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Abstract

Let (Σ+
G, σ) be a one-sided transitive subshift of finite type, where symbols

are given by a finite spin set S, and admissible transitions are represented by
an irreducible directed graph G ⊂ S × S. Let H : Σ+

G → R be a locally
constant function (that corresponds with a local observable which makes
finite-range interactions). Given β > 0, let µβH be the Gibbs-equilibrium
probability measure associated with the observable −βH. It is known, by
using abstract considerations, that {µβH}β>0 converges as β → +∞ to a H-
minimizing probability measure µHmin called zero-temperature Gibbs measure.
For weighted graphs with a small number of vertices, we describe here an
algorithm (similar to the Puiseux algorithm) that gives the explicit form of
µHmin on the set of ground-state configurations.

Keywords: zero-temperature Gibbs measures, ground-state configurations,
Puiseux algorithm.

1 Introduction

The purpose of this article is to present, for one-dimensional lattice-gas models,
for specific class of nearest-neighbor interactions H, rigorous results on the con-
vergence of the Gibbs measure µβH as the temperature T = β−1 of the system
goes to zero. The limit measures thus obtained are called zero-temperature Gibbs
measures. For most part of the article, the dynamical system is represented by a
one-dimensional lattice, or more generally by a transitive subshift of finite type
(Σ+

G, σ), in which some edges may not follow a given edge, or equivalently in which
some hardcore exclusions apply. The exclusion rule is given by an irreducible fi-
nite directed graph G ⊂ S × S. The set S of vertices of G represents the possible
states of the system at each site. We say that the interaction energy function H
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has infinite range if it depends on the whole configuration; H is then assumed to
be Hölder. We say H has finite range if it depends only on two adjacent sites.
Actually, finite range here means nearest neighbor, but it is well known that,
by passing to a higher block presentation, one can translate general finite-range
models into nearest-neighbor models with more spin states.

Our first goal in section 2 is to improve results on the convergence of Gibbs
measures for a certain class of infinite-range interaction energy functions H. We
use there the language of ergodic optimization theory and dynamical system the-
ory. More precisely, we prove in theorem 16 the convergence as β → +∞ of a dual
notion VβH , that we call “Gibbs potential”, under the hypothesis that the set
of ground-state configurations (or H-minimizing non-wandering set, definition 6)
Ω(H) admits a unique irreducible component of maximal entropy. The Gibbs po-
tential may be seen as an approximate effective potential at positive temperature
following Chou and Griffiths works [12, 19].

Our second aim is to understand the zero-temperature phase diagram for finite-
range interaction energy functions. It is known [8, 10, 23] that, for finite-spin
finite-range models in one dimension, the family of Gibbs measures {µβH}β con-
verges to a unique invariant probability measure called zero-temperature Gibbs
measure. We present in section 3 the beginning of an algorithm, valid for any
weighted directed graph, that describes precisely all possible zero-temperature
Gibbs measures. We collect all proofs both for general subshift of finite type sys-
tems and for weighted directed graphs in sections 4 and 5. We discuss in section 6
the complete phase diagram for all nonsymmetric complete graphs on 3 symbols.
We discuss in section 7 the complete phase diagram of zero-temperature Gibbs
measures for the BEG model: a specific model well studied in solid state physics.

We close this introduction by detailing the different phase diagrams we obtain
in the case of the one-dimensional Blume-Emery-Griffiths model. The BEG model
was initially developed in order to understand the phase transition of mixed sys-
tems with two isotopes He3 and He4 (see [6]). In particular, it exhibits a tricritical
point, separating a regime of first-order transitions from a regime of second-order
transitions. Our purpose in this introduction is to describe the zero-temperature
phase diagram of the one-dimensional BEG model at the level of ground states. For
the one-dimensional Ising models, Georgii [18] gives a complete discussion of the
zero-temperature Gibbs measures. There are also examples of zero-temperature
Gibbs measures for more than one dimension (see, for instance, the case of the
bidimensional Blume-Capel model in [9]).

We consider a one-dimensional spin system with a nearest-neighbor interaction
given by the Hamiltonian

H(x) = −J
∑
〈i,j〉

xixj −K
∑
〈i,j〉

x2
ix

2
j + ∆

∑
i

x2
i ,

where xi ∈ S = {−1, 0,+1} represents a possible state at the site i.

For each positive temperature T = β−1, there exists a unique translation-
invariant Gibbs measure, or simply Gibbs measure, µβH , obtained for instance by
the Ruelle transfer operator method. We first write H in terms of a unique energy
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Figure 1: The schematic Blume-Emery-Griffiths model.

function per site H0, that is, H =
∑

i∈ZH0(xi, xi+1), where

H0(x, y) = −Jxy −Kx2y2 +
∆

2
(x2 + y2).

In the BEG model, a site having a state ±1 represents an atom He4, a site having a
state 0 represents He3. The constant J is supposed to be positive for ferromagnetic
systems and negative for antiferromagnetic systems. The constant K takes into
account the isotopic interaction, ∆ may be interpreted as a chemical potential. An
external magnetic field could be added and would give an additional term h

∑
i xi

in the Hamiltonian. We do not consider this term in this introduction. Even so,
we emphasize that the algorithm to be described applies without changes in all
these cases, ferromagnetic or antiferromagnetic, with or without external magnetic
field.

The Ruelle transfer operator method tells us that the Gibbs measure µβH
at temperature T = β−1 is a Markov chain (πβ, Qβ) on the finite state space
S, defined by an irreducible transition matrix

[
Qβ(x, y)

]
x,y∈S and a stationary

probability vector
[
πβ(x)

]
x∈S ,

Qβ(x, y) :=
Φβ(y)

Φβ(x)
exp

[
− β(H0(y, x)− H̄β)

]
, πβ(x) :=

Φ∗β(x)Φβ(x)∑
y∈S Φ∗β(y)Φβ(y)

.

The factor exp(−βH̄β) denotes the maximal eigenvalue of the transfer operator
Lβ, where Lβ may be described here by a matrix indexed by S × S,

Lβ = [Lβ(x, y)]x,y∈S , Lβ(x, y) = exp(−βH0(x, y)).

The two vectors [Φβ(x)]x∈S and [Φ∗β(x)]x∈S denote the left and right eigenvector
of Lβ∑

y∈S
Lβ(x, y)Φ∗β(y) = e−βH̄βΦ∗β(x),

∑
x∈S

Φβ(x)Lβ(x, y) = e−βH̄βΦβ(y),

normalized by
∑

x∈S Φβ(x) =
∑

x∈S Φ∗β(x) = 1, Φβ(x) > 0, Φ∗β(x) > 0. Notice
that in the definition of Qβ(x, y), the order of (x, y) has been interchanged in
H0(y, x). The normalizing factor F = H̄β is sometimes called in the physics
literature the free energy.

We shall see that H̄β → H̄ as β → +∞, where H̄ (see definition 5) represents
the ground-state energy density of the chain (or the minimizing ergodic value of
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H in the language of ergodic optimization theory). In order to understand the
convergence of µβH , we rewrite the problem in a framework of bifurcation of
singular matrices.

In the BEG model, by numbering the state space S = {s1, s2, s3}, s1 = −1,
s2 = 0 and s3 = +1, and by changing the parameter β to ε = exp(−β), we
are left to study a singular perturbation of a one-parameter family of matrices
Mε = [A(x, y)εa(x,y)], where

A =

1 1 1
1 1 1
1 1 1

 and a =

−J −K + ∆ 1
2∆ J −K + ∆

1
2∆ 0 1

2∆
J −K + ∆ 1

2∆ −J −K + ∆

 .
We summarize the set of possible interactions between two consecutive sites xi
and xi+1 by a (directed) graph G ⊂ S × S weighted by the principal exponent
a(x, y) as explained in figure 2. We also indicate in this figure the mean of a along
all simple cycles.

-1

0

+1
J-K+D


2


2

0

-J-K+D -J-K+D

Mean of a along simple cycles:

cycles of order 1 0, (−J −K + ∆)

cycles of order 2 1
2∆, (J −K + ∆)

cycles of order 3 1
3(J −K + 2∆)

Figure 2: Graph of interactions and determination of minimizing cycles (a cycle of min-
imizing mean) in the BEG model.

We shall show that µβH converges to a unique measure µHmin, called zero-
temperature Gibbs measure, which has the structure of a Markov chain character-
ized by an initial law π∞ and a transition matrix Q∞. The two figures 3 and 4
describe the structure of this Markov chain with respect to (J,K) for ∆ > 0 fixed.

Each region of the plane (J,K) represents a limit phase: each box indicates the
initial law, the transition matrix and the beginning of the Puiseux series expansion
of the free energy F . The three bidimensional regions correspond to the case where
all parameters 0, 1

2∆, −J −K + ∆, J −K + ∆ and 1
3(J −K + 2∆) are distinct: a

generic case without degeneracy. For instance, when J −K + ∆ < 0 and J < 0,
corresponding to the upper left part of the phase diagram, the smallest parameter
is J −K + ∆ and µHmin is equal to the uniform distribution on the configuration
· · · − 1,+1,−1,+1, · · · , or more precisely, because we fix an origin, it is equal to
a periodic probability measure of period 2:

µHmin =
1

2
δ<···+1|−1+1···> +

1

2
δ<···−1|+1−1···>.

The zero-temperature Gibbs measure is pure (or ergodic) and made of atoms with
alternate spins ±1. We show that the initial law πβ, the maximal eigenvalue e−βH̄β
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Figure 3: Phase diagram of the BEG model at zero temperature for ∆ > 0. The Markov
chain structure (π∞, Q∞) at zero temperature and the Puiseux series expansion of the
free energy F = H̄β is shown for each phase.

and the transition matrix Qβ admit expansions of the following forms

πβ ∼

 1/2

2e−2β(−J+K−∆/2)

1/2

→
1/2

0
1/2

 , λβ = e−βH̄β ∼ e−β(J−K+∆),

Qβ ∼

e2βJ 2e−2β(−J+K−∆/2) 1

1/2 e−β(−J+K−∆) 1/2

1 2e−2β(−J+K−∆/2) e2βJ

→
 0 0 1

1/2 0 1/2
1 0 0

 .
We notice that, in the region J −K + ∆ > 0 and −J −K + ∆ > 0, independently
of the sign of J , the zero-temperature Gibbs measure is pure with only the pres-
ence of He3. We show in all cases that e−βH̄β ∼ ᾱe−βH̄ , where ln(ᾱ) represents
the zero-temperature entropy (or topological entropy) of the set of ground-state
configurations (definition 6). We see in figure 3 that ln(ᾱ) > 0 when J = 0 and
K ≥ ∆, that is, when the set of ground-state configurations is strongly degenerate
(coexistence of at least two adjacent minimizing cycles, figure 4).

The results we present here are essentially one-dimensional as they rely funda-
mentally on the existence of a transfer operator. We use the language of ergodic
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Figure 4: Phase diagram of the BEG model at zero temperature for ∆ > 0. Numbers
in parentheses indicate the weight of each indecomposable (ergodic) Markov chain which
contributes to the zero-temperature Gibbs measure.

optimization in dynamical system in order to better describe the set of ground-
state configurations and the set of zero-temperature Gibbs measures. For infinite-
range Hamiltonians, we point out a general condition in sections 2 and 4 that
implies the uniqueness of the zero-temperature Gibbs measure. For finite-range
Hamiltonians, we explain in sections 3, 5, 6 and 7 a complete algorithm that
describes the phase diagram of the unique zero-temperature Gibbs measure.

We thank the referee for her/his careful reading and the references [1, 14, 28].

2 A dynamical system approach

We consider a one-sided transitive subshift of finite type (Σ+
G, σ), where S is a

finite set of vertices (or states) and G ⊂ S × S is an irreducible directed graph
representing the admissible transitions (or hardcore exclusions) from one vertex
to another. A point in Σ+

G, called configuration, represents a complete state of
half of a chain of atoms compatible with the transitions given by the graph G,

Σ+
G =

{
x = (xk)k≥0 ∈ SN : (xk, xk+1) ∈ G, ∀ k ∈ N

}
.
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Recall that Σ+
G is a compact metric space equipped with the distance d(x, y) = 1

if x0 6= y0 and d(x, y) = (1
2)n if x0 = y0, . . . , xn−1 = yn−1 and xn 6= yn. The left

shift map σ : Σ+
G → Σ+

G plays the role of the space translation,

σ(x0, x1, x2, . . .) = (x1, x2, x3, . . .), ∀ x ∈ Σ+
G.

We prefer to work on the one-sided model instead of the two-sided one in order to
use the transfer operator. The two models are mathematically identical but are
restricted solely to one-dimensional problems.

We consider, in this one-dimensional setting, a unique interaction energy func-
tion H : Σ+

G → R, and assume that H is Hölder or, in other words, that H has
infinite range. The Gibbs measure at positive temperature T = β−1, that we
recall below, will be denoted µβH . More generally, we allow each transition to
have a weight that measures the strength of the constraint. In order to do that,
we consider also another Hölder map E : Σ+

G → R. We shall introduce the corre-
sponding Gibbs measure µE+βH . The transitivity of (Σ+

G, σ) (or the irreducibility
of G) guarantees the uniqueness of the Gibbs measure µE+βH .

We will use the notation x
G→ y to indicate an admissible transition (x, y) ∈ G

between two vertices x, y ∈ S and x0
G→ x1

G→ x2
G→ . . .

G→ xn−1 to indicate an
admissible path. Let Cn(x) = [x0, . . . , xn−1] be the set of configurations x′ ∈ Σ+

G

whose first n symbols are prescribed x′0 = x0, x′1 = x1, . . . , x′n−1 = xn−1; we also
say that Cn(x) is a cylinder of length n. Let Cn(G) = {Cn(x) : x ∈ Σ+

G} be the
set of all cylinders of length n. Let us recall Ruelle’s definition of the pressure of
an observable Ψ (which shall be seen as E + βH).

Definition 1. Let Ψ : Σ+
G → R be a continuous observable. We call pressure of Ψ

and topological entropy

Pres(Ψ) := max
{

Ent(µ)−
∫

Ψ dµ : µ ∈M(Σ+
G, σ)

}
,

Ent(Σ+
G) := max

{
Ent(µ) : µ ∈M(Σ+

G, σ)
}
,

where M(Σ+
G, σ) denotes the set of σ-invariant Borel probability measures on Σ+

G,
and Ent(µ) denotes the Kolmogorov-Sinai entropy of σ with respect to µ,

Ent(µ) := lim
n→+∞

1

n

∑
Cn∈Cn(G)

−µ[Cn] lnµ[Cn].

More generally, for any σ-invariant Borel probability measure µ or σ-invariant
compact set Ω, we call relative pressure with respect to µ or Ω, respectively,

Pres(Ψ, µ) := Ent(µ)−
∫

Ψ dµ,

PresΩ(Ψ) := max
{

Pres(Ψ, µ) : µ ∈M(Σ+
G, σ) and supp(µ) ⊂ Ω

}
.

We say that µ ∈M(Σ+
G, σ) has relative maximal pressure in Ω for Ψ if

PresΩ(Ψ) = Pres(Ψ, µ) and supp(µ) ⊂ Ω.
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Definition 2. We call Gibbs measure associated with Ψ a σ-invariant Borel prob-
ability measure µΨ on Σ+

G satisfying

µΨ[Cn(x)] � exp
(
−
n−1∑
k=0

[
Ψ ◦ σk(x) + Pres(Ψ)

])
, ∀ x ∈ Σ+

G, ∀ n ≥ 1.

The notation an(x) � bn(x) is a shorthand for C−1an(x) ≤ bn(x) ≤ Can(x) for
some constant C > 0 independent of n and x.

Notice that this definition is a typical dynamical system definition or Sinai-
Ruelle-Bowen definition, in contrast to the Dobrushin-Lanford-Ruelle definition of
Gibbs measures, as given in [18], which immediately works in higher dimensions.
For more details on a SRB definition of Gibbs measures in higher dimensions, we
refer the reader to [22].

It is known that, for any given Hölder observable Ψ : Σ+
G → R, there exists a

unique Gibbs measure µΨ, which is also the unique σ-invariant Borel probability
measure with maximal pressure:

Pres(Ψ) = Pres(Ψ, µΨ) > Pres(Ψ, µ), ∀ µ ∈M(Σ+
G, σ) \ {µΨ}.

For E,H : Σ+
G → R Hölder observables, we are interesting in the convergence (with

respect to the weak* topology) of µE+βH as β tends to +∞ (or as T = β−1 → 0).

Question 3. What are the possible weak* limits of µE+βH as β tends to +∞ ?
Is there a unique limit ? How can one characterize them in an effective way ?

We collect in this section several general facts for arbitrarily Hölder H. We
shall show in the next section how to improve these results when H has finite
range. We begin by adopting a terminology proposed in the appendix B of [14].

Definition 4. We call zero-temperature Gibbs measure any weak* limit of µE+βH

as β tends to +∞.

An immediate observation tells us that a zero-temperature Gibbs measure is
a minimizing measure in the following sense.

Definition 5. Let H : Σ+
G → R be a continuous observable. We call minimizing

ergodic value of H (or ground-state energy density) the quantity

H̄ := min
{∫

H(x) dµ(x) : µ ∈M(Σ+
G, σ)

}
.

We call minimizing measure any σ-invariant Borel probability measure µmin re-
alizing the minimum in the previous equality

∫
H(x) dµmin(x) = H̄. The set of

H-minimizing measures is denoted by Mmin(Σ+
G, σ,H).

From Aizenman and Lieb work [1], it is known that in general dimensions any
zero-temperature limit of Gibbs measures has maximal entropy. Hence it is not
a surprise that here a zero-temperature Gibbs measure µ has maximal pressure
Pres(E,µ) (or maximal entropy Ent(µ) for E = 0) among all minimizing measures.
In order to explain this fact, it is convenient to introduce a set Ω(H) that plays
the role of the set of ground-state configurations but which is called the set of
H-minimizing non-wandering configurations in ergodic optimization.
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Definition 6. Let H : Σ+
G → R be a continuous observable. We define the set of

H-minimizing non-wandering configurations (or ground-state configurations) by

Ω(H) :=
{
x ∈ Σ+

G : ∀ ε > 0, ∃ n ≥ 1, ∃ z ∈ Σ+
G s. t.

d(x, z) < ε, d(x, σn(z)) < ε and
∣∣ n−1∑
k=0

[H ◦ σk(z)− H̄]
∣∣ < ε

}
.

It is easy to show that Ω(H) is compact and completely σ-invariant, σ(Ω(H)) =
Ω(H). We recognize Ω(H) as the set of ground-state configurations in the following
sense. If H is Hölder, there exists a Hölder function V : Σ+

G → R (a calibrated
sub-action as in proposition 13) such that{ ∑n−1

k=0 H ◦ σk(x) = nH̄ + V ◦ σn(x)− V (x), ∀ x ∈ Ω(H), ∀ n ≥ 1,∑n−1
k=0 H ◦ σk(y) ≥ nH̄ + V ◦ σn(y)− V (y), ∀ y ∈ Σ+

G, ∀ n ≥ 1.

Therefore, up to a coboundary ∆(x, y) := V (x)−V (y), the energy
∑n−1

k=0 H ◦σk(x)
of the configuration x ∈ Ω(H) on n consecutive sites can only increase

n−1∑
k=0

H ◦ σk(y)−
n−1∑
k=0

H ◦ σk(x) ≥ ∆(σn(y), σn(x))−∆(y, x), ∀ y ∈ Σ+
G.

Moreover, it follows from the result of Radin and Schulman [28] that, for finite-
range interactions, the set of ground-state configurations always has periodic con-
figurations. Actually, it is easy to show that, when H has finite range, Ω(H) is
exactly the closure of its periodic configurations.

