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Abstract

We study the behavior of solutions of mutually coupled equations in heterogeneous
random graphs. Heterogeneity means that some equations receive many inputs whereas
most of the equations are given only with a few connections. Starting from a situation
where the isolated equations are unstable, we prove that a heterogeneous interaction
structure leads to the appearance of stable subspaces of solutions. Moreover, we show
that, for certain classes of heterogeneous networks, increasing the strength of interac-
tion leads to a cascade of bifurcations in which the dimension of the stable subspace
of solutions increases. We explicitly determine the bifurcation scenario in terms of the
graph structure.
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1 Introduction

The last decade has witnessed rapidly growing interest in dynamics of coupled dynamical
systems [1}, 2, [3]. In most applications, the interaction structure among elements is intricate
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[4] and modeled by random graphs [5], [6]. Empirical studies indicate that this interaction
structure can have dramatic influences on the dynamical properties and the functioning of
such systems [7, [§].

Recent studies show that disparate real-world networks display a heterogeneous con-
nectivity — while some nodes, called hubs, receive many connections, most of the nodes are
poorly connected [I},[7]. Such a connectivity structure leads to distinct dynamical behavior
across the network. The understanding of the dynamics in heterogeneous networks is in
its early stages [3, [9].

Mutually coupled equations. Our aim is to study the behavior of solutions of mutu-
ally coupled systems with interaction structure given by a heterogeneous random graph.
Consider the set of n nonautonomous linear equations

&; = Vi(t)xi, fori=1,...,n, (1)

where, for d > 1, each V; : R x R — R? is a continuous and bounded linear opera-
tor. We also assume that these equations are unstable, with nontrivial solutions diverging
exponentially fast.

We are interested in the changes in dynamics once the equations are coupled. We
consider the following one-parameter family of n coupled equations

&= Vi(t)z; +a ) AylH(aj) — H(zy)], (2)
j=1

where « is the overall coupling strength, H is a positive-definite matrix, and A = (4;;)
is the adjacency matrix describing graph connectivity, so that A;; = 1 if i receives a
connection from j and A;; = 0 otherwise. The degree of the i*h node to be the number of
connections it receives. We will focus on heterogeneous graphs. To be precise, if x; < &;
denote node degrees in different subnetworks, then heterogeneity means that I‘/@}f7 > Kj
for some 0 < v < 1 and I' > 0. These models have hierarchical organization with modular
structures.

This modelization appears in studies of synchronization in mutually coupled equations
[10, T1] and has applications in many areas such as neuroscience and engineering [12]. In
this research branch, synchronization corresponds to the existence of an attracting synchro-
nization manifold. Although in the aforementioned works the equations for the isolated
nodes are nonlinear, we have chosen to start with the linear case because, if the vectors
fields of the isolated equations are smooth enough, we can linearize the equations about
the synchronization manifold and obtain a set of equations in the form , see [II]. In this
regard, all the results we develop here in an abstract setting have a direct counterpart to
the theory of synchronization in complex networks.

We aim at understanding the dynamics of almost every heterogeneous connection struc-
ture A. The combination of the probabilistic point of view in graphs with the theory of



exponential dichotomies makes it possible to characterize the dynamics of a large set of
networks. Our main results show that, for large random graphs, as « is increased, there is
a bifurcation leading to the appearance of stable subspaces of solutions. Furthermore, the
dimension of the stable subspace is determined by the graph structure. Loosely speaking,
for a suitable range of coupling strength «, we have that

dimension of stable subspace = d x £,

where d is the dimensional of the solution space of the isolated equation, and £ is the
number of highly connected nodes in the graph. Moreover, if the highly connected nodes
are in distinct connectivity regimes, then we prove that there is a cascade of bifurcations
increasing the dimension of the stable subspace of solutions. The precise statements of our
results can be found in theorem [Il and theorem [l

2 Preliminaries

In this section, we provide the basic ingredients for the statement of our results.

2.1 Notation

We use the small “0” notation for the asymptotic behavior n — co. We write f(n) = o(1)
if f(n) goes to zero as n tends to infinity.

