect to the Central Limit Theorem (Theorem 4), this can be derived

from the general theorem below, which is an abstraction of results due to [DF37,
Nag57, RE83, GH88]. For a nice exposition of the proof of this theorem, watch
[Sar20].

Theorem. Let µ be a T -invariant probability measure with respect to which the
system is (strongly) mixing. Let L be the bounded linear operator whose action on
L1(µ) is characterized by∫

Φ · LΨ dµ =

∫
Φ ◦ T · Ψ dµ, ∀Φ ∈ L∞(µ), ∀Ψ ∈ L1(µ).

Suppose that L has the spectral gap property on a Banach space (B, ∥ · ∥B) that
contains the constants, is closed under multiplication, and satisfies both ∥φψ∥B ≤
∥φ∥B ∥ψ∥B and ∥φ∥L1(µ) ≤ ∥φ∥B, for all φ,ψ ∈ B. Then if ϕ ∈ B is bounded and
is not cohomologous to a constant, there exists γ = γ(ϕ) > 0 such that

lim
n→∞

µ
{
x :

1√
n
Sn

(
ϕ−

∫
ϕdµ

)
(x) < b

}
=

1

γ
√
2π

∫ b

−∞
e−t2/2γ2

dt.

For the sake of completeness, we include the only aspect that has not even been
implicitly discussed so far. As for Lemma 8, the next proposition is an exclusive
consequence of the T -compatibility between moduli, without the intervention of
any additional assumption used in the central results of this note.

Proposition 9. The dynamical system (T, T ) is strongly mixing with respect to the
Gibbs-equilibrium state µ associated with the potential f ∈ Cω(T).

Proof. It suffices to show that
∫
ϕ ◦ Tn ψ dµ →

∫
ϕdµ

∫
ψ dµ as n → ∞, for any

ϕ, ψ ∈ L2(µ). However, given ϕ, ψ ∈ C(T), with
∫
ψ dµ = 0, by the same reason as

in (4), one has∣∣∣ ∫ ϕ ◦ Tn ψ dµ
∣∣∣ = ∣∣∣ ∫ ϕL n

f̃
ψ dµ

∣∣∣ ≤ ∥ϕ∥L1(µ) ∥L n
f̃
ψ∥∞

n→∞−−−→ 0.

Thus the conclusion follows from the denseness of continuous functions in L2(µ).

3 Illustrations

We gather in this section some examples of applications of our results. We compile
both innovative contributions and situations already recorded in the literature.
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A slowly varying scenario. In [GI22], we have considered a dynamics described
for x small enough as

Tk(x) = x
(
1 +Ak(log

k 1/x)−1
)

mod 1,

where Ak > 0 is a constant and logk stands for the k-times composition of the
logarithm function. Taking into account moduli defined in a neighborhood of the
origin as ω0(x) = (logk 1/x)−1(log 1/x)−1(log2 1/x)−2 and Ω0(x) = (log2 1/x)−1,
we have showed via condition (2) that a Ruelle-Perron-Frobenius theorem holds.
Since it is a calculus exercise to check that, for any fixed s ∈ (0, 1), both

ωs(x) = xs(logk 1/x)−1(log 1/x)−1(log2 1/x)−2 and Ωs(x) = xs(log2 1/x)−1

are concave in a neighborhood of the origin, from Proposition 1 we have the fol-
lowing illustrative result.

Proposition 10. Given a positive integer k and s ∈ (0, 1), regarding the dynamical
system Tk above, for any potential f ∈ Cωs(T), there exists a unique associated
Gibbs-equilibrium state µ which has exponential decay of correlations and satisfies
the Central Limit Theorem with respect to the class CΩs(T).

A central family. Perhaps the most relevant class of examples is formed by
the Manneville-Pomeau maps, whose analysis is connected to the mathematical
modeling of intermittency [Man80,PM80]. These maps are defined as

Mq(x) = x(1 + xq) mod 1, with q > 0.

By using condition (2), it is not difficult to formulate a general result concerning
this family.