We state in the following proposition that Ω(H) contains the support of all
minimizing measures and that any invariant measure whose support belongs to
Ω(H) is minimizing.

Proposition 7. [13] Let H : Σ+
G → R be a Hölder observable. A σ-invariant

Borel probability measure µ is H-minimizing if, and only if, its support supp(µ)
is included into Ω(H):

Mmin(Σ+
G, σ,H) = {µ ∈M(Σ+

G, σ) : supp(µ) ⊂ Ω(H)}.

From the previous discussion, a zero-temperature Gibbs measure is minimizing
and has a support included in Ω(H). There may exist several minimizing mea-
sures even for a finite-range interaction H (see section 3). The next proposition
states that, by freezing the system, the Gibbs measures accumulate on minimizing
measures satisfying a zero-temperature variational principle. Similar results have
been obtained in other contexts (see, for instance, [4] or [20, 25]).

Proposition 8. [13, 23] Let E,H : Σ+
G → R be Hölder observables. Then any

zero-temperature Gibbs measure µ∞ is H-minimizing and has a support in Ω(H).
In addition, µ∞ achieves the maximum of the pressure among all invariant mea-
sures in Ω(H); if E = 0, µ∞ achieves the maximum of the entropy in Ω(H). More
pecisely,
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1. Pres(E,µ∞) = PresΩ(H)(E) and
∫
H dµ∞ = H̄. If Ω(H) supports a unique

measure µmin with maximal pressure PΩ(H)(E), then {µE+βH}β converges
to µmin.

2. Let be H̄β := − 1
βP (E+βH). Then β(H̄− H̄β)→ PresΩ(H)(E) as β → +∞.

In the physics literature, H̄β is called the free energy and converges to H̄
with speed 1

β .

3. As β → +∞,
∫
H dµE+βH → H̄ and Pres(E,µE+βH) → PresΩ(H)(E). In

the particular case E = 0, Ent(µβH)→ Ent(Ω(H)).

Notice that for a generic interaction energy function, {µE+βH}β converges to
a unique minimizing measure as β → +∞.

Proposition 9. [13] For any α > 0, the set of α-Hölder H admitting a unique
H-minimizing probability measure is generic in Cα. Thus {µE+βH}β converges to
a unique µ∞ for generic α-Hölder H.

The uniqueness of the zero-temperature Gibbs measure, which is the content
of the previous proposition, holds for generic continuous interactions too. It is
also important to keep in mind that there are examples of Hölder interactions for
which the convergence {µE+βH}β does not hold (see [11]).

Gibbs measures have a different functional characterization in terms of the
Ruelle transfer operator. They are also called equilibrium measures.

Definition 10. We call Ruelle transfer operator associated with a Hölder observ-
able Ψ : Σ+

G → R the operator LΨ acting on Hölder functions f : Σ+
G → R as

follows

LΨf(x) =
∑

y : σ(y)=x

e−Ψ(y)f(y), ∀ x ∈ Σ+
G,

where the summation is taken among all preimages of x by σ.

It is well known that, by extending the standard Perron-Frobenius theory for
nonnegative matrices, the Ruelle transfer operator LΨ admits similar “right and
left eigenvectors” that we recall in the following proposition.

Proposition 11. [7, 27, 29] Let Ψ : Σ+
G → R be a Hölder observable. Then there

exist a unique left eigenmeasure, or Borel probability measure νΨ on Σ+
G, a unique

normalized right eigenfunction, or positive Hölder function ΦΨ : Σ+
G → R, such

that

L∗ΨνΨ = ePres(Ψ)νΨ, LΨΦΨ = ePres(Ψ)ΦΨ and

∫
ΦΨ dνΨ = 1.

Moreover, µΨ := ΦΨνΨ is a Gibbs measure and the unique σ-invariant probability
that maximizes the pressure for Ψ among all σ-invariant probabilities. We call
VΨ := − 1

β ln ΦΨ the Gibbs potential associated with Ψ.
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The Gibbs potential VE+βH = − 1
β ln ΦE+βH plays the role, at positive tem-

perature, of the effective potential introduced by W. Chou and R. B. Griffiths in
[12, 19] to study ground states in the Frenkel-Kontorova model. We shall see below
in proposition 13 and theorem 16 that indeed, in some cases, the Gibbs potential
converges to an effective potential as β → +∞. We have seen in proposition 8
that H̄β = − 1

βP (E + βH) converges to H̄ and that any weak* limit of {µE+βH}β
is H-minimizing. It would be interesting to obtain similar characterizations for
limit points of {VE+βH}β or {νE+βH}β. The first result in that direction is that
any limit point of VE+βH is a calibrated sub-action:

Definition 12. Let H : Σ+
G → R be a continuous observable. We call sub-action

with respect to H any continuous function V : Σ+
G → R such that

V ◦ σ(x)− V (x) ≤ H(x)− H̄, ∀ x ∈ Σ+
G.

We call calibrated sub-action any sub-action V which in addition satisfies

V (y) = min
{
V (x) +H(x)− H̄ : x ∈ Σ+

G, σ(x) = y
}
, ∀ y ∈ Σ+

G.

Similarly to proposition 29 of [13], we obtain easily the following proposition.

Proposition 13. Let E,H : Σ+
G → R be Hölder observables. Let ΦE+βH :=

exp(−βVE+βH) be the right eigenfunction of LE+βH . Then {VE+βH}β is uniformly
bounded and has a uniform Hölder norm. Moreover, any accumulation function
of {VE+βH}β is a calibrated sub-action with respect to H.

If Ω(H) supports a unique probability measure µHmin with relative maximal
pressure PresΩ(H)(E), then µE+βH → µHmin although Mmin(Σ+

G, σ,H) may not be
reduced to a single measure. We do not know whether a similar result is true for the
convergence of {VE+βH}β. We nevertheless show the “projective” convergence of
{VE+βH}β in the particular case where Ω(H) can be split into disjoint irreducible
components with a unique component of maximal pressure. The splitting up of
Ω(H) into components uses the following notion of Peierls barrier in the sense of
Mather [24, 15].

Definition 14. Let H : Σ+
G → R be a Hölder observable. We call Peierls barrier

the function h(x, y) defined on Σ+
G × Σ+

G by

h(x, y) := lim
ε→0

lim inf
n→+∞

Sεn(x, y),

where

Sεn(x, y) := inf
{ n−1∑
k=0

(H − H̄) ◦ σk(z) : d(z, x) < ε and d(σn(z), y) < ε
}
.

The Peierls barrier may be infinite. If x ∈ Ω(H), h(x, y) is finite and Hölder
with respect to y ∈ Σ+

G. Notice that Ω(H) = {x ∈ Σ+
G : h(x, x) = 0}. Let us

recall how the minimizing non-wandering set Ω(H) can be partitioned into closed
invariant sets, which uniquely characterize sub-actions.
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Definition 15. [17] We say that two points x, y of Ω(H) are equivalent, and
we write x ∼ y, whenever h(x, y) + h(y, x) = 0. Equivalent classes are called
irreducible components. Irreducible components are σ-invariant and compact.

We now state the main result of this section.

Theorem 16. Let E,H : Σ+
G → R be Hölder observables. Assume that Ω(H) =

Ω0∪Ω1∪. . .∪Ωr admits a finite decomposition into disjoint irreducible components
Ωi and

PresΩ(H)(E) = PresΩ0(E) > PresΩ1(E) ≥ . . . ≥ PresΩr(E).

Let ΦE+βH = exp(−βVE+βH) be the normalized right eigenfunction of the Ruelle
transfer operator LE+βH . Then uniformly in y ∈ Σ+

G, for any fixed x0 ∈ Ω0,

lim
β→+∞

VE+βH(y)− VE+βH(x0) = h(x0, y), ∀ y ∈ Σ+
G.

Notice that, in the above theorem, {µE+βH}β may not converge to a unique
H-minimizing measure. Indeed, any weak* limit has a support in Ω0 which may
contain many minimizing measures. Notice also that the convergence of {VE+βH}β
(as a sequence of functions) depends only on the converge of {VE+βH(x0)}β for
any fixed x0 ∈ Ω0.

3 A matrix approach to ground-state theory

We say that the interaction energy function H : Σ+
G → R has finite range if

it only depends on two consecutive symbols H(x) = H(x0, x1). By allowing a
larger number of vertices in another irreducible finite directed graph G′, an energy
function of the form H(x0, . . . , xd−1) can be described by the framework we are
going to develop. The main consequence of this strong assumption on the energy
function is that the problem of zero-temperature phase diagram is reduced to a
problem of singular perturbation of matrices of Puiseux type.

We consider a finite state space S and an irreducible directed graph G ⊂ S×S
weighted by an energy function {exp[−βH(x, y)]}

x
G→y

, where x, y are particular

states in S and x
G→ y denotes an admissible transition given by the graph G. We

prefer to introduce a new parameter ε := exp(−β), which goes to zero when β
tends to +∞, and a one-parameter family of transfer matrices [Mε(x, y)](x,y)∈S×S ,
adapted to G, defined by{

Mε(x, y) := exp[−βH(x, y)] = εH(x,y), ∀ (x, y) ∈ G,
Mε(x, y) := 0, ∀ (x, y) 6∈ G.

Notice that Mε is a Perron-Frobenius matrix, that is, a matrix with nonnegative
entries. Let λε := ρspec(Mε) > 0 be its spectral radius. Because of the irreducibility
of G, λε is an eigenvalue of multiplicity 1. Let [Lε(x)]x∈S and [Rε(x)]x∈S be the
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left and right eigenvector of Mε for the eigenvalue λε,∑
x∈S

Lε(x)Mε(x, y) = λεLε(y), ∀ y ∈ S,∑
y∈S

Mε(x, y)Rε(y) = λεRε(x), ∀ x ∈ S,

normalized by
∑

x∈S Lε(x)Rε(x) = 1 and
∑

x∈S Rε(x) = 1. Notice that Lε(x) > 0
and Rε(x) > 0 for all x ∈ S. Let

πε(x) := Lε(x)Rε(x) and Qε(x, y) := Mε(x, y)
Rε(y)

Rε(x)λε
, ∀ x, y ∈ S.

The Ruelle transfer operator used in the dynamical approach of section 2 is
strongly related to a basic eigenvalue problem that we recall in the following
remark.

Remark 17. Assume H(x) = H(x0, x1) has finite range. Let ΦβH : Σ+
G → R

be the right eigenfunction of LβH and νβH be the left eigenmeasure of LβH . Let
µβH(dx) = ΦβH(x)νβH(dx) be the normalized Gibbs-equilibrium measure associ-
ated with βH. Then

i. ΦβH(x) = Lε(x0), ∀ x = (x0, x1, . . .) ∈ Σ+
G.

ii. νβH([x0]) = Rε(x0), ∀ x0 ∈ S.

iii. µβH is a Markov chain on Σ+
G with initial law πε and transition matrix Qε.

For any cylinder of size d+ 1, one has

µβH([x0, x1, . . . , xd]) = Lε(x0)
[
Πd−1
i=0Mε(xi, xi+1)

]
Rε(xd)/λ

d
ε .

We are interested in describing the possible limits of {(πε, Qε)}ε→0 that we
also call zero-temperature Gibbs measures. In an equivalent way, we want to de-
scribe all possible limits of the eigenvalue {λε}ε→0 and the projective eigenvectors
{Lε(x)/Lε(y)}ε→0 and {Rε(x)/Rε(y)}ε→0. As in the dynamical system approach,
the zero-temperature Gibbs measures are localized in a minimizing subgraph sim-
ilar to the minimizing non-wandering set Ω(H) recalled in definition 6. We first
begin by restricting the class of the one-parameter family of matrices we want to
study. We introduce the notion of one-parameter family of Puiseux type in two
steps.

Definition 18. Let G ⊂ S × S be a (not necessarily irreducible) directed graph
and {Mε}ε>0 be a one-parameter family of matrices indexed by S. The graph G
is said to be weighted by Mε if Mε(x, y) = 0 whenever (x, y) /∈ G. The weighted
graph (G,Mε) is said to be of exact Puiseux type if there exist a nonnegative matrix
[A(x, y)]x,y∈S and an extended real-valued matrix [a(x, y)]x,y∈S such that

i. ∀ (x, y) 6∈ G, A(x, y) = 0, a(x, y) = +∞ and Mε(x, y) = 0.
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ii. ∀ (x, y) ∈ G, A(x, y) > 0, a(x, y) ∈ R and

Mε(x, y) = A(x, y)εa(x,y) + o(εa(x,y)).

We say shortly Mε ∼ Aεa.

We call G-path of length n ≥ 1 in S any sequence (x0, . . . , xn) such that
(xk, xk+1) ∈ G, ∀ k = 0, . . . , n − 1. The support of a G-path (x0, . . . , xn) is the
subset {(xk, xk+1) : k = 0, . . . , n − 1} ⊂ G. A cycle of length n ≥ 1 is a G-
path (x0, . . . , xn) in S such that xn = x0. We call off-diagonal cycle any cycle
(x0, x1, . . . , xn) such that xi 6= xi+1 for all i = 0, . . . , n − 1. A simple cycle is a
cycle (x0, . . . , xn) such that xi 6= xj for all 0 ≤ i 6= j < n. A loop is a cycle (x0, x1)
of length 1 where (x0, x1) ∈ G and x0 = x1. We call mean exponent of a cycle the
real number 1

n

∑n−1
i=0 a(xi, xi+1).

Definition 19. Suppose that (G,Mε) is an irreducible weighted graph of exact
Puiseux type with Mε ∼ Aεa.

i. We call minimizing mean exponent of (G,Mε) the real number

ā := min
{ 1

n

n−1∑
i=0

a(xi, xi+1) : n ≥ 1, (x0, . . . , xn) is a cycle
}
.

We call minimizing cycle any cycle of mean exponent ā.

ii. We call minimizing subgraph the graph Gmin ⊂ Smin × Smin, where Smin is
the set of states belonging to some minimizing cycle and Gmin is the union
of supports of all minimizing cycles.

iii. We call dominant spectral coefficient of Mε the spectral radius of Amin

ᾱ := sup{|λ| : λ ∈ spec(Amin)} = ρspec(Amin),

where Amin = [A(x, y)1Gmin(x, y)]x,y∈S. Notice that ᾱ > 0.

Notice that ā may be obtained by minimizing on the finite set of simple cy-
cles. Although we start with an irreducible graph, Gmin may not be any more
irreducible; G is nevertheless semi-irreducible as explained below.

Definition 20. A graph G ⊂ S × S is said to be semi-irreducible if there exist
a partition S = S1 ∪ . . . ∪ Sd and irreducible subgraphs Gi ⊂ Si × Si such that
G = G1 ∪ . . . ∪Gd. Note that in G there is no transition from xi ∈ Si to xj ∈ Sj
for any 1 ≤ i 6= j ≤ d. The subgraphs Gi are called the irreducible components of
G.

Lemma 21. Let (G,Mε) be an irreducible weighted graph of exact Puiseux type.
Then the minimizing subgraph Gmin is semi-irreducible.

In the language of dynamical system, when (G,Mε) is of exact Puiseux type,
Gmin describes the minimizing non-wandering set Ω(a) introduced in definition 6.
More precisely:
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Lemma 22. Let G be an irreducible directed graph and E,H : Σ+
G → R be finite-

range observables. Let Mε = Aεa = [exp(E(x, y))εH(x,y)1G(x, y)]x,y∈S. Then
(G,Mε) is of exact Puiseux type and satisfies:

i. The minimizing mean exponent of (G,Mε) is equal to the minimizing ergodic
value of H, namely, ā = H̄.

ii. The minimizing non-wandering set Ω(H) is a subshift of finite type

Ω(H) = {x ∈ Σ+
G : (xk, xk+1) ∈ Gmin, ∀ k ≥ 0} = Σ+

Gmin
.

iii. The splitting up of Ω(H) into irreducible components (see definition 15)
corresponds to the splitting up of Gmin into irreducible components {Gi}di=1:

Ω(H) = Ω1(H) ∪ . . . ∪ Ωd(H), where

Ωi(H) := {x ∈ Σ+
G : (xk, xk+1) ∈ Gi, ∀ k ≥ 0}.

iv. The relative pressure of E to Ω(H) is related to the dominant spectral coef-
ficient of Mε by ᾱ = exp[PresΩ(H)(E)].

We now complete the notion of one-parameter family of Puiseux type.

Definition 23. Let G ⊂ S × S be an irreducible directed graph. We call off-
diagonal graph the subgraph of G defined by Goff := G\{(x, x) : x ∈ S}. Notice that

Goff is again irreducible. If (G,Mε) is a weighted graph, we denote Moff
ε (x, y) :=

Mε(x, y)1Goff(x, y).

Definition 24. Following the definition 18, we say that an irreducible weighted
graph (G,Mε) is of general Puiseux type if

i. The irreducible off-diagonal weighted graph (Goff,Moff
ε ) is of exact Puiseux

type. Let āoff be the minimizing mean exponent of (Goff,Moff
ε ).

ii. For each (x, y) 6∈ G, A(x, y) = 0 and a(x, y) = +∞ (by convention).

iii. For all x ∈ S, (x, x) ∈ G and one of the two estimates holds

Mε(x, x) = o(εāoff) (by convention: A(x, x) = 0, a(x, x) = +∞) or

Mε(x, x) = A(x, x)εa(x,x) + o(εa(x,x)), A(x, x) > 0, a(x, x) ≤ āoff.

Let G∗ := G \ {(x, x) ∈ G : A(x, x) = 0} and M∗ε (x, y) := Mε(x, y)1G∗(x, y).
Notice that G∗ is an irreducible directed graph and (G∗,M∗ε ) becomes a weighted
graph of exact Puiseux type. We call minimizing mean exponent ā of (G,Mε) the
minimizing mean exponent of (G∗,M∗ε ). Let G∗min be the minimizing subgraph of
G∗ and

A∗min := [A(x, y)1G∗min(x, y)]x,y∈S .

We call dominant spectral coefficient ᾱ the spectral radius of A∗min. We call dom-
inant subgraph Ḡ the subgraph of G defined by the union of all irreducible compo-
nents of G∗min of dominant spectral coefficient.
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Notice that the only difference between the two notions of Puiseux type is
that, in the weakest definition, Mε may possess a diagonal term (positive or not)
of the form o(εāoff). We will see soon that that these terms are negligible in the
computation of the spectral radius of Mε. Notice also that

ā = min{āoff, a(x, x) : x ∈ S}.

From lemma 21, the minimizing subgraph G∗min is equal to a disjoint union of
irreducible subgraphs: G∗min = G∗1 ∪ . . . ∪G∗d, where S1 ∪ . . . ∪ Sd is a partition of
S∗min and G∗i ⊂ Si × Si. By just permutating indices, we may consider that the
first r subgraphs G∗i have dominant spectral coefficient ᾱ. In order to do that, we
adapt the notation and we say that Ḡi ⊂ S̄i× S̄i has dominant spectral coefficient
if the restricted matrix Aiimin = [A(x, y)1Ḡi(x, y)]x,y∈S̄i has spectral radius ᾱ.