We endow the vector space R? with the usual Euclidean inner product and the associ-
ated Euclidean norm. The space of linear operators is equipped with the induced operator
norm. For a continuous family of bounded operators V : R x R? — R? we consider the
uniform norm

[V = sup [V(£)]-
t>0

The identity is denoted by 1.

2.2 Nonautonomous Linear Equations

We introduce now the concept of exponential dichotomy for a linear differential equation.
We follow closely [13| [14].
Consider the nonautonomous linear equation

i=V(t)x, (3)

where V : R x R — R? is a continuous and bounded linear operator. We denote by
T(t, s) the associated evolution operator, which describes how the solution evolves in time:
x(t) = T(t,s)x(s). Clearly,

T(t,t) =14 and T(t,s)T(s,r)=T(t,r), VYVt ,s,r€R

The following definition will be central for our study.



Definition 1 (Exponential Dichotomy). We say that the linear equation (@ admits an
exponential dichotomy in the half line R if there is a projector P : R x R — RY, with

P(t)T(t,s) =T(t,s)P(s) ¥Yt>s>0,
for which one may find constants n > 0 and K > 0 such that, for allt > s >0,
|T(t,s)P(s)|| < Ke =) and |71 (t, s)(Ig — P)(B)|| < Kent=s), (4)

The exponential dichotomy implies that there is a stable subspace of solutions tending to
zero uniformly and exponentially as time goes to infinity. In the complementary subspace,
solutions tend to infinity uniformly and exponentially as time goes to infinity.

2.3 Random Graphs

We will consider random graphs of n nodes modelled by a probability space consisting
of the set of labelled undirected graphs of n nodes, endowed with the power-set sigma-
algebra, and a probability measure. We will use a random graph model and terminology
from references [5, [6]. This model is an extension of the Erdds-Rényi model for random
graphs with a general degree distribution. Concerning the terminology, we will adopt the
term “ensemble” instead of the longer expression “probability space”.

The main point of the model consists in to prescribe the expected values of the node
degrees. For convenience, any given sequence of expected degrees w,, = (wi,wsa, - ,wy)
is supposed to verify

max wp = wi > wg > -+ > wy > 0.
1<k<n

We consider thus an ensemble of random graphs G(w,,) in which an edge between nodes 4
and j is independently assigned with success probability
W;W;
pii = )
N 22:1 Wk

In order to ensure that p;; < 1, we assume that w, is chosen so that

( max wk)2 < Zwk. (5)
k=1

1<k<n

A realization of a graph in the ensemble G(w,,) is encoded in the adjacency matrix
A = (A;;) with (0, 1)-entries determining the connections among nodes of the graph. The
degree k; of the i*" node is the number of connections that it receives:

n
R = E A”
j=1

Notice that k; is a random variable whose expected value is exactly the prescribed quantity
w;. In particular, wi = maxi<;<, w; is the largest expected value of a degree.



Network property. We say that a property P holds almost surely if the probability
that 3 holds tends to 1 as n goes to infinity. The assertion almost every graph in G(w,,)
has a property 33 shall be understood as the proportion of all labelled graphs of order n
that satisfy P tends to 1 as n goes to infinity.

This asymptotic probabilistic viewpoint naturally motivates us to work with sequences
of random graphs and thus with sequences of expected degrees. In a rigorous way, we
should write w;(n) to highlight the dependence in n of the expected degree of the it" node.
In order to avoid a heavy notation, we leave this dependence implicit. Hence, by imposing
additional assumptions on the prescribed expected degrees, we focus our attention on the
following suitable sequences of heterogeneous graphs.

Definition 2 (Strong Heterogeneity). For a non decreasing function £ : N — N and
constants 0,y € (0,1), we say that a sequence of ensembles {G(wy,)}n>1 s (£,0,7)-strongly
heterogeneous if the following hypotheses are satisfied.

[HO] Cardinality of hubs: there exists a universal constant I'g > 0 such that

£(n) < To( 1r§nkagxn wk)e.