Proposition 11. Suppose θ : (0, 1] → [0,+∞) is a continuous function such that
(in a neighborhood of the origin) x 7→ xP θ(x) is concave and non-decreasing as well

as limx→0+ x
P sup0<d<1/2

θ(dx)
θ(d) = 0 for some constant P > 0. Assume also that

p > P and 0 < q ≤ p− P satisfy lim infx→0+ x
q−p+P

( θ((1+c)x)
θ(x) (1 + c)P − 1

)
> 0 for

any c > 0 sufficiently small. Denote

ω(x) := xpθ(x) and Ω(x) := xP θ(x).

Then, with respect to the Manneville-Pomeau mapMq, given a potential f ∈ Cω(T),
the transfer operator Lf acting on CΩ(T) satisfies a Ruelle-Perron-Frobenius theo-
rem with spectral gap. In particular, the unique associated Gibbs-equilibrium state
has exponential decay of correlations and satisfies a Central Limit Theorem.

When looking for a systematized statement as above, we realized that we had
unnecessarily assumed in our study [GI22] the concavity of ω. Actually, the main
results on the existence and uniqueness of Gibbs-equilibrium states rest exclusively
on T -compatibility. Only the concavity of Ω is used once in all that work: during
the proof of [GI22, Proposition 7] to show that (2) provides a sufficient condition
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for T -compatibility. In order to completely avoid concavity in that article, in a
reformulation of the aforementioned proposition, condition (2) could be replaced
by the broader hypothesis

lim inf
x→0+

Ω
(
x
(
1 + cV (x)

))
− Ω

(
x
)

ω(x)
> 0 for c > 0 small enough,

as the reader can easily see when analyzing the key inequalities in that proof.
However, the concavity of Ω is used in this note.

Regarding the result, note that for θ ≡ 1 we recover Hölder moduli of continuity.
The conclusions thus obtained form part of results already present in the literature
(see, for instance, [LR14a, LR14b, Klo20]). For θ(x) = 1 + | log x| in turn, we
deal with locally Hölder continuous functions with respect to which we have not
identified known prior results.

An inquiry suggestion. Karamata theory (see [Sen76] for details) states that V
has the form V (x) = xσL(x), where the function L satisfies limx→0 L(tx)/L(x) = 1
for all t > 0. Let us focus on the case σ ∈ [0, 1). If we thus consider the moduli of
continuity ω(x) = xL(x) and Ω(x) = xτ , with 0 < τ ≤ 1− σ, clearly

V (x)

ω(x)

(
Ω
(
(1 + c)x

)
− Ω

(
x
))

= xσ−1+τ
(
(1 + c)τ − 1

)
,

and the sufficient condition for T -compatibility is guaranteed. We have thus the
following result.

Proposition 12. For the dynamics T (x) = x(1 + V (x)) mod 1, x ∈ [0, 1), if V
is regularly varying with σ ∈ [0, 1), then Hölder observables of Hölder exponent at
most 1−σ exhibit exponential decay of correlations with respect to equilibrium states
associated with potentials that have ω(x) = x1−σV (x) as modulus of continuity.

Perhaps the meaning of this proposition should be evaluated in light of the
results of Holland [Hol05] on subexponential mixing rates for intermittent maps
of the circle. Notably, [Hol05, Theorem 2] details special situations, such as loga-
rithmic case and intermediate logarithmic case, for decays of correlations of Hölder
potentials (of any exponent) with respect to a T -invariant, absolutely continuous
and physical measure. Proposition 12 then seems to suggest2 that, by restricting to
a subspace of Hölder observables with properly bounded exponent, contrary to the
slow decay rate established for Hölder observables in general, the respective corre-
lations would decay exponentially fast to zero. This is a subject to be investigated
more closely. A quantitative understanding of the spectra of transfer operators
could open a way forward. See [BKL22] for an interesting discussion on this topic
in different dynamic contexts.

2Note that the equilibrium states of Proposition 12 are also Gibbs measures [GI22, Proposi-
tion 16], and therefore give positive mass to every open set. Nevertheless, the fact that V is taken
as increasing on [0, 1] implies that T is not differentiable over the manifold T at the indifferent
fixed point. In particular, this precludes invoking immediate link between equilibrium measures
and physical measures.
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(2001), 1071-1104.

[GI22] Garibaldi, E. and Inoquio-Renteria, I. A Ruelle-Perron-Frobenius theorem for expanding
circle maps with an indifferent fixed point. Lett. Math. Phys. 112, 76 (2022).
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