Main notations 25. Suppose (G,Mε) is an irreducible weighted graph of general
Puiseux type. Let Ḡ1 ⊂ S̄1 × S̄1, . . . , Ḡr ⊂ S̄r × S̄r, 1 ≤ r ≤ d, be the set
of irreducible components of G∗min of dominant spectral coefficient ᾱ. Let Ḡ :=
Ḡ1∪ . . .∪Ḡr be the dominant subgraph, and S̄ := S̄1∪ . . .∪ S̄r be the set of vertices
of Ḡ. Denote G0 = G \ Ḡ and S0 = S \ S̄. We write Mε as a (r + 1) × (r + 1)
block matrix in the following way

Mε =

[
⊕ri,j=1 M

ij
ε ⊕ri=1M

i0
ε

⊕rj=1M
0j
ε M00

ε

]
,

M00
ε = [Mε(x, y)]x,y∈S0 , M i0

ε = [Mε(x, y)]x∈S̄i,y∈S0
, M0j

ε = [Mε(x, y)]x∈S0,y∈S̄j ,

and M ij
ε = [Mε(x, y)]x,y∈S̄i×S̄j , ∀ 1 ≤ i, j ≤ r.

We call dominant matrix Ā the diagonal matrix obtained by keeping only the sub-
matrices Aiimin with dominant spectral radius

Ā := [A(x, y)1Ḡ(x, y)]x,y∈S̄ =

Ā
11 · · · 0
...

. . .
...

0 · · · Ārr

 ,
Āii = [A(x, y)1Ḡi(x, y)]x,y∈S̄i = Aiimin, ∀ i = 1, . . . , r.

By convention all matrices Āij, 1 ≤ i 6= j ≤ r, are equal to 0. Notice that

λε := sup{|λ| : λ ∈ spec(Mε)} = ρspec(Mε)

is an eigenvalue of multiplicity 1 and unique on the circle {|λ| = λε}. Let Lε and
Rε be the left and right eigenvectors of Mε associated with the largest eigenvalue
λε

Lε = ⊕ri=1L
i
ε ⊕ L0

ε , Rε = ⊕ri=1R
i
ε ⊕R0

ε ,∑
x∈S

Lε(x)Rε(x) = 1, and
∑
x∈S

Rε(x) = 1,
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where Lε is a row vector and Rε a column vector. Consider thus

πε(x) := Lε(x)Rε(x), Qε(x, y) :=
Mε(x, y)Rε(y)

λεRε(x)
, and µε(x, y) := πε(x)Qε(x, y).

For each i = 1, . . . , r, ᾱ = ρspec(Āii) is an eigenvalue of multiplicity 1 admit-
ting a unique positive left row eigenvector [L̄i(x)]x∈S̄i and a unique right column
eigenvector [R̄i(x)]x∈S̄i satisfying

L̄iĀii = ᾱ L̄i, ĀiiR̄i = ᾱ R̄i,∑
x∈S̄i

L̄i(x)R̄i(x) = 1, and
∑
x∈S̄i

R̄i(x) = 1.

Let π̄i, Q̄ii and µ̄i be defined on Ḡi as follows

π̄i(x) := L̄i(x)R̄i(x), Q̄ii(x, y) :=
Āii(x, y)R̄i(y)

ᾱR̄i(x)
, µ̄i(x, y) := π̄i(x)Q̄ii(x, y).

We extend µ̄i on G \ Ḡi by 0.

In the language of dynamical system, the main known result in this setting is
recalled in the following theorem.

Theorem 26. [8, 23, 10] Let E,H : Σ+
G → R be finite-range observables defined

on a transitive subshift of finite type Σ+
G given by an irreducible directed graph G.

Let µE+βH be the Gibbs measure associated with E + βH. For ε = e−β, consider
Mε = [A(x, y)εa(x,y)]x,y∈S the transfer matrix, where{

a(x, y) = H(x, y) and A(x, y) = eE(x,y), ∀ (x, y) ∈ G,
a(x, y) = +∞ and A(x, y) = 0, ∀ (x, y) 6∈ G.

We recall that µE+βH weights each cylinder [x0, . . . , xn] ∈ Cn+1(G) as

µE+βH([x0, . . . , xn]) = Lε(x0)
[ n−1∏
k=0

Mε(xk, xk+1)
]
Rε(xn)/λnε .

Let Ḡ1, . . . , Ḡr be the dominant irreducible components of Gmin. Let µ̄i be the
Gibbs measure associated with E restricted to Σ+

Ḡi
,

µ̄i([x0, . . . , xn]) = L̄i(x0)
[ n−1∏
k=0

Āii(xk, xk+1)
]
R̄i(xn)/ᾱn, ∀ [x0, . . . , xn] ∈ Cn+1(Ḡi).

Then, the family {µE+βH}β converges to

µE,Hmin := lim
β→+∞

µE+βH =

r∑
i=1

cE,Hi µ̄i,

where cE,Hi = µE,Hmin (Ḡi) ≥ 0 and
∑r

i=1 c
E,H
i = 1.
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The existence of the limit in theorem 26 is the main point and was proved by
Brémont in [8] using semi-algebraic techniques. Leplaideur in [23] gave a dynam-
ical proof and has identified the limit as a barycenter of minimizing measure of
maximal pressure. Akian, Bapat and Gaubert (see [2, 3]) using min-plus methods
have obtained similar results. Chazottes, Gambaudo and Ugalde in [10] gave a
more algorithmic proof. Nekhoroshev has obtained [26] the convergence to a zero-
temperature Gibbs measure for generic one-dimensional spin systems with nearest-
neighbors interaction. Chazottes and Hochman in [11] showed a one-dimensional
counterexample for the convergence of Gibbs measures associated with an infinite-
range interaction. They also showed there a tridimensional counterexample for a
finite-range Hamiltonian H.

We intend to partially extend theorem 26 to the case of irreducible weighted
graphs (G,Mε) of general Puiseux type. We explain the first two steps of an
algorithm based on Puiseux-series expansions. These two steps are enough to
describe the limits limε→0 πε = πmin and limε→0Qε = Qmin for matrices of small
dimension. The main difficulty is to identify which irreducible components of
G∗min support µmin. The first step consists in writing Mε in a normal form; this
step makes use of the notion of correctors (equivalent to the notion of sub-actions
introduced in definition 12). The second step consists in aggregating all the states
in the same irreducible component, obtaining thus a new weighted graph with a
lower dimension.

Definition 27. Suppose that (G,Mε) is a weighted graph of general Puiseux type,
Mε ∼ Aεa, G∗min is the minimizing subgraph of G∗, and ā is the minimizing mean
exponent of (G,Mε). We call corrector any function v : S → R such that

a(x, y) ≥ v(y)− v(x) + ā, ∀ (x, y) ∈ G∗.

The corrector is said to be backward or forward calibrated if

v(y) + ā = minx:(x,y)∈G∗{v(x) + a(x, y)}, ∀ y ∈ S (backward),

v(x)− ā = maxy:(x,y)∈G∗{v(y)− a(x, y)}, ∀ x ∈ S (forward).

It is said to be separating if

a(x, y) = v(y)− v(x) + ā, ∀ (x, y) ∈ G∗min,
a(x, y) > v(y)− v(x) + ā, ∀ (x, y) ∈ G∗ \G∗min.

It is easy to show that separating correctors exist. We just want to make clear
that this notion is a key part to understand the singular perturbations of Perron
matrices.

Lemma 28. The notations being given in definition 27, there exist (not necessarily
unique) backward or forward calibrated correctors. There exist (not necessarily
unique) separating correctors. The difference of two correctors is constant on each
irreducible component.

The first step of the algorithm is described below.
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Algorithm 29 (I. Reduction to a normal form). Let (G,Mε) be an irreducible
weighted graph of general Puiseux type, Mε ∼ Aεa. From main notations 25, recall
the partition of S into dominant and non dominant indices: S = ∪ri=1S̄i ∪ S0.
For v : S → R a separating corrector, denote ∆ε(v) := diag[εv(x) : x ∈ S] and
ã(x, y) := a(x, y) + v(x)− v(y)− ā ≥ 0 for all (x, y) ∈ G∗. Then

• M̃ε := ∆ε(v)Mε∆ε(v)−1ε−ā = A∗min + Ñε and Ñε = o(1);

• A∗min =

[
Ā 0
0 D

]
, where Ā := diag[Āii : i = 1, . . . , r] is the diagonal matrix

of dominant matrices Āii, and D is a nonnegative matrix indexed by S0 such
that ρspec(D) < ρspec(Ā11) = . . . = ρspec(Ārr);

• (Goff, M̃off
ε ) is an irreducible weighted graph of exact Puiseux type;

• ∀ (x, y) ∈ Goff, M̃ε(x, y) ∼ A(x, y)εã(x,y), A(x, y) > 0, ã(x, y) ≥ 0.

Wa say that (G, M̃ε) is a normal form of (G,Mε). Let L̃ε and R̃ε denote the left
and right eigenvectors of M̃ε for λ̃ε := ρspec(M̃ε). Then λ̃ε = λεε

−ā and

L̃ε(x) = ε−v(x)Lε(x) and R̃ε(x) = εv(x)Rε(x), ∀x ∈ S.

The following proposition extends proposition 8 in the sense that we admit a
more general form of transfer matrix.

Proposition 30. Let (G,Mε) be an irreducible weighted graph of general Puiseux
type. Then

i. λε ∼ ᾱεā;

ii. µε(x, y)→ 0 for all (x, y) 6∈ Ḡ, πε(x)→ 0 for all x ∈ S0;

iii. any accumulation measure µ̄ of (µε)ε>0 is of the form µ̄ =
∑r

i=1 µ̄(Ḡi)µ̄i.

We recover the fact that, if G∗min admits a unique irreducible component of
dominant spectral coefficient (r = 1), then µε → µ̄1, πε(x)→ π̄1(x) for all x ∈ S̄1

and πε(x)→ 0 elsewhere.
The second step of the algorithm is an operation of aggregation.

Algorithm 31 (II. Reduction to an aggregated form). Let (G,Mε) be an
irreducible weighted graph of general Puiseux type. Assume that (G, M̃ε) is a
normal form of (G,Mε). We write

M̃ε =

[
⊕ri,j=1M̃

ij
ε ⊕ri=1M̃

i0
ε

⊕rj=1M̃
0j
ε M̃00

ε

]
=

[
Ā 0
0 D

]
+ Ñε.

(Notice that Ā(x, y) = A(x, y)1ã(x,y)=0 for all x, y ∈ S̄ = S̄1 ∪ . . . ∪ S̄r.) The right

eigenvector R̃ε is solution of the system{ ∑r
j=1 M̃

ij
ε R̃

j
ε + M̃ i0

ε R̃
0
ε = λ̃εR̃

i
ε, ∀ i = 1, . . . , r,∑r

j=1 M̃
0j
ε R̃

j
ε + M̃00

ε R̃
0
ε = λ̃εR̃

0
ε .
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As ρspec(M̃00
ε )→ ρspec(D) < ᾱ ∼ λ̃ε, R̃0

ε can be written linearly with respect to R̃iε.
We thus obtain

r∑
j=1

(
M̃ ij
ε + M̃ i0

ε (λ̃ε − M̃00
ε )−1M̃0j

ε

)
R̃jε = λ̃εR̃

i
ε.

We take the scalar product of each equation by the left eigenvector L̄i. We extract

the dominant term Ā and obtain a new weighted graph (G(1),M
(1)
ε ) indexed by

S(1) := {1, . . . , r} defined in the following way. For i 6= j, let P(i, j) denote the set
of G-admissible paths x := (x0, . . . , xn) such that n ≥ 1, x0 ∈ S̄i, x1, . . . , xn−1 ∈ S0

and xn ∈ S̄j. Then

• for all i 6= j, (i, j) ∈ G(1) if, and only if, P(i, j) 6= ∅;

• for all i = 1, . . . , r, (i, i) ∈ G(1) (by convention);

• M (1)
ε (i, j) = L̄i

(
Ñ ij
ε + M̃ i0

ε (λ̃ε − M̃00
ε )−1M̃0j

ε

)
R̃jε
L̄jR̃jε

.

The new eigenvalue problem is related to the previous one by

r∑
j=1

M (1)
ε (i, j)R(1)

ε (j) = (λ̃ε − ᾱ)R(1)
ε (i), R(1)

ε (i) = L̄iR̃iε, ∀ i = 1, . . . , r.

We say that (G(1),M
(1)
ε ) is an aggregated form of (G,Mε). Note that

∑r
i=1R

(1)
ε (i)

may not be equal to 1.

Proposition 32. Let (G,Mε) be an irreducible weighted graph of general Puiseux

type. Let (G(1),M
(1)
ε ) be its aggregated form defined by the separating corrector

v : S → R. If ã(x, y) = a(x, y) + v(x) − v(y) − ā for all (x, y) ∈ G∗ and x =
(x0, . . . , xn) belongs to P(i, j), denote ã(x) :=

∑n−1
i=0 ã(xi, xi+1). Then

i. (G(1)off,M
(1)off
ε ) is an irreducible weighted graph of exact Puiseux type, with

M
(1)off
ε ∼ A(1)εa

(1)
, where, for all (i, j) ∈ G(1)off,

a(1)(i, j) := min
{
ã(x) : x ∈ P(i, j)

}
and

A(1)(i, j) :=
∑

x=(x0,...,xn)∈P(i,j)

ã(x)=a(1)(i,j)

L̄i(x0)Πn−1
k=0A(xk, xk+1)R̄j(xn)

ᾱn(x)−1
;

ii. for all i = 1, . . . , r and x, y ∈ S̄i,

Liε(x)

Liε(y)
∼ εv(x)

εv(y)

L̄i(x)

L̄i(y)
, and

Riε(x)

Riε(y)
∼ ε−v(x)

ε−v(y)

R̄i(x)

R̄i(y)
;

iii. for all i 6= j ∈ {1, . . . , r} and x ∈ S̄i,

Qε(x, y)→ 0, ∀ y ∈ S̄j ∪ S0, Qε(x, y)→ Q̄ii(x, y), ∀ y ∈ S̄i.
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Notice that no estimate is given in the previous proposition for the quotients
Riε(x)/Rjε(y) if x ∈ S̄i and y ∈ S̄j .

Algorithm 33 (III. Induction). Assume by induction one can prove

R
(1)
ε (i)

R
(1)
ε (j)

∼ γ(1)(i, j)εc
(1)(i,j), ∀ i = 1, . . . , r,

for some real coefficients γ(1)(i, j) = γ(1)(j, i)−1 > 0 and c(1)(i, j) = −c(1)(j, i).
Notice that proposition 32.ii easily implies

R̃iε(x)

R
(1)
ε (i)

∼ R̄i(x)

L̄iR̄i
= R̄i(x), ∀ i = 1, . . . , r, ∀ x ∈ S̄i.

Let G′ be the graph containing either (x, x) for x ∈ S0 or (x0, xn) if (x0, . . . , xn) is
a path of G∩ (S0×S0) such that D(xk, xk+1) > 0. Let M ′ε = (λε−M̃00

ε )−1. Then
(G′,M ′ε) is a weighted graph of exact Puiseux type (see lemma 49). It follows that

R̃0
ε (x)

R
(1)
ε (1)

=
r∑
j=1

(λ̃ε − M̃00
ε )−1M̃0j

ε

R̃jε

R
(1)
ε (1)

(x) ∼ γ(1)(x)εc
(1)(x)

for some coefficients γ(1)(x) > 0 and c(1)(x) ∈ R. One thus may obtain

Rε(x)

Rε(y)
∼ γ(x, y)εc(x,y), ∀ x, y ∈ S,

for some real coefficients γ(x, y) = γ(y, x)−1 > 0 and c(x, y) = −c(y, x). The
normalization

∑
x∈S Rε(x) = 1 then implies

Rε(x) =
1∑

y∈S
Rε(y)
Rε(x)

∼ ρ(x)εr(x), ∀ x ∈ S, with

ρ(x) :=
( ∑
y=arg max c(x,y)

γ(y, x)
)−1

and r(x) := max
y∈S

c(x, y).

Similar equivalences can be written for Lε(x) and Qε(x, y). In particular, the limits
limε→0 πε(x) and limε→0Qε(x, y) exist for all x, y ∈ S.

4 Proofs of results stated in section 2

We begin by proving the results of section 2 for a transitive subshift of finite type
(Σ+

G, σ) defined by an irreducible directed graph G on a finite state space S. Let
E,H : Σ+

G → R be two Hölder functions. Proposition 8 has been noticed many
times as in [13, 23]. We nevertheless give the proof of this proposition in order to
point out the following inequalities.
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Lemma 34. For any β > 0, PresΩ(H)(E) ≤ Pres(E + βH) + βH̄ ≤ Pres(E). If
µE+βH is the Gibbs-equilibrium measure of E + βH, then

0 ≤ β
(∫

H dµE+βH − H̄
)
≤ Pres(E)− PresΩ(H)(E), and

PresΩ(H)(E) ≤ Ent(µE+βH)−
∫
E dµE+βH .

Proof. On the one hand, if µmin is any H-minimizing probability with relative
maximal pressure in Ω(H), then

PresΩ(H)(E)− βH̄ = Ent(µmin)−
∫
E dµ− βH̄ =

= Ent(µmin)−
∫

(E + βH) dµmin ≤ Pres(E + βH).

On the other hand,

Pres(E + βH) = Ent(µE+βH)−
∫

(E + βH) dµE+βH , either

≤ Ent(µE+βH)−
∫
E dµE+βH − βH̄, or

≤ Pres(E)− β
∫
H dµE+βH ≤ Pres(E)− βH̄.

Proof of proposition 8. We first remark

0 ≤
∫
H dµE+βH − H̄ ≤

1

β
[Pres(E)− PresΩ(H)(E)]

implies that {
∫
H dµE+βH}β converges to H̄ as β → +∞ and that any weak*

limit of {µE+βH}β is actually minimizing for H. Let µ∞ be a weak* accumulation
probability. We next observe that the upper semi-continuity of the entropy map
β 7→ Ent(µE+βH) implies

PresΩ(H)(E) ≥ Ent(µ∞)−
∫
E dµ∞

≥ lim sup
β→+∞

(
Ent(µE+βH)−

∫
E dµE+βH

)
≥ PresΩ(H)(E).

All inequalities in the previous estimate are therefore equalities and lim sup should
be understood as a limit.

The rest of this part is now devoted to the proof of theorem 16. We first give
some complements on the Peierls barrier. As usual, define the Birkhoff sum of an
observable Ψ : Σ+

G → R as

SnΨ(x) =
n−1∑
k=0

Ψ ◦ σk(x), ∀ x ∈ Σ+
G.
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Lemma 35. Let h(x, y) be the Peierls barrier introduced in definition 14.

i. The function h : Σ+
G × Σ+

G → R ∪ {+∞} is lower semi-continuous.

ii. If V : Σ+
G → R is a continuous sub-action, V (y)− V (x) ≤ h(x, y).

iii. For any x ∈ Ω(H), h(x, ·) : Σ+
G → R is Hölder (and finite).

iv. For any x, y, z ∈ Σ+
G, h(x, z) ≤ h(x, y) + h(y, z).

v. For any y ∈ Σ+
G, h(·, y) : Σ+

G → R ∪ {+∞} is a coboundary of H − H̄,

(H − H̄)(x) + h(σ(x), y) = h(x, y), ∀ x, y ∈ Σ+
G.

vi. For any x ∈ Σ+
G, σn(x) ∈ Ω(H)⇒ h(x, σn(x)) = Sn(H − H̄)(x).

Proof. Items i , ii , iii and iv are well known and have been discussed, for instance,
in [13, 16, 17].

Item v . Suppose ε ∈ (0, 1). If z′ is close to σ(x), d(z′, σ(x)) < ε, one can
find z close to x, d(z, x) < ε/2, such that σ(z) = z′. Hence, if osc1(H, η) :=
sup

{
H(x)−H(y) : d(x, y) ≤ η

}
, then

S
ε/2
n+1(x, y) ≤ (H − H̄)(x) + Sεn(σ(x), y) + osc1(H, ε/2).