[H1] Massively connected hubs: there exists a constant cy € (0,1/2] such that

Wy

w
liminf min = lim inf tn) = 2¢p.

n—00  1<i<i(n) MaX]<k<n Wk n—0o0  IMaX]<k<n Wk

[H2] Poorly connected nodes: there exist universal constants I'1,T'y > 0 and 5 > 0 such
that, for every i € {{(n) +1,...,n},

)1+5

Fl(logn <w; < Fg(lrél]?é( wk)lfv.

n
Notice that ¢(n) indicates the number of hubs of the graph, that is, of highly connected
nodes. The parameter 0 restricts thus their amount. Besides, thanks to the hypothesis
[H2], the constant « controls the scale separation between low degree nodes and hub nodes.
By abuse of notation, we say that any element G(w,,) of such a sequence is (¢, 0, v)-strongly
heterogeneous. We denote this ensemble of heterogeneous random graphs by Gy g ~(wn).
A relevant subclass of heterogeneous graphs is introduced below.

Definition 3 (Hubs in Distinct Regimes). We say that an (£,0,~)-strongly heterogeneous
sequence of ensembles {Gy g (wn)}n>1 has hubs in distinct regimes if the additional hy-
pothesis is verified:

[H1’] there exist sequences of constants {o;},{m} C (0,1] such that both are strictly de-

creasing and, for any fized index i < {(n),
.. wj . Wi4-1

liminf ———— >0, > 7 > hmsupl—+.
n—0o0 IMaXji<i<n Wk n—oo MaXj<p<n Wk



We commit again abuse of notation by extending such a designation to any element of

the sequence, which will be denoted by G4 (wy).

3 Main Theorems and Discussion

Consider the uncoupled equations . Due to the asymptotic nature of our analysis, we
assume from now on that

max || V|| < +o0.

i>1

The unique solution of each equation can be represented in terms of the transition matrix
x;(t) = T;(t, s)zi(s), i=1,...,n.

When we say that solutions are unstable, we mean that there are constants ng > 0 and
Ky > 0 such that, for all ¢t > s,

1Tt 8)|| < Koe ™) i =1,... n. (6)

Notice that we suppose all evolution operators share the same constants 79 and Kj.
To state our results, it will be convenient to represent coupled equations in a single
block form. Consider
X =col(zy,- - ,zp),

where col denotes the vectorization formed by stacking the column vectors z; into a single
column vector. Moreover, we denote

V() = @D Vi(t) = diag(Vi(®), .., Va(£)).
=1

Then the coupled equations can be recast into a block form
X =[V(t) — ol ® H|X, (7)

where L = (L;;) is a combinatorial laplacian given by L;; = 0;;k; — Ai; (as usual, d;; stands
for the Kronecker delta), and ® is the Kronecker product [I5]. The unique solution of
equation (7)) can be represented in terms of the transition matrix

X(t) =T(t,s)X(s).

For a = 0, the equations are uncoupled and have only unstable solutions. Our main
results show that stable solutions appear when these equations are coupled in heteroge-
neous random graphs and that increasing the coupling strength a leads to a sequence of
bifurcations.



Theorem 1. Consider the ensemble Gy g (wy), with 6 < (3—+/5)/2 and v > (vV5—1)/2.
Then, there are constants C,c > 0 and an integer No > 0 such that, for all n > Ny,
whenever
C(logn)”
c< algllgxécnwk < ( ogn) ,

with probability at least 1—n~2—2n=1/5 the coupled equations on a graph of Gy ~(w,)
admit an exponential dichotomy: for positive constants K and n and a projector P that
commutes with T, for allt > s >0,

HT(t,s)P(s)H < Ke ") gnd HTﬁl(t, s)(Iq — P)(t)H < Ke Mt=s),

Moreover, in such a situation, the dimension of the stable subspace is determined by the
network structure

rank P =d x {(n).

Roughly speaking, the constants ¢ and C in our theorem [I| are given by two distinct
mechanisms. The constant ¢ comes from the fact that we wish to guarantee the existence
of the stable subspace whereas the constant C' comes from fact that the complementary
subspace of unstable solution must have a uniform exponent divergence. And thereby we
ensure the existence of the dichotomy.

On a heterogeneous random graph a natural coupling parameter is given by

Qg
o= —.
maXxj<g<n Wk
We regard the parameter ag as the normalized coupling strength capturing the dynamics
at the highly connected nodes. In this case, the previous theorem can be restated in the
following form.