Conversely, if d(z, x) < ε, then d(σ(z), σ(x)) < 2ε. Therefore

Sεn+1(x, y) ≥ (H − H̄)(x) + S2ε
n (σ(x), y)− osc1(H, ε).

Item v is proved by taking lim infn→+∞ first and limε→0 afterwards.
Item vi . From the previous item, we have by induction

Sn(H − H̄)(x) + h(σn(x), y) = h(x, y).

If y = σn(x) ∈ Ω(H), then h(y, y) = 0 and item vi is proved.

From now on the minimizing non-wandering set Ω(H) can be decomposed into
a disjoint union of irreducible components Ω(H) = Ω0∪ . . .∪Ωr (see definition 15).
Each Ωi is necessarily closed and invariant. We fixed once for all x∗i ∈ Ωi. We
recall that Ωi = {x ∈ Σ+

G : h(x, x∗i ) + h(x∗i , x) = 0} and that, for any i 6= j,
h(x∗i , x

∗
j ) + h(x∗j , x

∗
i ) > 0.

Lemma 36. Assume Ω(H) = Ω0 ∪ . . . ∪ Ωr is a disjoint union of irreducible
components. Let V : Σ+

G → R be any continuous sub-action. Then

i. The quantities h̄V (i, j) := h(x∗i , x
∗
j ) − V (x∗j ) + V (x∗i ) are nonnegative and

independent of the choice of x∗i ∈ Ωi.

ii. h̄V (i, i) = 0 for all i = 0, 1, . . . , r.

iii. If h̄V (0, j) = 0 for all j = 1, . . . , r and V is a calibrated sub-action, then
V (y) − V (x) = h(x, y) for all x ∈ Ω0 and y ∈ Σ+

G, that is, V is unique
provided V (x0) is known for some x0 ∈ Ω0.
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Proof. Item i . Let hV (x, y) := h(x, y)−V (y)+V (x) ≥ 0 for all x, y ∈ Σ+
G. Hence,

x ∼ y if, and only if, hV (x, y)+hV (y, x) = 0 if, and only if, hV (x, y) = hV (y, x) = 0.
Suppose x, x′, y, y′ ∈ Ω(H) satisfy x ∼ x′ and y ∼ y′. Because of lemma 35.iv ,

hV (x, y) ≤ hV (x, x′) + hV (x′, y) = hV (x′, y).

Equivalently hV (x′, y) ≤ hV (x, y) and thus hV (x′, y) = hV (x, y). For the same
reason, hV (x′, y) = hV (x′, y′). We just have proved hV (x, y) = hV (x′, y′).

Item ii . It is immediate from the definition of h̄V .
Item iii . From [5, 16], calibrated sub-actions have the following characteriza-

tion V (y) = min{V (x) + h(x, y) : x ∈ Ω(H)} for all y ∈ Σ+
G. Then, for any fixed

x0 ∈ Ω0, on the one hand,

V (y) = min
j=0,...,r

min
x∈Ωj

[V (x) + h(x, y)]

≥ min
j=0,...,r

min
x∈Ωj

[V (x)− V (x0) + h(x, x0)] + V (x0) + h(x0, y)

= V (x0) + h(x0, y).

On the other hand, because V is a sub-action, h(x0, y) ≥ V (y)− V (x0). We have
proved that V (y) = V (x) + h(x, y) for all x ∈ Ω0 and y ∈ Σ+

G.

Let ΦE+βH = exp(−βVE+βH) and νE+βh be, respectively, the eigenfunc-
tion and the eigenmeasure of the Ruelle transfer operator LE+βH , normalized
by
∫

ΦE+βH dνE+βH = 1. We know that {VE+βH}β has uniform sup-norm and
uniform Hölder norm. Let V∞ be any accumulation point in the C0 topology.
Proposition 13 tells us that V∞ is calibrated. We assume that PresΩ0(E) >
PresΩ1∪...∪Ωr(E). We want to prove that V∞(y)− V∞(x) = h(x, y) for any x ∈ Ω0

and y ∈ Σ+
G, which will show that, for any fixed x0 ∈ Ω0,

VE+βH(y)− VE+βH(x0)→ V∞(y)− V∞(x0), uniformly in y ∈ Σ+
G.

That convergence will indeed follow from lemma 36.iii and the next lemma.

Lemma 37. Let V : Σ+
G → R be any sub-action and h̄V (i, j) be defined as in

lemma 36. Assume, for any j = 1, . . . , r, there exists i = 0, 1, . . . , r, i 6= j, such
that h̄V (i, j) = 0. Then h̄V (0, j) = 0 for all j = 1, . . . , r.

Proof. Assume by contradiction that h̄V (0, j1) > 0 for some j1 = 1, . . . , r. Define
J := {j = 1, . . . , r : h̄V (0, j) > 0}. Notice that if j1 ∈ J and h̄V (j2, j1) = 0 for
some j2 = 0, 1, . . . , r, j2 6= j1, then necessarily j2 6= 0 and j2 ∈ J . By hypothesis,
one can therefore construct a sequence j1, j2, . . . ∈ J such that

. . . = h̄V (j3, j2) = h̄V (j2, j1) = 0 and jk+1 6= jk.

Because the number of irreducible components is finite, there exist two distinct
indices s < t such that h̄V (jt, jt−1) = . . . = h̄V (js+1, js) = 0 and js = jt. We
obtain, for instance, h̄V (js, js+1) = 0 = h̄V (js+1, js), which is in contradiction
with Ωjs+1 6= Ωjs .
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In order to apply the initial assumption of lemma 37, we fix from now on
j = 1, . . . , r, Ω̃ = Ωj and Ω̄ = ∪i 6=jΩi. Clearly, Ω̄ and Ω̃ are disjoint closed
invariant sets and PresΩ̄(E) > PresΩ̃(E). We want to show that

min{h(x, y)− V∞(y) + V∞(x) : x ∈ Ω̄ and y ∈ Ω̃} = 0.

We begin by introducing some notations.

Notations 38. Let V : Σ+
G → R be any Hölder sub-action. Consider the function

hV (x, y) := h(x, y)− V (y) + V (x) ≥ 0, ∀ x, y ∈ Σ+
G,

which is the Peierls barrier of the observable HV := H − H̄ − V ◦ σ + V ≥ 0.
Assume that Ω(H) = Ω̄∪ Ω̃ is a disjoint union of two closed σ-invariant sets with
Ω̃ irreducible. For ε > 0, denote

KV (Ω̃, ε) := {x ∈ Σ+
G : ∃ y ∈ Ω̃ s. t. hV (x, y) ≤ ε}.

We will need to approximate PresΩ̃(E) by the pressure of E restricted to

transitive subshifts of finite type Σ̃d ⊃ Ω̃ which decrease to Ω̃. In order to introduce
them, the following notion will be useful.

Definition 39. A closed σ-invariant set Ω̃ ⊂ Σ+
G is said to be quasi-transitive if,

for any x, y ∈ Ω̃, for any ε > 0, there exist z ∈ Σ+
G and an integer n ≥ 0 such that

d(z, x) < ε, d(σn(z), y) < ε and d(σk(z), Ω̃) < ε, ∀ k = 0, 1, . . . , n.

Lemma 40. Any isolated irreducible component Ω̃ of Ω(H) (there exists an open
set Ũ containing Ω̃ such that Ũ ∩ Ω(H) = Ω̃) is quasi-transitive.

Proof. Let V be any Hölder separating sub-action, namely, a Hölder sub-action
such that H−1

V (0) = Ω(H) (for details, see [17]). For ε > 0, let Uε and Ũε be
neighborhoods of size ε of Ω(H) and Ω̃, respectively. Assume ε is sufficiently small
enough so that if z ∈ Ũε and k ≥ 1 is the first time such that σk−1(z) ∈ Ũε
and σk(z) 6∈ Ũε, then σk(z) 6∈ Uε. Let η > 0 sufficiently small enough so that
{z ∈ Σ+

G : HV (z) < η} ⊂ Uε. Since Ω̃ is irreducible, given x, y ∈ Ω̃, there exist
infinitely many positive integers n and points zn ∈ Σ+

G such that

d(zn, x) < ε, d(σn(zn), y) < ε and SnHV (zn) < η.

Since zn ∈ Ũε and HV ◦ σk(zn) < η, then σk(zn) ∈ Ũε, ∀ k = 0, 1, . . . , n.

Lemma 41. Let Ω̃ be a quasi-transitive closed σ-invariant set. Let Ũd be the
union of all cylinders B = [x0, x1, . . . , xd−1] of length d such that B ∩ Ω̃ 6= ∅.
Consider Σ̃d = {x ∈ Σ+

G : σn(x) ∈ Ũd, ∀ n ≥ 0} ⊃ Ω̃. Then

i. (Σ̃d, σ) is bi-Hölder conjugate to a transitive subshift of finite type.

ii. There exists a constant C̃d > 0 such that

C̃−1
d ≤

∑
x∈Σ̃d

σn(x)=y

exp[−Sn(E + PresΣ̃d
(E))(x)] ≤ C̃d, ∀ y ∈ Σ̃d, ∀ n ≥ 0.
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iii. limd→+∞ PresΣ̃d
(E) = PresΩ̃(E).

Proof. Item i . Let S̃(d) be the set of cylinders [x0, . . . , xd−1] which have a non-
empty intersection with Ω̃. Let G̃(d) ⊂ S̃(d) × S̃(d) be the graph defined by the
transitions

[x0, . . . , xd−1]
G̃(d)−→ [x′1, . . . , x

′
d] ⇔ (x1, . . . , xd−1) = (x′1, . . . , x

′
d−1) and xd−1

G→ x′d.

Let Σ+
G̃(d)

be the subshift of finite given by the graph G̃(d). Thus Σ+
G̃(d)

is transitive

since Ω̃ is quasi-transitive and Σ+
G̃(d)

is bi-Hölder conjugate to Σ̃d by the conjugacy

{[xn0 , . . . , xnd−1]}n≥0 7→ {xn0}n≥0.
Item ii . This estimate is true for any transitive subshift of finite type, being

invariant under topological conjugacy.
Item iii . Since Ω̃ ⊂ Σ̃d, we have on the one hand PresΩ̃(E) ≤ PresΣ̃d

(E).
On the other hand, if µ̃d denotes the equilibrium measure associated with the
observable E : Σ̃d → R and µ̃∞ denotes an accumulation point of {µ̃d}d→+∞, then
supp(µ̃∞) ⊂ Ω̃ and

lim sup
d→+∞

PresΣ̃d
(E) = lim sup

d→+∞

(
Ent(µ̃d)−

∫
E dµ̃d

)
≤ Ent(µ̃∞)−

∫
E dµ̃∞ ≤ PresΩ̃(E).

We have proved that PresΣ̃d
(E)→ PresΩ̃(E).

Lemma 42. Consider the decomposition Ω(H) = Ω̄∪ Ω̃ as in notations 38. For a
Hölder sub-action V : Σ+

G → R, assume min{hV (x, y) : x ∈ Ω̄ and y ∈ Ω̃} > ε > 0.
Then

i. KV (Ω̃, ε) is closed, invariant and disjoint from Ω̄. Moreover,

SnHV (x) ≤ ε, ∀ x ∈ KV (Ω̃, ε), ∀ n ≥ 0.

ii. If Ũ ⊃ Ω̃ is open and disjoint from Ω̄, then

sup
x∈KV (Ω̃,ε), n≥1

card{j = 0, 1, . . . , n− 1 : σj(x) 6∈ Ũ} < +∞.

(Every orbit of KV (Ω̃, ε) stays most of the time in Ũ .)

iii. If C̃(n) := sup
{ ∑
x∈KV (Ω̃,ε), σn(x)=y

exp[−Sn(E + PresΩ̃(E))(x)] : y ∈ Ω̃
}

for

every n ≥ 1, then lim supn→+∞
1
n ln C̃(n) ≤ 0.

Proof. For simplicity, denote K̃ = KV (Ω̃, ε).
Item i . Since h(x, y) is lower semi-continuous and Ω̃ is compact, we deduce

that K̃ is closed. From lemma 35.v , we have

hV (σ(x), y) ≤ HV (x) + hV (σ(x), y) = hV (x, y), ∀ x, y ∈ Σ+
G.
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In particular, hV (x, y) ≤ ε ⇒ hV (σ(x), y) ≤ ε, which shows that K̃ is invariant.
Iterating this last formula, we also obtain

SnHV (x) ≤ SnHV (x) + hV (σn(x), y) ≤ hV (x, y), ∀ x, y ∈ Σ+
G.

Hence, SnHV (x) is uniformly bounded on n ≥ 0 and x ∈ K̃.
Item ii . Suppose by contradiction there exist a sequence of points {xn}n≥1 of

K̃ such that
card{j = 0, 1, . . . , n : σj(xn) 6∈ Ũ} → +∞.

Let η0 > η1 > · · · be a sequence of positive real numbers decreasing to 0. Let
{Bi(η0)}i be a finite cover of K̃\Ũ by balls of radius η0. One of these balls contains
infinitely many points of {σj(xn) : j = 0, 1, . . . , n, n ≥ 1}. More precisely, there
exist a subsequence {xk0(n)}n≥1 (with k0 : N → N increasing) and a ball Bi0 of
radius η0 such that

card{j = 0, 1, . . . , k0(n) : σj(xk0(n)) ∈ Bi0} → +∞.

By covering Bi0 by balls {Bi(η1)}i of radius η1, one can extract a second subse-
quence {xk0◦k1(n)}n≥1 (with k1 : N→ N increasing) and choose one of these balls
Bi1 so that

card{j = 0, 1, . . . , k0 ◦ k1(n) : σj(xk0◦k1(n)) ∈ Bi1} → +∞.

We continue by induction. Let kj(n) = k0 ◦ . . . ◦ kj(n) and z be an accumulation
point of {Bij}j≥0. Let

0 = sj0 < sj1 < . . . < sj
rj(n)−1

< sj
rj(n)

= kj(n)

be the successive times {sjl }
rj(n)−1
l=1 such that σs

j
l (xkj(n)) ∈ Bij . By construction

rj(n)→ +∞. Notice that

rj(n)−1∑
l=0

S
(sjl+1−s

j
l )
HV ◦ σs

j
l (xkj(n)) = Skj(n)HV (xkj(n)) ≤ ε.

Therefore, for infinitely many indices j, one can consider zj := σs
j
l (xkj(n)) and

nj := sjl+1 − s
j
l for some l = 1, . . . , rj(n) − 1 in such a way that SnjHV (zj) → 0.

As zj , σ
nj (zj), z ∈ Bij and diam(Bij )→ 0, we have proved that z ∈ Ω(H) = Ω̄∪Ω̃.

Since z ∈ K̃ \ Ũ and K̃ \ Ũ is disjoint from Ω̄ and Ω̃, we obtain a contradiction.
Item iii . Let S(d) be the set of non-empty cylinders of Σ+

G of size d and
G(d) ⊂ S(d)× S(d) be the graph whose transitions are given by

[x0, . . . , xd−1]
G(d)−→ [x′1, . . . , x

′
d] ⇔ (x1, . . . , xd−1) = (x′1, . . . , x

′
d−1) and xd−1

G→ x′d.

Denote the oscillation of the Birkhoff sums of E by

oscn(E) := sup
γ,x,y
{SnE(|γx〉)− SnE(|γy〉) :

γ = v−n . . . v−2v−1, v−1
G(d)−→ x and v−1

G(d)−→ y},
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where |γx〉 is the concatenation of a finite G(d)-admissible path γ = v−n . . . v−2v−1

in S(d) and a point x in Σ+
G, and v−1

G(d)−→ x just denotes v−1
G(d)−→ [x0, . . . , xd−1].

Hence, if v−i = [v0
−i, . . . , v

d−1
−i ] ∈ S(d), i = 1, . . . , n, then

|γx〉 := (v0
−n, . . . , v

0
−1, x0, x1, . . .) ∈ Σ+

G.

More generally, if γ = v−n . . . v−1 and γ′ = v′−n′ . . . v
′
−1 are G(d)-admissible paths

of length n and n′, we say that γ can be concatenated to γ′ if v−1
G(d)−→ v′−n′ . Write

then γγ′ = v−n . . . v−1v
′
−n′ . . . v

′
−1.

As in the proof of lemma 41.i , we also consider S̃(d) the set of vertices
[x0, . . . , xd−1] ∈ S(d) such that [x0, . . . , xd−1] ∩ Ω̃ 6= ∅ and the subgraph G̃(d) =
G(d)∩ S̃(d)× S̃(d). We choose once for all a finite set Γ̃d of G̃(d)-admissible paths
which connects all vertices of S̃(d) to all vertices of S̃(d). Given y ∈ Ω̃, each
inverse branch of order n of y can be written as x = |γy〉, where γ = v−n . . . v−1 is

a G(d)-admissible path and v−1
G(d)−→ v0 := [y0, . . . , yd−1]. We partition γ into sub-

paths so that alternatively γ2i is a path in S̃(d) and γ2i+1 is a path in S(d) \ S̃(d).
More precisely, we consider γ = γr . . . γ1γ0 as concatenation of paths γi of length
ni (possibly n0 = 0 if v−1 6∈ S̃(d) and γ0 is the empty path) in such a way that

γ0 = v−(n0) . . . v−(1) is a path in S̃(d),

γ1 = v−(n0+n1) . . . v−(n0+1) is a path in S(d) \ S̃(d),

γ2 = v−(−n0+n1+n2) . . . v−(n0+n1+1) is a path in S̃(d), et cetera.

We associate with each such an inverse branch γ a new path γ̃ in S̃(d) of the
form γ̃ = γ̃r . . . γ̃0, given by the concatenation of paths γ̃i of length ñi such that
γ̃2i = γ2i and each sub-path γ2i+1 outside S̃(d) has been replaced by a sub-path
γ̃2i+1 = ṽ−(ñ0+...+ñ2i+1) . . . ṽ−(ñ0+...+ñ2i+1) in S̃(d) chosen in Γ̃d so that

ṽ−(ñ0+...+ñ2i+1)
G̃(d)−→ ṽ−(ñ0+...+ñ2i) and ṽ−(ñ0+...+ñ2i+1+1)

G̃(d)−→ ṽ−(ñ0+...+ñ2i+1).

Let ñ = ñ0 + ñ1 . . .+ ñr be the length of the path γ̃. Denote xi = |γiγi−1 . . . γ0y〉
and x̃i = |γ̃iγ̃i−1 . . . γ̃0y〉. We want to compare

SnE(|γy〉) =
r∑
i=0

SniE(xi) and SñE(|γ̃y〉) =
r∑
i=0

SñiE(x̃i).

Either γi corresponds to a path outside S̃(d), then

SniE(xi) ≥ SñiE(x̃i)− (ni + ñi)‖E‖∞,

or γi corresponds to a path inside S̃(d), then γ̃i = γi, x̃i and xi have the same
symbols during a period ni = ñi,

SniE(xi) ≥ SñiE(x̃i)− oscni(E).
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Let L̃d be the maximal length of paths in Γ̃d. Then

SnE(|γy〉) ≥ SñE(|γ̃y〉)−
∑
i odd

ni(1 + L̃d)‖E‖∞ −
∑
i even

supn oscn(E).

Since card{i : i even} ≤ card{i : i odd}+ 1 ≤ 2
∑

i odd ni, we obtain

SnE(|γy〉) ≥ SñE(|γ̃y〉)− [(1 + L̃d)‖E‖∞ + 2 supn oscn(E)]
∑
i odd

ni.

We assume from now on that the inverse branch x = |γy〉 belongs to K̃. From
item ii , we know that

∑
i odd ni ≤ Ñd is bounded by a constant independent of x

and n which only depends on the neighborhood of Ω̃, Ũd = ∪{C : C ∈ S̃(d)} for
d sufficiently large enough. Notice that∑

i odd

ñi ≤
∑
i odd

L̃d ≤
∑
i odd

niL̃d ≤ ÑdL̃d.

We obtain in particular ñ =
∑r

i=0 ñi ∈ [n− Ñd, n+ ÑdL̃d].

In the previous construction, we associate with an inverse branch x = |γy〉 ∈ K̃
of length n of y a new inverse branch x̃ = |γ̃y〉 of length ñ for the subshift of
finite type (Σ̃d, σ) as defined in lemma 41. Since the association x 7→ x̃ is not
injective, we want to bound from above the cardinal of each fiber. Hence, if γ̃ has
length ñ ≥ 3Ñd, fix a partition Ĩr ∪ . . . ∪ Ĩ0 of {−ñ, . . . ,−1} into r + 1 disjoint
consecutive intervals, with r ∈ {1, . . . , 3Ñd}, in order to determine a decomposition
γ̃ = γ̃r . . . γ̃0 such that γ̃i has length card(Ĩi). The possible γ = γr . . . γ0 associated
with γ̃ = γ̃r . . . γ̃0 must have length n ∈ [ñ − ÑdL̃d, ñ + Ñd] and each γ2i+1 has
length at most Ñd. The cardinal of each fiber is thus bound from above by

[Ñd(L̃d + 1) + 1]
( Ñd∑
k=1

(card(S))k
)Ñd 3Ñd∑

r=1

(
ñ

r

)
≤ C̃ ′d n3Ñd ,

for some constant C̃ ′d depending only on d. Let

C̃ ′′d := C̃ ′d exp[((1 + L̃d)‖E‖∞ + 2 supn oscn(E))Ñd].

Then

∑
x∈K̃, σn(x)=y

exp[−SnE(x)] ≤ C̃ ′′d n3Ñd

n+ÑdL̃d∑
ñ=n−Ñd

∑
x̃∈Σ̃d, σñ(x̃)=y

exp[−SñE(x̃)].

Denote C̃ ′′′d := C̃ ′′d [Ñd(L̃d+1)+1]C̃d exp[ÑdL̃dPresΣ̃d
(E)], where C̃d is the positive

constant given by lemma 41.ii . Therefore, we get∑
x∈K̃, σn(x)=y

exp[−SnE(x)] ≤ C̃ ′′′d n3Ñd exp[nPresΣ̃d
(E)].
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Since PresΣ̃d
(E)→ PresΩ̃(E), we finally obtain

lim sup
n→+∞

1

n
ln
(

sup
{ ∑
x∈K̃, σn(x)=y

exp[−Sn(E + PresΩ̃(E))(x)] : y ∈ Ω̃
})
≤ 0.

In order to prove theorem 16, we summarize in the following proposition the
main technical result, which consists in relating the pressure of disjoint parts of the
minimizing non-wandering set Ω(H) and the levels of the Peierls barrier h(x, y)
between these parts.

Proposition 43. Let E,H : Σ+
G → R be Hölder observables. Assume Ω(H)

can be written as a disjoint union Ω(H) = Ω̄ ∪ Ω̃ of two closed invariant sets.
Assume Ω̃ is irreducible. Let V∞ be any accumulation point (in the C0 topology)
of {VE+βH}β→+∞ where ΦE+βH = exp(−VE+βH) is the right eigenfunction of the
Ruelle operator LE+βH normalized by

∫
ΦE+βH dνE+βH = 1. Then

PresΩ̄(E) > PresΩ̃(E) =⇒ min
x∈Ω̄, y∈Ω̃

h(x, y)− V∞(y) + V∞(x) = 0

Proof. By contradiction, we suppose that

min
x∈Ω̄, y∈Ω̃

hV∞(x, y) > ε > 0.

Let K̃ = KV (Ω̃, ε) as in notation 38. We consider ΦE+βH as an eigenfunction of
LnE+βH for some n = n(β) that will be chosen later. Given y ∈ Ω̃, we thus have

1 =
∑

x∈Σ+
G, σ

n(x)=y

exp[−βSn(H − H̄ − VE+βH ◦ σ + VE+βH)(x)]

exp[−SnE(x)] exp[−n(Pres(E + βH) + βH̄)].

We split this sum into two parts

I ′ =
∑

x∈Σ+
G\K̃, σn(x)=y

. . . , I ′′ =
∑

x∈K̃, σn(x)=y

. . . .

We choose β large enough so that ‖VE+βH − V∞‖∞ < 1
4η, with η < ε to be

determined. From lemma 35.vi , we have SnHV∞(x) = hV∞(x, y), which yields

Sn(H − H̄ − VE+βH ◦ σ + VE+βH)(x) ≥ hV∞(x, y)− 2‖VE+βH − V∞‖∞.

We recall from lemma 34 the following inequalities

PresΩ(H)(E) ≤ Pres(E + βH) + βH̄ ≤ Pres(E).

We also recall how to compute the pressure using a counting argument on inverse
branches (C = exp[2‖VE‖∞])

C−1 exp[nPres(E)] ≤
∑

x∈Σ+
G, σ

n(x)=y

exp[−SnE(x)] ≤ C exp[nPres(E)].
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Therefore, the first part can be bounded from above in the following way

I ′ ≤
∑

x∈Σ+
G\K̃, σn(x)=y

exp[−β ε
2

] exp[−SnE(x)] exp[−nPresΩ(H)(E)],

≤ C exp[−β ε
2

] exp[n(Pres(E)− PresΩ(H)(E))].

The second part is bounded from above using the estimate of lemma 42.iii

I ′′ ≤
∑

x∈K̃, σn(x)=y

exp[β
η

2
] exp[−SnE(x)] exp[−nPresΩ(H)(E)],

≤ C̃(n) exp[β
η

2
] exp[n(PresΩ̃(E)− PresΩ̄(E))].

We now choose η and n = n(β) so that

−β ε
2

+ n(Pres(E)− PresΩ(H)(E)) < −nη
2
,

β
η

2
− n(PresΩ̄(E)− PresΩ̃(E)) < −nη

2
,

that is, η/2 < PresΩ̄(E)− PresΩ̃(E) and

η/2

PresΩ̄(E)− PresΩ̃(E)− η/2
<
n

β
<

ε/2

Pres(E)− PresΩ(H)(E) + η/2
.

We thus have obtained, for a subsequence n→ +∞,

1 = I ′ + I ′′ ≤ (C + C̃(n)) exp[−nη
2

]→ 0,

which is clearly a contradiction.

Proof of Theorem 16. As before, we fix an accumulation point V∞ of the se-
quence {VE+βH}β→+∞. Let Ω(H) = Ω0 ∪ . . .Ωr be a disjoint union of irreducible
components. By hypothesis, PresΩ0(E) > PresΩ1∪...Ωr(E). For j = 1, . . . , r, de-
note Ω̄ = ∪i 6=jΩi and Ω̃ = Ωj . Since PresΩ̄(E) > PresΩ̃(E), proposition 43
implies h̄V∞(i, j) = 0 for some i 6= j. Lemma 37 shows that h̄V∞(0, j) = 0 for all
j = 1, . . . , r. Since V∞ is calibrated, lemma 36.iii implies finally

h(x0, y) = V∞(y)− V∞(x0), ∀ x0 ∈ Ω0, ∀ y ∈ Σ+
G.

If x0 ∈ Ω0 is fixed, the sequence {VE+βH(·) − VE+βH(x0)}β→+∞ has a unique
accumulation point h(x0, ·) and therefore converges.

5 Proofs of results stated in section 3

We study in this section the algorithmic aspects of singular perturbations of Perron
matrices of Puiseux type. We start with a weighted irreducible graph (G,Mε) of
(general) Puiseux type (recall definition 24) and we write formally Mε ∼ Aεa.
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The first step of the algorithm consists in conjugating Mε by a diagonal matrix
diag[εv(x) : x ∈ S] so that all entries in S × S \ G∗min are negligible with respect
to εā. The construction of the corrector v(x) is performed in two steps: v(x) is a
calibrated corrector in the first step and separating in the second one. A Peierls
barrier ha(x, y) between two vertices is introduced as in definition 14.

Definition 44. Let G ⊂ S ×S be an irreducible graph and a : G→ R be a weight
on each edge. The Peierls barrier (associated with a) between two vertices x, y ∈ S
is defined by

ha(x, y) := min
{ n−1∑
k=0

(a(xk, xk+1)− ā) : n ≥ 1,

(x0, . . . , xn) is a G-admissible path, x0 = x and xn = y
}
.

Notice that it is enough to minimize on simple path: thanks to the choice of
the constant ā, each cycle (x0, . . . , xn) satisfies

∑n−1
k=0(a(xk, xk+1) − ā) ≥ 0 and

may be eliminated from the sum.

We summarize several properties of ha(x, y). Item vi of the following lemma
gives the definition of the irreducible components of Gmin and proves lemma 21.

Lemma 45. Suppose (G,Mε) is an irreducible graph of exact Puiseux type, with
Mε ∼ Aεa, and ha(x, y) is the Peierls barrier associated with a : G→ R. Then

i. ∀ (x0, . . . , xn) G-admissible path, ha(x0, xn) ≤
∑n−1

k=0(a(xk, xk+1)− ā).

ii. ∀ x, y, z ∈ S, ha(x, z) ≤ ha(x, y) + ha(y, z).

iii. ∀ x ∈ S, ha(x, x) ≥ 0.

iv. ∀ x ∈ S, ha(x, x) = 0⇔ x ∈ Smin.

v. A cycle has a support in Gmin if, and only if, it is minimizing.

vi. Gmin is semi-irreducible and its irreducible components are given by the
equivalence classes of the relation

∀ x, y ∈ Smin, x ∼a y ⇔ ha(x, y) + ha(y, x) = 0

⇔ x and y belong to the same minimizing cycle.

Proof. Items i , ii , iii and iv are obvious from the definition of ha.

Item v . By the definition of Gmin, the support of all minimizing cycle is
included in Gmin. Conversely, let (x0, . . . , xn) be a cycle of Gmin. Each (xk, xk+1)
is the initial segment of a minimizing cycle (zk0 , . . . , z

k
pk

) with pk ≥ 2, zk0 = xk and

zk1 = xk+1. The union of the supports of these minimizing cycles can be written
as a union of the supports of two (a priori not minimizing) cycles (x0, x1, . . . , xn)
and

(y0, . . . , yqn) = (zn−1
1 , . . . , zn−1

pn−1
, zn−2

1 , . . . , zn−2
pn−2

, . . . , z0
1 , . . . , z

0
p0)
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of length qn = p0 + . . . pn−1 − n. Since

0 =
n−1∑
k=0

pk−1∑
i=0

(a(zki , z
k
i+1)− ā) =

n−1∑
k=0

(a(xk, xk+1)− ā) +

qn−1∑
k=0

(a(yk, yk+1)− ā),

both cycles (x0, . . . , xn) and (y0, . . . , yqn) are indeed minimizing.

Item vi . Consider the relation on Smin: x ∼a y if, and only if, x and y belong
the support of the same minimizing cycle of length ≥ 1. Since the union of two
minimizing cycles with a common point is again a minimizing cycle, the previous
relation is an equivalence relation. If x ∼a y, then there exists a minimizing cycle
(x0, . . . , xn) such that x = x0 and y = xi for some 0 < i < n. Therefore,

0 ≤ ha(x, x) ≤ ha(x, y)+ha(y, x) ≤
i−1∑
k=0

(a(xk, xk+1)−ā)+

n−1∑
k=i

(a(xk, xk+1)−ā) = 0,

and ha(x, y) + ha(y, x) = 0. Conversely, suppose ha(x, y) + ha(y, x) = 0. So each
minimum ha(x, y) or ha(y, x) is reached by a G-admissible path (x0, . . . , xi) or
(xi, . . . , xn), with x0 = x, xi = y and xn = y. Then (x0, . . . , xn) is a minimizing
cycle containing both x and y.

In the framework of a dynamical system where the weighted graph (G,Mε)
is given by Mε(x, y) = exp(E(x, y))εH(x,y)1G(x, y) for two finite-range potentials
E,H : Σ+

G → R, we show that the two notions of minimizing non-wandering set
Ω(H) and minimizing subgraphs coincide. Let a(x, y) = H(x, y) if (x, y) ∈ G and
a(x, y) = +∞ otherwise.

Proof of Lemma 22. Item i . Let x = (x0, x1, . . .) ∈ Σ+
G. Since G is irreducible,

there is a G-admissible path joining xn to x0, (xn0 , x
n
1 , . . . , x

n
pn) of length pn at

most the cardinal of S. Then (y0, . . . , yn+pn) = (x0, . . . , xn−1, x
n
0 , . . . , x

n
pn) is a

cycle and

H̄ = inf
x∈Σ+

G

lim inf
n→+∞

1

n

n−1∑
k=0

H ◦ σk(x) = inf
x∈Σ+

G

lim inf
n→+∞

1

n+ pn

n+pn−1∑
k=0

a(yk, yk+1) ≥ ā.

The converse H̄ ≤ ā is obtained by taking a periodic point x = (x0, . . . , xn)∞ with
(x0, . . . , xn) a minimizing cycle.

Item ii . Let h(x, y) = limε→0 lim infn→+∞ S
ε
n(x, y) be the Peierls barrier intro-

duced in definition 14. We first show that h(x, y) ≥ ha(x0, y0) for any x, y ∈ Σ+
G.

Indeed, for ε sufficiently small, for any z = (z0, z1, . . .) ∈ Σ+
G satisfying d(x, z) < ε

and d(σn(z), y) < ε, we have z0 = x and zn = y0 and therefore Sεn(x, y) ≥ ha(x, y).
Let x = (x0, x1, . . .) ∈ Ω(H). Since 0 = h(x, x) ≥ ha(x0, x0) ≥ 0, x0 ∈ Smin.
Hence σn(x) ∈ Ω(H) implies xn ∈ Smin for any n. Moreover,

0 = h(x, x) = (H − H̄)(x) + h(σ(x), x)

≥ (a(x0, x1)− ā) + ha(x1, x0) ≥ ha(x0, x1) + ha(x1, x0) ≥ 0.
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In particular, (a(x0, x1) − ā) + ha(x1, x0) = 0. By choosing a path (y1, . . . , yn)
joining x1 to x0 which realizes the minimum in ha(x1, x0), we obtain a minimizing
cycle (x0, x1, y2, . . . , yn). We have just proved (x0, x1) ∈ Gmin and more generally
(xk, xk+1) ∈ Gmin. Thus, Ω(H) ⊂ Σ+

Gmin
. Conversely, suppose x ∈ Σ+

Gmin
. Let

n ≥ 1 and k = 0, . . . , n− 1. Then any (xk, xk+1) is the beginning of a minimizing
cycle (xk0, x

k
1, . . . , x

k
pk

) with pk ≥ 2. Consider zn the periodic point of period
qn = p0 + . . .+ pn−1 + n given by

zn = (x0, . . . , xn−1, x
n−1
1 , . . . , xn−1

pn−1−1, x
n−2
1 , . . . , xn−2

pn−2−1, . . . , x
0
1, . . . , x

0
p0)∞.

Then d(zn, x) → 0 when n → +∞ and
∑qn−1

k=0 (a(zk, zk+1) − ā) = 0. We have
proved that x ∈ Ω(H).

Item iii . We first show that, if x = (x0, x1, . . .), y = (y0, y1, . . .) ∈ Ω(H), then
x ∼ y if, and only if, x0 ∼a y0. Indeed, on the one hand,

x ∼ y ⇔ h(x, y) + h(y, x) = 0⇒ ha(x0, y0) + ha(y0, x0) = 0⇔ x0 ∼a y0.

On the other hand, suppose x0 ∼a y0. Since (xk, xk+1), (yk, yk+1) ∈ Gmin for all
k = 0, . . . , p−1, by transitivity we have that xp ∼a y0 and yp ∼a x0. For infinitely
many m and n, one can find a Gmin-cycle of length q = 2p + m + n containing
both (x0, . . . , xp−1) and (y0, . . . , yp−1) of the following form

(x0, . . . , xp−1, zp, . . . , zp+m−1, y0, . . . , yp−1, z2p+m, . . . , z2p+m+n).

Let z ∈ Σ+
Gmin

be the corresponding periodic point. For any ε > 0, if p is large
enough, for infinitely many m and n, one has

d(z, x) < ε, d(σp+m(z), y) < ε, d(σ2p+m+n(z), x) < ε,

Sεp+m(x, y) + Sεp+n(y, x) ≤
2p+m+n−1∑

k=0

(H − H̄) ◦ σk(z) = 0.

By taking lim inf when m→∞ and n→∞ first and lim when ε→ 0, one obtains
h(x, y) + h(y, x) = 0, that is, x ∼ y. Since Gmin is equal to the disjoint union of
irreducible components Gi ⊂ Si× Si with no transition from Si to Sj when i 6= j,
Ω(H) = Σ+

Gmin
is equal to the disjoint union of Ωi(H) = Σ+

Gi
. The equivalence

between x ∼ y and x0 ∼a y0 shows that Ω1(H), . . . ,Ωd(H) are the irreducible
components of Ω(H).

Item iv . The pressure of E restricted to Ω(H) is equal to the maximum
of the pressure of E restricted on each Ωi(H). It is well known (see, for in-
stance, [27]) that the two notions of spectral radius αi of the matrix Aiimin =
[eE(x,y)1Gi(x, y)]x,y∈Si and the pressure of E restricted to Σ+

Gi
coincide: αi =

exp[PresΩi(H)(E)] and ᾱ = max1≤i≤d αi = exp[PresΩ(H)(E)].

The first step of the algorithm consists in finding a normal form for Mε. This
step is done using a diagonal matrix diag[εv(x) : x ∈ S] where v : S → R is a
separating corrector. We prove the existence of such a corrector.
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Proof of Lemma 28. Given z∗ ∈ Smin, consider

u(x) := ha(z
∗, x), ∀ x ∈ S,

where ha is the Peierls barrier associated with a introduced in definition 44. Items i
and ii of lemma 45 and the fact that the Peierls barrier between two vertices
is realized by a G-admissible path easily show that u is a backward calibrated
corrector. Let G1 ⊂ S1 × S1, . . . , Gd ⊂ Sd × Sd be the irreducible components of
the minimizing subgraph Gmin ⊂ Smin × Smin. Denote S0 = S \ (S1 ∪ . . . ∪ Sd).
We consider then

ã(x, y) := a(x, y)− u(y) + u(x)− ā ≥ 0, ∀ x, y ∈ S.

Notice that the mean of ã on any minimizing cycle is zero and therefore ã(x, y) = 0
whenever (x, y) ∈ Gmin. We introduce a new directed graph. The set of vertices S̃
is made of classes of two kinds: a class [x] reduced to one point for all x ∈ S0 and
d classes [G1] . . . [Gd] where all vertices in each Gi are identified into one vertex.
For any x ∈ S, we note by [x] the class containing x. Let G̃ ⊂ S̃× S̃ be the graph
whose transitions are defined as follows

[x]
G̃→ [y] ⇐⇒ [x] 6= [y] and min{ã(x′, y′) : x′ ∈ [x], y′ ∈ [y]} = 0.

The main observation is that there is no cycle in G̃ and we can define a decreasing
“height” function η : S → [0, ε] as small as we want so that η is constant on each
class [x] and

[x]
G̃→ [y] ⇐⇒ η(x) > η(y), ∀ x, y ∈ S.