Theorem 2. For the ensemble Gy (wy), with § < (3—+/5)/2 and v > (V/5—1)/2, there

exists a positive constant ¢ = c¢(H, max;>1 ||Vi||, co) such that if

oy > C
then the coupled equations on almost every graph of Ggg(wy) admit an exponential
dichotomy, in which the dimension of the stable subspace is exactly d x £(n).

For the case of hubs in distinct regimes, we highlight a bifurcation-type result.
Theorem 3. Given an ensemble G-, (wn), with 0 < (3 — V5)/2 and v > (V5 —1)/2,
there are constants C,¢ > 0 and an integer No > 0 such that for any n > Ny, if

. _

— < a max wg < — for some index i < {(n),
g; 1<k<n Ti

then, with probability greater or equal to 1 —n=2 —2n=Y5 the coupled equations on a
graph of GZey(wn) admit an exponential dichotomy, in which the dimension of the stable
space is d X 1.



The constants C' = C(H, o) and ¢ = &(H, max;>1 ||V;|]) may be explicitly determined
(see section 5). If ¢/C < o;/7; for all i < £(n), notice that, as « is increased, the system
exhibits a cascade of bifurcations, characterized by the increasing of the dimension of the
stable subspace of solutions. For an illustration, suppose that the elements of the problem
are chosen so that ¢ < C. In this case, we may assume o; = 7;. Note that ;1 and o;
control then the proportion of the hub i has with respect to the main hub:

o lréllggn wg < w; < 0i—1 1?1%}(71 W
for n large enough. We assume in addition that ¢/C = o0;/0;_1 for all i. Thus, for the
coupling constant a = g/ maxj<g<, Wi, the inequalities

E<Oé00'i<c_'

imply that, on almost every graph of Géﬂﬁ(wn), the coupled equations admit an
exponential dichotomy, in which the dimension of the stable space is d x 7. Besides, as
«p is increased, the global bifurcation occurs from the transition of an interval control
condition

apoi+1 < €< apo; < C < a0;—1
to the next one

o4 < €< poi+1 < C < on0;.

We conclude this section describing the main ideas of the proof of theorem [1| Its proof
will be given in section 4. In section 5, we point out which minor changes have to be made
in order to prove theorem

Strategy of the proof of theorem We rewrite the block form @ of the coupled
equations as '
X=[V({t)—aD® HX +a(A® H)X,

where D = diag(k1,. .., ky) is the matrix of degrees. Our strategy is to obtain the existence
of dichotomies by persistence arguments. Essentially, the proof consists of three steps:

i) Notice that the ensemble of random graphs has concentration properties: the actual
degrees k;’s are almost surely described by the expected degrees w;’s.

it) Treat a(A ® H) as a perturbation. Using the block form of

Vi(t) —axH --- 0
Y = : : Y
0 con Vp(t) — akn H

together with the concentration properties of the degrees and scale separation [H2]
of the ensemble Gy g ,(wy,), we prove that, for a suitable coupling strength o, the



first £(n) blocks associated with the highly connected nodes are exponentially stable
whereas the remaining ones are unstable.

i11) Include the term a(A ® H) and use persistence of dichotomies. The challenge here
is to proof that this coupling term is small. We use the concentration properties of
Gy,0,4(wy,) and the additional conditions on the parameters scale separation v and
cardinality of hubs 6 to show that, in the limit of large graphs, a||A ® H|| can be
made arbitrary small with respect to the dichotomy parameters. Then, we apply
the persistence of exponential dichotomies to obtain the persistence of the stable
subspace of solutions.

4 Proof of Theorem [1

Before providing the details of the proof, we need some auxiliary results. We group them
according to the research domain.

4.1 Random Graphs

We start estimating the actual degrees with respect to the expected degrees. The next result
will be very useful in such an analysis. For a proof, see the demonstration of lemma 5.7
in [6].

Proposition 4. Graphs in an ensemble G(w,) have degree concentration property in the
sense that:

]P’[|m- — w;| < 2y/logny/max{w;,logn} Vi=1,...,n| >1—2n"'/5
In particular, if logn/ minj<x<, wy tends to zero as n goes to infinity, then
ki=w;[l+0o(1)], Vi=1,...,n,
holds almost surely.

The previous degree concentration property allows us to highlight interesting facts.