We claim that, for ε small enough,

v(x) := u(x) + η(x), ∀ x ∈ S

is a separating corrector for a(x, y) or equivalently η(x) is a separating corrector
for ã(x, y). Indeed, on the one hand, if (x, y) ∈ Gmin, x and y belong to the same
irreducible component of G, η(x) = η(y) and ã(x, y) = 0 = η(y) − η(x). On the
other hand, if (x, y) ∈ G \ Gmin, we discuss two cases. In the first case, ([x], [y])
is not an edge of G̃. This implies ã(x, y) > 0 since (x, y) /∈ Gmin. We choose then
ε > 0 such that ã(x, y) > η(y) − η(x). In the second case, ([x], [y]) is an edge of
G̃. Since η is decreasing along the edges, ã(x, y) ≥ 0 > η(y)− η(x) independently
of ε. As S is finite, the number of constraints on ε is finite.

In order to prove proposition 30, we recall some notions of entropy and pressure
for graphs weighted by Perron matrices.

Definition 46. Let G ⊂ S × S be a directed graph weighted by a Perron matrix
[M(x, y)]x,y∈S. We call transshipment any a probability measure µ(x, y) on G
such that π(y) :=

∑
x∈S µ(x, y) =

∑
x∈S µ(y, x), for all y ∈ S. The entropy of a

transshipment µ is given by

Ent(µ) :=
∑

(x,y)∈G

−µ(x, y) ln
µ(x, y)

π(x)
.
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We say the transshipment µ is supported by M if M(x, y) = 0 implies µ(x, y) = 0.
In this case, the pressure of M with respect to µ is given by

Pres(M,µ) := Ent(µ) +
∑

(x,y)∈G

µ(x, y) lnM(x, y).

We recall that, if G is irreducible and λ = ρspec(M), then Pres(M,µ) ≤ lnλ
for any transshipment µ supported by M , with equality if, and only if, µ(x, y) =
L(x)M(x, y)R(y)/λ, where [L(x)]x∈S and [R(x)]x∈S are the left and right eigen-
vectors of M for the eigenvalue λ.

We shall also use a known result on the perturbation of the spectrum of ma-
trices. See Kato’s monograph [21] for more elaborate statements.

Lemma 47. For any matrix M ∈ Mat(n,C), for any ε > 0, there exists η > 0
such that, if H ∈ Mat(n,C) and ‖H‖ < η, then spec(M + H) ⊂ spec(M) + Bε,
where Bε denotes the disk of radius ε centered at 0. In particular, M 7→ ρspec(M)
is continuous on Mat(n,C).

Proof of proposition 30. Notice that it is enough to assume Mε is written in a
normal form

Mε = M̂ +Nε, M̂ =

[
Ā 0
0 D

]
, Ā = diag[Ā11, . . . , Ārr], ᾱ = ρspec(Ā

ii),

where Āii is nonnegative irreducible, D is nonnegative with ρspec(D) < ᾱ, and
Nε = o(1). We also assume Mε is nonnegative by changing if necessary Mε to
Mε − ηεId where ηε = 0 ∧min{Mε(x, x) : x ∈ S}. Notice that Lε and Rε do not
change and that ηε = o(1).

Let thus Ĝ be the subgraph of G defined by (x, y) ∈ Ĝ ⇔ Ā(x, y) > 0 or

D(x, y) > 0. Let M̂ε(x, y) = Mε(x, y) if (x, y) ∈ Ĝ, M̂ε(x, y) = M
1/2
ε (x, y) if

(x, y) ∈ G \ Ĝ. On the one hand, we remark that

lnλε = Pres(Mε, µε) = Pres(M̂ε, µε) +
∑

(x,y)∈G\Ĝ

µε(x, y) lnM1/2
ε (x, y) ≤

≤ ln ρspec(M̂ε) +
∑

(x,y)∈G\Ĝ

µε(x, y) lnM1/2
ε (x, y) ≤ ln ρspec(M̂ε).

Consider now Ḡ1 (an irreducible component of G∗min of dominant spectral coeffi-
cient ᾱ) weighted by M̂11

ε (x, y) = Mε(x, y)1Ḡ1
(x, y). Let µ̂1

ε be the transshipment
defined on Ḡ1 by

µ̂1
ε (x, y) = L̂1

ε (x)M̂11
ε (x, y)R̂1

ε (y)/ρspec(M̂
11
ε ),

and extended by 0 on G \ Ḡ1. Then, on the other hand, one has

lnλε ≥ Pres(M̂11
ε , µ̂

1
ε ) = ln ρspec(M̂

11
ε ).
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Lemma 47 tells us that ρspec(M̂ε) ∼ ρspec(M̂
11
ε ) ∼ ᾱ. Hence, the two previous

inequalities show that λε ∼ ᾱ (item i), as well as µε(x, y)→ 0 whenever (x, y) 6∈ Ĝ.
They also show that any accumulation point µ̄ of (µε)ε>0 has maximal pressure

ln ᾱ = lim
ε→0

lnλε ≤ lim
ε→0

[
Ent(µε) +

∑
(x,y)∈Ĝ

µε(x, y) lnMε(x, y)
]

= Pres(M̂, µ̄) ≤ ln ᾱ.

(The first inequality comes from the fact that lnMε(x, y) < 0 if (x, y) ∈ G \ Ĝ.
Notice also that µ̄ has support on Ĝ.) For Ḡ the dominant subgraph, let µ̄Ḡ and
µ̄Ĝ\Ḡ be the induced transshipments on Ḡ and Ĝ \ Ḡ, respectively. Since

ln ᾱ = Pres(M̂, µ̄) = µ̄(Ḡ)Pres(Ā, µ̄Ḡ) + µ̄(Ĝ \ Ḡ)Pres(D, µ̄Ĝ\Ḡ),

we obtain µ̄(Ĝ \ Ḡ) = 0, that is, µε(x, y)→ 0 whenever (x, y) 6∈ Ḡ (item ii).
Consider π̄i(x) =

∑
y∈S̄i µ̄(x, y)/µ̄(Ḡi) for any x ∈ S̄i. Let µ̄i be the induced

transshipment on Ḡi, µ̄i(x, y) = µ̄(x, y)/µ̄(Ḡi) whenever µ̄(Ḡi) 6= 0. The main
remark is the following coboundary property∑

x∈S̄i

µ̄i(x, y) =
∑
x∈S̄i

µ̄i(y, x), ∀ y ∈ S̄i ⇒
∑

(x,y)∈S̄i×S̄i

µ̄i(x, y) ln
( R̄i(y)

R̄i(x)

)
= 0.

Then ln ᾱ =
∑r

i=1 µ̄(Ḡi)Pres(Āii, µ̄i) and

Pres(Āii, µ̄i) =
∑
x∈S̄i

π̄i(x)6=0

π̄i(x)
∑
y∈S̄i

µ̄i(x, y)

π̄i(x)
ln
(Āii(x, y)R̄i(y)/R̄i(x)

µ̄i(x, y)/π̄i(x)

)
.

Each sum over y ∈ S̄i is bounded from above by

ln
(∑
y∈S̄i

Āii(x, y)R̄i(y)/R̄i(x)
)

= ln ᾱ,

with equality if, and only if, µ̄i(x, y)/π̄i(x) = Āii(x, y)R̄i(y)/(ᾱR̄i(x)), ∀ y ∈ S̄i.
We thus have proved (whether or not π̄i(x) = 0)

π̄i(x)

R̄i(x)
Āii(x, y) = ᾱ

µ̄i(x, y)

R̄i(y)
, ∀ x, y ∈ S̄i.

By summing over x, using the fact that µ̄i is a transshipment, we obtain that
[π̄i(x)/R̄i(x)]x∈S̄i is a left eigenvector of Āii for the eigenvalue ᾱ. In particular, if
π̄i(x) 6= 0 for some x ∈ S̄i, π̄i(y) 6= 0 for all y ∈ S̄i and

π̄i(y) = L̄i(y)R̄i(y), µ̄i(x, y) = L̄i(x)Āii(x, y)R̄i(y)/ᾱ.

(Item iii is proved.)

Before proving proposition 32, we give some complements to the theory of
series of equivalences.



38 Eduardo Garibaldi and Philippe Thieullen

Lemma 48. Let (An)n≥0 be a sequence of positive numbers and (An(ε))n≥0 be
a sequence of functions. We assume that An = O(δn) for some δ ∈ (0, 1) and(
An(ε)/An

)1/n → 1 as ε→ 0 uniformly in n ≥ 0. Then∑
n≥0

An(ε) ∼
∑
n≥0

An.

Proof. Denote hn(ε) :=
(
An(ε)/An

)1/n− 1. Let η ∈ (0, 1) be small enough so that
δ(1 + η) < 1. Fix a constant C > 0 such that An ≤ Cδn, for all n ≥ 0. Choose a
positive integer N large enough so that

(1− η)
∑
n≥N

An < η
∑
n≥0

An and C
∑
n≥N

δn(1 + η)n < η
∑
n≥0

An.

For ε small enough, one has (1− η)
∑N−1

n=0 An ≤
∑N−1

n=0 An(ε) ≤ (1 + η)
∑N−1

n=0 An,
as well as hn(ε) < η uniformly in n, which in particular yields∑

n≥N
An(ε) <

∑
n≥N

An(1 + η)n ≤ C
∑
n≥N

δn(1 + η)n.

Considering all these inequalities, for all ε small enough, we obtain that

(1− 2η)
∑
n≥0

An <
∑
n≥0

An(ε) < (1 + 2η)
∑
n≥0

An.

In the following lemma, we extend the notion of weighted graph (G,Mε) of
general Puiseux type to the case in which G is not irreducible and we show that
the resolvent is of exact Puiseux type.

Lemma 49. Let (G,Mε) be a (not necessarily irreducible) weighted graph. Assume
Mε = D+Nε, where D is nonnegative, ρspec(D) < 1, Nε = o(1). Suppose (G,Mε)
is of general Puiseux type in the following sense:

Mε(x, y) =


0 if (x, y) 6∈ G,
Aε(x, y)εa(x,y) if (x, y) ∈ G and x 6= y,

Aε(x, y) if (x, x) ∈ G, x = y and D(x, x) > 0,

o(1) if (x, x) ∈ G, x = y and D(x, x) = 0,

where Aε(x, y) ∼ A(x, y) > 0 and a(x, y) ≥ 0 in the second and third cases, and
by convention A(x, y) = 0 and a(x, y) = +∞ in the other cases. Let P(x, y) be the
set of G-admissible paths x = (x0, . . . , xn) of length n ≥ 1 such that x0 = x and
xn = y. Consider the directed graph

G′ =
{

(x, x) : x ∈ S
}
∪
{

(x, y) ∈ S × S : P(x, y) 6= ∅
}

and define M ′ε := (Id−Mε)
−1. Then (G′,M ′ε) is a weighted graph of exact Puiseux

type. More precisely,

M ′ε(x, y) = 0⇔ (x, y) 6∈ G′ and M ′ε(x, y) ∼ A′(x, y)εa
′(x,y) ⇔ (x, y) ∈ G′,
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with a′(x, y) =

{
0 if x = y

min
{
a(x) : x ∈ P(x, y)

}
if x 6= y

, ∀ (x, y) ∈ G′,

and A′(x, y) = 1(x=y) +
∑

x∈P(x,y) : a(x)=a′(x,y)

Π
n(x)−1
i=0 A(xi, xi+1), ∀ (x, y) ∈ G′,

where n(x) is the length of the path x ∈ P(x, y) and a(x) :=
∑n(x)−1

i=0 a(xi, xi+1).
(By convention A′(x, y) = 0 and a′(x, y) = +∞ for all (x, y) 6∈ G′.)

Proof. Part 1. We first assume that (G,Mε) is of exact Puiseux type,

Mε(x, y) =

{
0 ∀ (x, y) 6∈ G,
Aε(x, y)εa(x,y) ∀ (x, y) ∈ G,

where Aε(x, y) ∼ A(x, y) > 0 and a(x, y) ≥ 0 if (x, y) ∈ G, A(x, y) = 0 and
a(x, y) = +∞ if (x, y) 6∈ G. Note that D(x, y) > 0 if, and only if, a(x, y) = 0.
Since ρspec(Mε) converges to ρspec(D) < 1, (Id−Mε) is invertible and

M ′ε(x, y) =
∑
n≥0

Mn
ε (x, y) = 1(x=y) +

∑
x∈P(x,y)

Π
n(x)−1
i=0 Mε(xi, xi+1).

Since Mε is a nonnegative matrix, M ′ε is nonnegative too. Moreover,

M ′ε(x, y) = 0 ⇐⇒ x 6= y and P(x, y) = ∅ ⇐⇒ (x, y) 6∈ G′.

For (x, y) ∈ G′, let P(x, y, k) be the subset of paths x ∈ P(x, y) such that

k = card{i = 0, . . . , n(x)− 1 : a(xi, xi+1) > 0}.

If x ∈ P(x, y, k) and k ≥ 1, then a(x) takes a finite number of distinct values ak,l,

0 < kamin ≤ ak,1 < ak,2 < · · · < ak,pk ≤ kamax,

with amin := min{a(x, y) : a(x, y) > 0} and amax := max{a(x, y) : a(x, y) < +∞}.
Notice that the set of exponents {ak,l : k ≥ 1, 1 ≤ l ≤ pk} is finite on each
bounded interval. Let P(x, y, k, l) be the subset of paths x ∈ P(x, y, k) such that
a(x) = ak,l. By developing all products Mn

ε , one obtains

M ′ε(x, y) = 1(x=y) +
∑

x∈P(x,y,0)

Π
n(x)−1
i=0 Aε(xi, xi+1)

+
∑
k≥1

pk∑
l=1

( ∑
x∈P(x,y,k,l)

Π
n(x)−1
i=0 Aε(xi, xi+1)

)
εak,l .

Let P(x, y, 0, 0) := P(x, y, 0) by convention and Pn(x, y, k, l) be the set of paths
x ∈ P(x, y, k, l) of length n(x) = n. Denote

An,k,l(ε) :=
∑

x∈Pn(x,y,k,l)

Πn−1
i=0 Aε(xi, xi+1), An,k,l :=

∑
x∈Pn(x,y,k,l)

Πn−1
i=0 A(xi, xi+1).
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We use lemma 48 to show that
∑

n≥1An,k,l(ε) ∼
∑

n≥1An,k,l (one only considers
terms (n, k, l) such that Pn(x, y, k, l) 6= ∅). Since ρspec(D) < 1, there exists a
positive matrix [D̃(x, y)]x,y∈S such that

ρspec(D̃) < 1 and D̃(x, y) > D(x, y), ∀ x, y ∈ S.

Since A(x, y) = D(x, y) whenever D(x, y) > 0, one obtains

An,k,l ≤
∑

x∈Pn(x,y,k,l)

Πn−1
i=0 D̃(xi, xi+1)

(maxA

min D̃

)k
≤ D̃n(x, y)

(maxA

min D̃

)k
.

Choose δ̃ such that ρspec(D̃) < δ̃ < 1. Then D̃n(x, y) = O(δ̃n), and in particular
An,k,l = O(δ̃n). Given η ∈ (0, 1), for ε small enough,

(1− η)A(x, y) < Aε(x, y) < (1 + η)A(x, y), ∀ (x, y) ∈ G.

For all non empty set Pn(x, y, k, l),

(1− η)n <

∑
x∈Pn(x,y,k,l) Πn−1

i=0 Aε(xi, xi+1)∑
x∈Pn(x,y,k,l) Πn−1

i=0 A(xi, xi+1)
< (1 + η)n.

We have thus obtained
(
An,k,l(ε)/An,k,l

)1/n → 1 uniformly in n.
We now show that the rest of the series

RK(ε) :=
∑
k≥K

pk∑
l=1

(∑
n≥1

An,k,l(ε)
)
εak,l

is negligible with respect to the first non zero term (
∑

n≥1An,k,l)ε
ak,l . More pre-

cisely, we show that, for any a > 0, there exists K ≥ 1 such that RK(ε) = o(εa) as
ε→ 0. Indeed, let d be the dimension of the matrix Mε, then pk ≤ d2k and

RK(ε) ≤
∑
k≥K

(∑
n≥1

‖D̃n‖
)(
d2 maxA

min D̃
εamin

)k
≤ CKεKamin = o(εa)

as soon as a < Kamin.
Therefore, M ′ε(x, y) ∼ A′(x, y)εa

′(x,y) for all (x, y) ∈ G′.

Part 2. We now assume that (G,Mε) is of general Puiseux type as described in
the statement. We first notice that M ′ε admits a different expression

M ′ε =
1

2

(
Id− Id +Mε

2

)−1
where

Id +Mε

2
=

Id +D

2
+
Nε

2
,

with ρspec(
1
2(Id + D)) < 1 and 1

2Nε = o(1). Since (G, 1
2(Id + Mε)) is of exact

Puiseux type, one obtains from part 1 that (G′,M ′ε) is of exact Puiseux type.
We now want to determine a′ and A′ in this case. Let ∆ε be the diagonal

matrix built from the principal diagonal of Nε. Hence,

Nε = ∆ε + Ñε, Ñε(x, x) = 0, ∀ x ∈ S.
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Let M̃ε := D + Ñε, G̃ := G \ {(x, x) : D(x, x) = 0}. Then (G̃, M̃ε) is of exact
Puiseux type. Moreover,

M ′ε = (Id− M̃ε −∆ε)
−1 = (Id− M̃ ′ε∆ε)

−1M̃ ′ε =
∑
n≥0

(M̃ ′ε∆ε)
nM̃ ′ε,

where M̃ ′ε := (Id−M̃ε)
−1. From part 1, we know that (G̃′, M̃ ′ε) is of exact Puiseux

type. Let a′ and A′ be defined as in part 1 by using (G̃, M̃ε). Then

M̃ ′ε(x, y) = A′ε(x, y)εa
′(x,y), ∀ x, y ∈ S,

with A′ε(x, y) ∼ A′(x, y) > 0 if (x, y) ∈ G̃′ and A′ε(x, y) = 0 if (x, y) 6∈ G̃′. Since G
and G̃ have the same off-diagonal entries, G′ = G̃′. We show by induction there
exist matrices (Bn,ε)n≥1 such that{

(M̃ ′ε∆ε)
nM̃ ′ε(x, y) = Bn,ε(x, y)εa

′(x,y) ∀ (x, y) ∈ G′

(M̃ ′ε∆ε)
nM̃ ′ε(x, y) = 0 = Bn,ε(x, y) ∀ (x, y) 6∈ G′

and

lim
ε→0

(
Bn,ε(x, y)

)1/n
= 0, uniformly in n ≥ 1.

Since (M̃ ′ε∆ε)
n+1M̃ ′ε = (M̃ ′ε∆ε)

nM̃ ′ε∆εM̃
′
ε, for all x, y ∈ S one has

(M̃ ′ε∆ε)
n+1M̃ ′ε(x, y) =

∑
z∈S

(M̃ ′ε∆ε)
nM̃ ′ε(x, z)∆ε(z, z)M̃

′
ε(z, y)

=
∑
z∈S

Bn,ε(x, z)∆ε(z, z)A
′
ε(z, y)εa

′(x,z)+a′(z,y).

If (x, y) 6∈ G′, then (x, z) 6∈ G′ or (z, y) 6∈ G′ and the above sum is null. Thus by
convention Bn+1,ε(x, y) = 0. If (x, y) ∈ G′ and z ∈ S is such that (x, z) ∈ G′ and
(z, y) ∈ G′, then a′(x, y) ≤ a′(x, z) + a′(z, y). Let

Bn+1,ε(x, y) :=
∑
z∈S

Bn,ε(x, z)∆ε(z, z)A
′
ε(z, y)εa

′(x,z)+a′(z,y)−a′(x,y).

By taking the supremum in x, y ∈ S, we obtain

sup
x,y

(
Bn+1,ε(x, y)

)
≤ sup

x,y

(
Bn,ε(x, y)

)
sup
x,y

(
d∆ε(x, y)A′(x, y)

)
.

As ∆ε = o(1), we have proved that (Bn,ε(x, y))1/n → 0 uniformly in n. Besides,

M ′ε(x, y) = A′ε(x, y)εa
′(x,y)

[
1+
∑
n≥1

Bn,ε(x, y)

A′ε(x, y)

]
∼ A′(x, y)εa

′(x,y) for all (x, y) ∈ G′,

and M ′ε(x, y) = 0 for all (x, y) 6∈ G′.

Proof of proposition 32. Notice that it is enough to assume (G,Mε) is reduced
to a normal form and Mε = M̃ε is nonnegative (by possibly subtracting ηεId, where
ηε := 0 ∧min{Mε(x, x) : x ∈ S} is negligible with respect to λε). We prove item
i at the end.
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Item ii. We only prove the equivalence R̃iε(x)/R̃iε(y) ∼ R̄i(x)/R̄i(y). We
consider the vector space indexed by S̄i. The vectors are supposed to be column
vectors. Let us consider the projector onto R̄i defined by

V 7→ (L̄iV )R̄i, (V is a column vector),

or as a (square) matrix R̄iL̄i. Notice that the kernel {V : L̄iV = 0} is invariant
by Āii. The complementary projector is denoted P̄ ii := Id−R̄iL̄i. We then obtain
a decomposition of Āii

Āii = ᾱR̄iL̄i + D̄ii or D̄ii = P̄ iiĀii = ĀiiP̄ ii.

Since Āii is irreducible, ᾱ has multiplicity 1 and ρspec(D̄
ii) < ᾱ. By multiplying

by P̄ ii the equation

r∑
j=1

(
M̃ ij
ε + M̃ i0

ε (λ̃ε − M̃00
ε )−1M̃0j

ε

)
R̃jε = λ̃εR̃

i
ε,

one obtains

r∑
j=1

(λ̃ε − D̄ii)−1P̄ ii
(
Ñ ij
ε + M̃ i0

ε (λ̃ε − M̃00
ε )−1M̃0j

ε

)
R̃jε = P̄ iiR̃iε.

(We use the fact that Ñ ij
ε = M̃ ij

ε when i 6= j and that ĀiiP̄ ii = D̄iiP̄ ii.) We first
claim that R̃iε/L̄

iR̃iε is bounded, or equivalently that R̃iε(x)/R̃iε(y) is bounded for
all x, y ∈ S̄i. Notice that all following terms are nonnegative

M̃ ij
ε (x, y) ≥ 0 or M̃ i0

ε (λ̃ε − M̃00
ε )−1M̃0j

ε (x, y) ≥ 0.

(The second inequality follows from lemma 49.) By the irreducibility of Āii, if
(x0, . . . , xn) is a path joining x to y such that Āii(xk, xk+1) > 0, then

R̃iε(x0)

R̃iε(xn)
≥

Πn−1
k=0M̃

ii
ε (xk, xk+1)

λ̃nε
∼

Πn−1
k=0Ā

ii(xk, xk+1)

ᾱn
> 0.

By reversing x and y, we prove the claim. We now claim that all following terms
are negligible

Ñ ij
ε R̃

j
ε

L̄iR̃iε
= o(1) or

M̃ i0
ε (λ̃ε − M̃00

ε )−1M̃0j
ε R̃

j
ε

L̄iR̃iε
= o(1).

Notice that these terms are nonnegative, except perhaps µ̃iε := Ñ ii
ε R̃

i
ε/L̄

iR̃iε which
is negligible because of the first claim. We conclude by observing that all terms
on the left hand side of the following equality are nonnegative and that the right
hand side is negligible

r∑
j=1

L̄i
(
Ñ ij
ε δ(i 6=j) + M̃ i0

ε (λ̃ε − M̃00
ε )−1M̃0j

ε

)
R̃jε

L̄iR̃iε
= λ̃ε − ᾱ− µ̃iε = o(1).
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Therefeore, we have proved that
R̃iε
L̄iR̃iε

− R̄i =
P̄ iiR̃iε
L̄iR̃iε

= o(1).

Item iii. Let i, j ∈ {1, . . . , r}, x ∈ S̄i and y ∈ S. We have already proved in
the first part that

M̃ ii
ε (x, y)R̃iε(y)

λ̃εR̃iε(x)
∼ Āii(x, y)R̄i(y)

ᾱR̄i(x)
= Q̄ii(x, y), ∀ x, y ∈ S̄i,

M̃ ij
ε (x, y)R̃jε(y)

λ̃εR̃iε(x)
= o(1), ∀ x ∈ S̄i, ∀ y ∈ S̄j , i 6= j,

M̃ i0
ε (x, y)R̃0

ε (y)

λ̃εR̃iε(x)
=
M̃ i0
ε (x, y)

(∑r
j=1(λ̃ε − M̃00

ε )−1M̃0j
ε R̃

j
ε

)
(y)

λ̃εR̃iε(x)
= o(1).

(In the two last estimates, we use the fact that the sum over y in each case is
negligible.) We then obtain

Qε(x, y) =
M̃ε(x, y)R̃ε(y)

λ̃εR̃ε(x)
→

{
Q̄ii(x, y), ∀ x, y ∈ S̄i,
0, ∀ x ∈ S̄i, ∀ y ∈ S̄j ∪ S0, i 6= j.

Item i. Let i 6= j, then M
(1)
ε (i, j) = L̄i

(
M̃ ij
ε + M̃ i0

ε (λ̃ε − M̃00
ε )−1M̃0j

ε

)
R̃jε
L̄jR̃jε

.

We want to show that

M (1)
ε (i, j) =

{
0 ∀ (i, j) 6∈ G(1),

A
(1)
ε (i, j)εa

(1)(i,j) ∀ (i, j) ∈ G(1), i 6= j,

where A
(1)
ε (i, j) = 0 in the first case and A(1)(i, j) ∼ A(1)(i, j) > 0 in the second

one. From item ii, we know that R̃jε/L̄jR̃
j
ε ∼ R̄j . Since L̄i and R̄j have positive

coefficients, it is enough to determine equivalences to the terms M̃ ij
ε (x, y) and

M̃ i0
ε (λ̃ε−M̃00

ε )−1M̃0j
ε (x, y) when x ∈ S̄i and y ∈ S̄j . From lemma 49, we know that

the matrix (λε − M̃00
ε )−1 is of exact Puiseux type on the graph containing either

{(x1, x1) : x1 ∈ S0} or {(x1, xn−1) : (x1, . . . , xn−1) is a path of G̃ ∩ S0 × S0},
where G̃ is obtained from G by subtracting all loops (x, x) such that D(x, x) = 0.
We write (λ̃ε − M̃00

ε )−1(x, y) ∼ ᾱ−1A′(x, y)εa
′(x,y). Therefore, for x ∈ S̄i and

y ∈ S̄j , one has M̃ ij
ε (x, y) ∼ A(x, y)εa(x,y) and

M̃ i0
ε (λ̃ε − M̃00

ε )−1M̃0j
ε (x, y) ∼

∑
z,w∈S0

A(x, z)
A′(z, w)

ᾱ
A(w, y)εa(x,z)+a′(z,w)+a(w,y).

One can see the previous estimate as a sum over paths x of two kinds. Either there
exists a G-admissible path x = (x, z, y) (for z = w), or there exists a G-admissible
path x = (x0, . . . , xn) of length n ≥ 3, with x0 = x, x1 = z, xn−1 = w, xn = y,
such that the intermediate path (x1, . . . , xn−1) is (G̃ ∩ S0 × S0)-admissible and
realizes the minimum in the definition of a′(z, w). Each one of these terms is of
the form [

Πn−1
k=0A(xk, xk+1)/ᾱn−1

]
ε
∑n−1
k=0 a(xk,xk+1).

The dominant term is obtained by minimizing a(x) over x.
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6 Complete classification for 3-states spin systems

We consider in this section a full weighted graph of exact Puiseux type on 3 states.
More precisely, for S = {1, 2, 3}, we consider G = S × S weighted by

Mε(x, y) = exp[−βH(x, y)] = εH(x,y), ε = e−β, ∀ x, y ∈ S.

We assume (by subtracting H̄) that H has been normalized: H̄ = 0. We are inter-
ested in describing the unique zero-temperature Gibbs measure µHmin (notations
of section 3) obtained as a limit of

(
πε(x), Qε(x, y)

)
=
(
Lε(x)Rε(x),

Mε(x, y)Rε(y)

λεRε(x)

)
as ε → 0. As it will be clear from the computation, the limit depends from the
possibility to expand each quotient Rε(x)/Rε(y) and Lε(x)/Lε(y) into a Puiseux
series of an a priori arbitrarily large precision. The algorithm is based on the
dimension of the matrix Mε. We will obtain a finite set of possible µHmin and for
each of them we describe the space of parameters {H(x, y) : x, y ∈ S} which
exhibit that zero-temperature Gibbs measure. The dimension of this space of
parameters is a priori 9; we will reduce it to 2 in the following discussion. We
describe each domain according to the number of irreducible components of the
minimizing subgraph. We use algorithm 29 to conjugate Mε to a simpler matrix
M ′ε = ∆εMε∆

−1
ε , which (by possibly permuting {1, 2, 3}) takes one of the following

form.

i. A unique dominant irreducible component.

– When the dominant spectral radius ᾱ is equal to 1, Gmin = Ḡ is ir-
reducible and there are three possibilities corresponding respectively with
S̄ = {1, 2, 3}, S̄ = {1, 2} or S̄ = {1},

M ′ε =

εa 1 εb
′

εc
′

εb 1

1 εa
′

εc

 , M ′′ε =

εa 1 εd

1 εb εe

εd
′
εe
′
εc

 , M ′′′ε =

 1 εa εc

εa
′

εb εd

εc
′
εd
′
εe

 .
(Notice that all coefficients a, a′, b, . . . are positive.)

– When ᾱ > 1, Ḡ = Gmin is obtained by replacing in the previous M ′ε any
(but at least one) a, a′, b, . . . by 0, and in M ′′ε one of the two coefficients a
and/or b by 0 and leaving c, c′, d, . . . positive. When ᾱ > 1, Ḡ ⊂ Gmin with
two irreducible components is obtained by replacing a and/or b in M ′′ε by 0
and c by 0. Notice that we obtain a finite list of possible ᾱ.

ii. Two irreducible components with equal dominant spectral radius:

ᾱ = 1, M ′ε =

 1 εa εb

εa
′
εc 1

εb
′

1 εd

 , or M ′′ε =

 1 εa εb

εa
′

1 εc

εb
′
εc
′
εd

 .



Description of some ground states by Puiseux techniques 45

iii. Three irreducible components with dominant spectral radius 1:

ᾱ = 1, M ′ε =

 1 εa εb

εa
′

1 εc

εb
′
εc
′

1

 .
In order to simplify notations, we introduce the following convention

a#b = 1 if a 6= b, a#b = 2 if a = b.

In the case of one irreducible component with dominant spectral coefficient (r = 1),
πε(x)→ 0 for all x ∈ S \ S̄ and πε(x)→ π̄1(x) for all x ∈ S̄. For instance, for M ′ε,
M ′′ε and M ′′′ε , respectively, πε converges to [1

3 ,
1
3 ,

1
3 ], [1

2 ,
1
2 , 0] and [1, 0, 0]. We now

treat in detail the two remaining cases ii and iii.

6.1 Two irreducible components. Part I

We first consider the matrix

Mε =

 1 εa εb

εa
′
εc 1

εb
′

1 εd

 , a, a′, b, b′, c, d > 0.

We already know that λε ∼ 1, Rε(2) ∼ Rε(3) and Lε(2) ∼ Lε(3). We collapse the
two components 2 and 3 and obtain for the right eigenvector

M (1)
ε =

[
0 (εaR2 + εbR3)/(R2 +R3)

εa
′
+ εb

′
(εcR2 + εdR3)/(R2 +R3)

]
∼
[

0 a#b
2 εa∧b

a′#b′εa
′∧b′ c#d

2 εc∧d

]
.

Note that M
(1)
ε is of exact Puiseux type. Let r and ρ be the minimizing mean

exponent and the dominant spectral radius of M
(1)
ε . Then λ

(1)
ε = λε − 1 ∼ ρεr,

r = min
(
c ∧ d, a ∧ b+ a′ ∧ b′

2

)
,
R1

R3
∼ a#b

ρ
εa∧b−r,

L1

L3
∼ a′#b′

ρ
εa
′∧b′−r.

We thus obtain a complete formula for the transition matrix

Qε ∼

 1 ρ
a#bε

a−a∧b+r ρ
a#bε

b−a∧b+r

a#b
ρ εa

′+a∧b−r εc 1
a#b
ρ εb

′+a∧b−r 1 εd

→ QHmin =

1 0 0
0 0 1
0 1 0

 ,
and for the zero-temperature Gibbs measure

πε(2)

πε(3)
∼ 1 and

πε(1)

πε(3)
∼ (a#b)(a′#b′)

ρ2
εa∧b+a

′∧b′−2r.

We are left to discuss the value of ρ according to the choice of the exponents
contributing in the definition of r. We recall that ρ is the largest eigenvalue of the

dominant matrix A
(1)
min.
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6.1.1 Case c ∧ d < (a ∧ b + a′ ∧ b′)/2:

In this case, r = c ∧ d,

A
(1)
min =

[
0 0

0 c#d
2

]
, ρ =

c ∧ d
2

, λε = 1 +
c ∧ d

2
εc∧d + . . . , µHmin =

[
0, 1

2 ,
1
2

]
.

6.1.2 Case c ∧ d > (a ∧ b + a′ ∧ b′)/2:

In this case, r = 1
2(a ∧ b+ a′ ∧ b′),

A
(1)
min =

[
0 a#b

2
a′#b′ 0

]
, ρ =

√
(a#b)(a′#b′)

2
, µHmin =

[
1
2 ,

1
4 ,

1
4

]
.

6.1.3 Case c ∧ d = (a ∧ b + a′ ∧ b′)/2:

In this case, r = c ∧ d,

AHmin =

[
0 a∧b

2

a′ ∧ b′ c∧d
2

]
, ρ =

c#d

4

[
1 +

√
1 + 8

(a#b)(a′#b′)

(c#d)2

]
and the zero-temperature Gibbs measure is proportional to

µHmin ∝


16(a#b)(a′#b′)/(c#d)2[

1 +
√

1 + 8(a#b)(a′#b′)/(c#d)2
]2[

1 +
√

1 + 8(a#b)(a′#b′)/(c#d)2
]2


or µHmin(1) =

4(a#b)(a′#b′)/(c#d)2

1 + 8(a#b)(a′#b′)/(c#d)2 +
√

1 + 8(a#b)(a′#b′)/(c#d)2
.

We summarize the discussion in figure 5.

6.2 Two irreducible components. Part II

We consider now the matrix

Mε =

 1 εa εb

εa
′

1 εc

εb
′
εc
′
εd

 , a, a′, b, b′, c, c′, d > 0.

Let [Lε(x)]x=1,2,3 and [Rε(x)]x=1,2,3 be the left and right eigenvector for the largest
eigenvalue λε. We eliminate the negligible variable x = 3 by substituting Lε(3)
or Rε(3) in the first two equations. We subtract the dominant term 1 of λε and
obtain

L(1)
ε M (1)

ε = λ(1)
ε L(1)

ε , M (1)
ε R(1)

ε = λ(1)
ε R(1)

ε .

We summarize the discussion in figure 6.



Description of some ground states by Puiseux techniques 47

a∧b

a'∧b'

2c∧d 

2c∧d 

=1 a #ba' #b '
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1
2 a∧ba '∧b ' 

...

1

2 3><
1
1

(1/2)

>1
(1/2)

1

2 3><
1
1

(1)

=1 c #d
2

c∧d...

c∧d < ½(a∧b + a'∧b')

0

a' 
= 

b'
a' 
≠ 

b'
a ≠ b a = b

c ≠ d

c = d

min
H 1= 16

3333

min
H 1= 1

13

min
H 1= 8

1717

min
H 1= 2

55

min
H 1= 8

1717

min
H 1=1

3

min
H 1=

1
3min

H 1= 2
55

Figure 5: Phase diagram for a 3×3 matrix with two irreducible components: part I. In the
left diagram, numbers in parentheses indicate the weight of each irreducible components.
In the right diagram, the value of µHmin(1) is shown for the case c∧ d = 1

2 (a∧ b+ a′ ∧ b′).

6.3 Three irreducible components

We consider the matrix

Mε =

 1 εa εb

εa
′

1 εc

εb
′
εc
′

1

 , a, a′, b, b′, c, c′ > 0.

We know from propositions 30 and 32 that λε ∼ 1 and Qε → Id. We want
to show that [πε(x)]x=1,2,3 = [Lε(x)Rε(x)]x=1,2,3 converges to some raw vector
[µHmin(x)]x=1,2,3 identified to the zero-temperature Gibbs measure as a barycenter
of 3 Dirac masses:

µHmin = µHmin(1)δ<1∞> + µHmin(2)δ<2∞> + µHmin(3)δ<3∞>.

Thanks to the special form of the matrix, the steps of algorithm 31 are immediate:

M
(1)
ε = Mε − Id, λ

(1)
ε = λε − 1, L

(1)
ε = Lε and R

(1)
ε = Rε. We want to apply again

algorithm 31 by reducingM
(1)
ε to a normal form as in algorithm 29. We call ā(1) the

minimizing mean exponent of M
(1)
ε and A

(1)
min the matrix associated with the graph

of minimizing cycles. Notice that A
(1)
min admits a unique irreducible component.

Let v : S → R be a separating corrector and M̃ε := ∆ε(v)M
(1)
ε ∆ε(v)−1ε−ā

(1)
=

A
(1)
min+Ñε. Denote L̃ε(x) = ε−v(x)L

(1)
ε (x) and R̃ε(x) = εv(x)R

(1)
ε (x). Proposition 32

tells us that

L̃ε(x)

L̃ε(y)
∼ L̄(x)

L̄(y)
,

R̃ε(x)

R̃ε(y)
∼ R̄(x)

R̄(y)
, ∀ x, y ∈ S̄, and L̃ε(x)R̃ε(x)→ 0, ∀ x ∈ S0,

where L̄ and R̄ are the left and right eigenvectors of the dominant matrix Ā.
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b
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Figure 6: Phase diagram for a 3 × 3 matrix with two irreducible components: part II.
We assume a < a′. The zero-temperature Gibbs measure is a barycenter of the periodic
measures δ1 and δ2.

In order to simplify the phase transition diagram, we change the coefficients:

a :=
1

2
(a+ a′), b :=

1

2
(b+ b′),

c := c+
1

2
(b′ − b) +

1

2
(a− a′), c′ := c′ +

1

2
(b− b′) +

1

2
(a′ − a).

Then
c+ c′

2
=
c+ c′

2
,
a+ b′ + c

3
=
a+ b+ c

3
,
a′ + b+ c′

3
=
a+ b+ c′

3
.

We now discuss the different phases according to the coincidence set of multiple
order of minimizing cycles. We discuss only the case c < c′. The purely symmetric
case a = a′, b = b′, c = c′ is done in section 7. We show in figure 7 the location of
all possible minimizing cycles.
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1

2

3

a

b

b '

a ' cc '

Mean along the cycles of order 2 and 3:

cycles of order 2 cycles of order 3
1
2(a+ a′) 1

3(a+ b′ + c)
1
2(b+ b′) 1

3(a′ + b+ c′)
1
2(c+ c′)

Figure 7: Graph of interactions and minimizing cycles of Mε − Id.

6.3.1 Case a < min{b, 1
2
(c + c′), 1

3
(a + b + c)}:

ā(1) = a, A
(1)
min =

0 1 0
1 0 0
0 0 0

 , λ(1)
ε ∼ εa, and µHmin = [

1

2
,
1

2
, 0].

6.3.2 Case b < min{a, 1
2
(c + c′), 1

3
(a + b + c)}:

ā(1) = b, A
(1)
min =

0 0 1
0 0 0
1 0 0

 , λ(1)
ε ∼ εb, and µHmin = [

1

2
, 0,

1

2
].

6.3.3 Case 1
2
(c + c′) < min{a, b, 1

3
(a + b + c)}:

ā(1) =
1

2
(c+ c′), A

(1)
min =

0 0 0
0 0 1
0 1 0

 , λ(1)
ε ∼ ε(c+c

′)/2, and µHmin = [0,
1

2
,
1

2
].

6.3.4 Case 1
3
(a + b + c) < min{a, b, 1

2
(c + c′)}:

ā(1) =
1

3
(a+ b+ c), A

(1)
min =

0 1 0
0 0 1
1 0 0

 , λ(1)
ε ∼ ε(a+b+c)/3,

L̃ε ∝ [1, 1, 1], R̃ε ∝ [1, 1, 1]T , and µHmin = [
1

3
,
1

3
,
1

3
].

Notice that the reverse cycle 1 → 3 → 2 → 1 is negligible against the cycle
1→ 2→ 3→ 1 since its exponent is higher.

6.3.5 Case a = 1
3
(a + b + c) < min{b, 1

2
(c + c′)}:

ā(1) = a, A
(1)
min =

0 1 0
1 0 1
1 0 0

 , λ(1)
ε ∼ κεa,

L̃ε ∝ [κ2, κ, 1], R̃ε ∝ [κ, κ2, 1]T , and µHmin = [1 + κ, 1 + κ, 1]/(3 + 2κ),
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where κ is the largest eigenvalue of A
(1)
min and satisfies κ3 − κ− 1 = 0.

6.3.6 Case b = 1
3
(a + b + c) < min{a, 1

2
(c + c′)}:

ā(1) = b, A
(1)
min =

0 1 1
0 0 1
1 0 0

 , λ(1)
ε ∼ κεb,

L̃ε ∝ [κ, 1, κ2], R̃ε ∝ [κ2, 1, κ]T , and µHmin = [1 + κ, 1, 1 + κ]/(3 + 2κ).

(A
(1)
min admits the same characteristic polynomial as before.)

6.3.7 Case 1
2
(c + c′) = 1

3
(a + b + c) < min{a, b}:

ā(1) = a, A
(1)
min =

0 1 0
0 0 1
1 1 0

 , λ(1)
ε ∼ κε(c+c

′)/2,

L̃ε ∝ [1, κ2, κ], R̃ε ∝ [1, κ, κ2]T , and µHmin = [1, 1 + κ, 1 + κ]/(3 + 2κ).

6.3.8 Case a = b < min{1
2
(c + c′), 1

3
(a + b + c)}:

ā(1) = a, A
(1)
min =

0 1 1
1 0 0
1 0 0

 , λ(1)
ε ∼

√
2εa,

L̃ε ∝ [
√

2, 1, 1], R̃ε ∝ [
√

2, 1, 1]T , and µHmin = [
1

2
,
1

4
,
1

4
].

6.3.9 Case a = 1
2
(c + c′) < min{b, 1

3
(a + b + c)}:

ā(1) =
1

2
(c+ c′), A

(1)
min =

0 1 0
1 0 1
0 1 0

 , λ(1)
ε ∼

√
2ε(c+c

′)/2,

L̃ε ∝ [1,
√

2, 1], R̃ε ∝ [1,
√

2, 1]T , and µHmin = [
1

4
,
1

2
,
1

4
].

6.3.10 Case b = 1
2
(c + c′) < min{a, 1

3
(a + b + c)}:

ā(1) =
1

2
(c+ c′), A

(1)
min =

0 0 1
0 0 1
1 1 0

 , λ(1)
ε ∼

√
2ε(c+c

′)/2,

L̃ε ∝ [1, 1,
√

2], R̃ε ∝ [1, 1,
√

2]T , and µHmin = [
1

4
,
1

4
,
1

2
].
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6.3.11 Case a = b = 1
3
(a + b + c) < 1

2
(c + c′):

ā(1) = a, A
(1)
min =

0 1 1
1 0 1
1 0 0

 , λ(1)
ε ∼ ρεa,

L̃ε ∝ [ρ, 1, ρ], R̃ε ∝ [ρ, ρ, 1]T , and µHmin = [ρ, 1, 1]/(2 + ρ),

where ρ is the positive root of ρ3 − 2ρ− 1 = (ρ+ 1)(ρ2 − ρ− 1) = 0.

6.3.12 Case a = 1
2
(c + c′) = 1

3
(a + b + c) < b:

ā(1) =
1

2
(c+ c′), A

(1)
min =

0 1 0
1 0 1
1 1 0

 , λ(1)
ε ∼ ρε(c+c

′)/2,

L̃ε ∝ [ρ, ρ, 1], R̃ε ∝ [1, ρ, ρ]T , and µHmin = [1, ρ, 1]/(2 + ρ).

6.3.13 Case b = 1
2
(c + c′) = 1

3
(a + b + c) < a:

ā(1) =
1

2
(c+ c′), A

(1)
min =

0 1 1
0 0 1
1 1 0

 , λ(1)
ε ∼ ρε(c+c

′)/2,

L̃ε ∝ [1, ρ, ρ], R̃ε ∝ [ρ, 1, ρ]T , and µHmin = [1, 1, ρ]/(2 + ρ).

We summarize the preceding discussion in the figure 8.

7 Zero-temperature phase diagram for BEG model

We give in this section a complete description of the zero-temperature phase dia-
gram for the Blume-Emery-Griffiths model. We apply the algorithm proposed in
section 3 to S = {−, 0,+}, G = S × S and Mε(x, y) = εH0(x,y) for all x, y ∈ S,
where

H0 =

−J −K + ∆ 1
2∆ J −K + ∆

1
2∆ 0 1

2∆
J −K + ∆ 1

2∆ −J −K + ∆

 .
We discuss the different cases according to the choice of the parameters which
contribute to the minimizing mean exponent ā. In all cases, we have

Mε =

 εa εb εc

εb 1 εb

εc εb εa

 , πε =

Lε(−)Rε(−)
Lε(0)Rε(0)
Lε(+)Rε(+)

 , Qε =


εaRε(−)
λεRε(−)

εbRε(0)
λεRε(−)

εcRε(+)
λεRε(−)

εbRε(−)
λεRε(0)

Rε(0)
λεRε(0)

εbRε(+)
λεRε(0)

εcRε(−)
λεRε(+)

εbRε(0)
λεRε(+)

εaRε(+)
λεRε(+)

 ,
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b >
 a

a

b

c'

c'(c+c')/2

=1abc /3...
min
H =[1

3
, 1

3
, 1

3
]

=1cc ' /2...
min
H =[0 , 1

2
, 1

2
]

(c+c')/2 < (a+b+c)/3

a <
 (a

+b
+c

)/3

b < (a+b+c)/3

=1b...
min
H =[1

2
,0 , 1

2
]

 (c
+c

')/
2 

< 
a

(c+c')/2 < b=1a...
min
H =[1

2
, 1

2
,0 ]

=1cc ' /2...
min
H =[1,1 ,1]/32

=12cc ' /2...
min
H =[ 1

4
, 1

2
, 1

4
]

=12cc ' /2...
min
H =[ 1

4
, 1

4
, 1

2
]

=12a...
min
H =[ 1

2
, 1

4
, 1

4
]

=1a...
min
H =[1 ,1 ,1]/32

=1 b...
min
H =[1 ,1,1]/32

c

=1a...
min
H =[ ,1 , 1]/2

=1cc ' /2...
min
H =[1 , , 1]/2

=1cc ' /2...
min
H =[1 ,1 , ]/2

c

Figure 8: Phase diagram for a 3 × 3 matrix with three irreducible components. We
assume c < c′. The zero-temperature Gibbs measure is a barycenter of the three periodic
measures δ<1∞>, δ<2∞> and δ<3∞>. The constants ρ and κ are solutions of ρ2−ρ−1 = 0
and κ3 − κ − 1 = 0. The exact values of these constants are ρ = 1

2 (1 +
√

5) and κ =

3

√
1
2 (1−

√
23/27) + 3

√
1
2 (1 +

√
23/27).

normalized by
∑

x∈S Lε(x)Rε(x) = 1 and
∑

x∈S Rε(x) = 1. Because of the sym-
metry of Mε, Lε = Rε and πε(x) = R2

ε (x)/
∑

xR
2
ε (x). We also simplify the com-

putation by noticing that Rε(−) = Rε(+). We recall that Gmin is the minimizing
subgraph and ᾱ is the dominant spectral coefficient. We only present the details
of the computations for ∆ > 0, the other situations being analogous.

7.1 Case J −K + ∆ < 0, J < 0:

Case: c < min(0, a, b). We know that

ā = c, Amin =

0 0 1
0 0 0
1 0 0

 , ᾱ = 1, λε ∼ εc
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and Gmin has one irreducible component (−) 
 (+). We aggregate the two
components (±) by adding Rε(±) := Rε(−) + Rε(+) and eliminate the negligi-
ble term Rε(0). The new singular eigenvalue problem obtained in algorithm 31,

M
(1)
ε R

(1)
ε = λ

(1)
ε R

(1)
ε , is actually reduced to a unique equation with unique un-

known R
(1)
ε := Rε(±). More precisely,{

(εa + εc)Rε(±) + 2εbRε(0) = λεRε(±),
εbRε(±) +Rε(0) = λεRε(0),

Rε(0) =
εb

λε − 1
Rε(±)� Rε(±), λ(1)

ε := λε − εc = εa +
2ε2b

λε − 1
,

which yields

Rε ∼

1/2
εb−c

1/2

 =

 1/2

ε−J+K−∆/2

1/2

 , πε ∼

 1/2

2ε2(−J+K−∆/2)

1/2

 ,
Qε ∼

εa−c 2ε2(b−c) 1
1/2 ε−c 1/2

1 2ε2(b−c) εa−c

 =

ε−2J 2ε2(−J+K−∆/2) 1
1/2 ε−J+K−∆ 1/2

1 2ε2(−J+K−∆/2) ε−2J

 .
7.2 Case −J −K + ∆ < 0, J > 0:

Case: a < min(0, b, c). Gmin has two irreducible components with identical spec-
tral coefficient, (−)↔ (−) and (+)↔ (+), and as before Rε(0)� Rε(−) = Rε(+).
We thus obtain

ā = a, Amin =

1 0 0
0 0 0
0 0 1

 , ᾱ = 1, λε ∼ εa,

Rε ∼

1/2
εb−a

1/2

 , πε ∼

 1/2

2ε2(b−a)

1/2

 , Qε ∼

 1 2ε2(b−a) εc−a

1/2 ε−a 1/2

εc−a 2ε2(b−a) 1

 .
7.3 Case −J −K + ∆ > 0, J −K + ∆ > 0:

Case: 0 < min(a, b, c). Gmin has one irreducible component (0)↔ (0), ᾱ = 1 and
Rε(−) = Rε(+)� Rε(0). We obtain

ā = 0, Amin =

0 0 0
0 1 0
0 0 0

 , ᾱ = 1, λε ∼ 1,

Rε ∼

εb1
εb

 , πε ∼

ε2b1
ε2b

 , Qε ∼

 εa 1 εc

ε2b 1 ε2b

εc 1 εa

 .
As in case 7.1, we eliminate the negligible term Rε(±) and get a new graph G(1)

reduced to a singleton

Rε(±) =
2εb

λε − (εa + εc)
Rε(0) and λε − 1 =

2ε2b

λε − (εa + εc)
∼ 2ε2b.
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7.4 Case J −K + ∆ = 0, J < 0:

Case: c = 0 < min(a, b). We know that

ā = 0, Amin =

0 0 1
0 1 0
1 0 0

 , ᾱ = 1, λε ∼ 1,

and Gmin has two irreducible components (−) 
 (+) and (0) ↔ (0). No state
x ∈ S is a priori negligible. We then aggregate the states (±) by adding Rε(±) :=

Rε(+) +Rε(−) and obtain a new eigenvalue problem M
(1)
ε R

(1)
ε = λ

(1)
ε R

(1)
ε , where

M (1)
ε :=

[
εa 2εb

εb 0

]
, R(1)

ε :=

[
Rε(±)
Rε(0)

]
and λ(1)

ε := λε − 1.

We then have to discuss three subcases.

7.4.1 Subcase J < −1
4
∆ < 0:

Subcase: b < a. The minimizing subgraph G
(1)
min has one irreducible component

(±) 
 (0) with minimizing mean exponent ā(1) = b and dominant spectral coeffi-
cient ᾱ(1) =

√
2. We obtain

λ(1)
ε ∼

√
2εb, R(1)

ε ∝
[√

2
1

]
, Rε ∝

1/
√

2
1

1/
√

2

 and

λε = 1 +
√

2εb + . . . , πε ∼

1/4
1/2
1/4

 , Qε ∼

 εa
√

2εb 1

εb/
√

2 1 εb/
√

2

1
√

2εb εa

 .
7.4.2 Subcase J = −1

4
∆ < 0:

Subcase: a = b. G
(1)
min has one irreducible component (±) ↔ (±) 
 (0) with

dominant spectral coefficient ᾱ(1) = 2 (the spectral radius of
[

1 2

1 0

]
), and the

right eigenvector R
(1)
ε is proportional to

[
2

1

]
. We obtain λ

(1)
ε ∼ 2εb and

λε = 1 + 2εb + . . . , Rε ∼ πε ∼

1/3
1/3
1/3

 , Qε ∼

εb εb 1
εb 1 εb

1 εb εb

 .
7.4.3 Subcase −1

4
∆ < J < 0:

Subcase: a < b. The minimizing subgraph G
(1)
min has one irreducible component

(±) ↔ (±) with dominant spectral coefficient ᾱ(1) = 1. We obtain therefore
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λ
(1)
ε ∼ εa, Rε(0) = εb−aRε(±)� Rε(±), λε = 1 + εa + . . . and

Rε ∼

1/2
εb−a

1/2

 , πε ∼

 1/2

2ε2(b−a)

1/2

 , Qε ∼

 εa 2ε2b−a 1
εa/2 1 εa/2

1 2ε2b−a εa

 .
7.5 Case −J −K + ∆ = 0, J > 0:

Case: a = 0 < min(b, c). One then has

ā = 0, Amin =

1 0 0
0 1 0
0 0 1

 , ᾱ = 1, λε ∼ 1.

The minimizing subgraph Gmin has three irreducible components (−) ↔ (−),
(0) ↔ (0) and (+) ↔ (+). Once again we simplify the proof by noticing that
Rε(−) = Rε(+), but it is so far not clear which state dominates. The reduction
to an aggregated form consists in simply eliminating the first term of λε in the
Puiseux series:

M (1)
ε = Mε − Id, M (1)

ε R(1)
ε = λ(1)

ε R(2)
ε , R(1)

ε = Rε, λ(1)
ε = λε − 1.

The new graph G(1) has possible minimizing mean exponents ā(1) = b or c. Let
ᾱ(1) be the associated dominant spectral coefficient. We discuss three subcases.

7.5.1 Subcase 0 < 1
4
∆ < J :

Subcase: b < c. G
(1)
min has one irreducible component (−) 
 (0) 
 (+) with

ā(1) = b. Moreover,

A
(1)
min =

0 1 0
1 0 1
0 1 0

 , ᾱ(1) =
√

2, R(1)
ε ∝

 1√
2

1

 .
Then λε = 1 +

√
2εb + . . . and

Rε ∝

 1√
2

1

 , πε ∼

1/4
1/2
1/4

 , Qε ∼

 1
√

2εb εc

εb/
√

2 1 εb/
√

2

εc
√

2εb 1

 .
7.5.2 Subcase 0 < 1

4
∆ = J :

Subcase: c = b. The subgraph G
(1)
min has one irreducible component (−) 
 (0) 


(+) 
 (−) and

A
(1)
min =

0 1 1
1 0 1
1 1 0

 , ᾱ(1) = 2, R(1)
ε ∝

1
1
1

 .
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We thus obtain

λε = 1 + 2εb + . . . , Rε ∼ πε ∼

1/3
1/3
1/3

 , Qε ∼

1 εb εb

εb 1 εb

εb εb 1

 .
7.5.3 Subcase 0 < J < 1

4
∆:

Subcase: c < b. G
(1)
min has one irreducible component (−) 
 (+) with minimizing

mean exponent ā(1) = c and ᾱ(1) = 1. We aggregate the states (±), R
(1)
ε (±) :=

R
(1)
ε (−) + R

(1)
ε (+), and eliminate R

(1)
ε (0) � R

(1)
ε (±) to obtain a third graph

(reduced to a singleton){
εcR

(1)
ε (±) + 2εbR

(1)
ε (0) = λ

(1)
ε R

(1)
ε (±),

εbR
(1)
ε (±) = λ

(1)
ε R

(1)
ε (0),

εc +
2ε2b

λ
(1)
ε

= λ(1)
ε .

We get λε = 1 + εc + . . . and

Rε ∼

1/2
εb−c

1/2

 , πε ∼

 1/2

2ε2(b−c)

1/2

 , Qε ∼

 1 2ε2b−c εc

εc/2 1 εc/2
εc 2ε2b−a 1

 .
7.6 Case J = 0 < ∆ < K:

Case: a = c < min(0, b). One has

ā = a, Amin =

1 0 1
0 0 0
1 0 1

 , ᾱ = 2, λε ∼ 2εa.

Gmin has one irreducible component (−) ↔ (−) 
 (+) ↔ (+) with minimizing
mean exponent ā = a and dominant spectral coefficient ᾱ = 2. We again aggregate
the states (±), Rε(±) := Rε(−) + Rε(+), and eliminate Rε(0) � Rε(±) in order
to introduce a new singular eigenvalue problem{

2εaRε(±) + 2εRε (0) = λεRε(±),
εbRε(±) +Rε(0) = λεRε(0),

2εa +
2ε2b

λε − 1
= λε.

We thus obtain

Rε ∼

 1/2
εb−a/2

1/2

 , πε ∼

 1/2

ε2(b−a)/2
1/2

 , Qε ∼

1/2 ε2(b−a)/2 1/2
1/2 ε−a/2 1/2

1/2 ε2(b−a) 1/2

 .
7.7 Case J = 0 < ∆ = K:

Case: a = c = 0 < b. We have

ā = 0, Amin =

1 0 1
0 1 0
1 0 1

 , ᾱ = 2, λε ∼ 2.
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Gmin has two irreducible components with spectral coefficients equal to 1 and 2,
whose graphs are (0) ↔ (0) and (−) ↔ (−) 
 (+) ↔ (+), respectively. We
aggregate (±) into a unique state Rε(±) := Rε(−) +Rε(+) and obtain{

2Rε(±) + 2εbRε(0) = λεRε(±),
εbRε(±) +Rε(0) = λεRε(0),

2 +
2ε2b

λε − 1
= λε.

We thus get λε = 2 + 2ε2b + . . . and

Rε ∼

1/2
εb

1/2

 , πε ∼

1/2
2ε2b

1/2

 , Qε ∼

1/2 ε2b 1/2
1/4 1/2 1/4
1/2 ε2b 1/2

 .

We recall that the previous discussion is summarized in figures 3 and 4.
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