Corollary 5. For graphs in a strongly heterogeneous ensemble Gy g ~(wy), whenever n is
sufficiently large, the probability of the event

3 1—v .
max k; < ng( max wk) and min kK; > —Cco max wy
£(n)<i<n 2 1<k<n 1<i<t(n) 2 " 1<k<n

is at least 1 — 2n=1/3.



Proof. Thanks to the previous proposition, from hypothesis [H2], for n sufficiently large,
the probability of the event

logn

< wi(1+2 /T1(logn)?
ki < wi(1+ w; 1<k<n 'y (logn)?

, Vi=tn)+1,...,n,

is greater or equal to 1 — 2n~1/%. Moreover, hypothesis [H1] guarantees that, for n large
enough, the event

logn 2

;i > wi(l—2 > 1l ——— Vi=1,...,¢
Ki Z wz( e ) €o 1?1?;1 Wi ( Fl(log n)ﬁ ) ¢ ) ’ (n),
occurs simultaneously with at least the same probability. O

The proof of the next corollary is similar and will be omitted.

Corollary 6. For graphs in a strongly heterogeneous ensemble with hubs in distinct regimes
’Mv(wn), if n is large enough, then the event

max k; < —7; max wy and min k; > —0; Max wg | < L(n
j<i<n 2 T 1<k<n 1<i<j = 2 T i<k<n j<tn),

occurs with probability at least 1 — 2n~ /5.

Given a sequence of expected degrees w, = (wi,...,w,), the second-order average
degree is given by
n 2
2= Wk
A o ni-
> k=1 W

This constant plays an important role for the characterization of the ensemble G(w,,).

Proposition 7. Suppose that the largest expected degree satisfies maxi<p<, wy > logn.
Let A\jae denote the largest eigenvalue of the adjacency matriz associated with a random
graph in G(w,). Then, the probability of the event

3 1
< — —
Mgz < A + 5 /logn 11%1]?%(71 wg + \/4 logn lrg]?écn wi + 3(A +logn), /logn lgllfgcn Wy

-1/2.

is greater or equal to 1 —n

Proof. This result is actually a minor modification of lemma 3.2 in [16]. Just repeat the
same proof there using

21 / ( )1 /

10



The previous proposition leads to an important result on the control of the normalized
perturbation size for heterogeneous graphs. The following statement will be of fundamental
importance for us.

Proposition 8. Consider a strongly heterogeneous ensemble Gy g ~(wy) with § < 6/2 <
(3—+5)/2 andy >1—6/2 > (v/5—1)/2, where § > 3/4. Then, for n large enough, with
probability at least 1 —n =12, the largest eigenvalue Amag of the adjacency matriz associated
with a random graph in Ggg(wy,) verifies

)\mam S 5( 121]3%% /wk)(S

Proof. Assuming strong heterogeneity as above, we first show that

é
A< (1211?%(” wg) (8)

for n large enough. Notice that, from and hypotheses [HO] and [H2], we have

2 146 1—
(1?1?§nwk) <F0(1I£1]§L§ank) + +F2n(11£]?§xnwk) 7,

Since 0 < 1, for n large enough, we obtain that
1=y

2
(s o)™ < 202 ( oy wi)

Using again hypotheses [HO] and [H2], for n sufficiently large, we get

n n
246 2-2
Zwk >n and Zw,% < Fo( max wk) + —Hfgn( max wk) W,
1<k<n 1<k<n

k=1 k=1

so that !
246 2-2
A<Fof( max wk) + —i—F%( max wk) &
n 1<k<n 1<k<n
Hence, for n large enough,
2—2y

1+6—
A< 2FOF2( 11;1]?%1 wk) gy F% ( 11%0’%}(” wk)

and the desired inequality follows from the choice of the parameters 6 and ~.

1 1+
Note now that, when v > 1/2, clearly logn < (I';/T'2)20-7 (logn) 207 for n large
enough. Thus, from hypothesis [H2], it follows that

1 / 9
ogn < 11;113gxnwk (9)

11



for n sufficiently large.
From inequalities and @, and from the fact that 6 > 3/4, it is easy to deduce for
n large enough

3 1
A+ = /1 =1 A+1 1 <
+ 5 /log n 1r§nI?§ank+ \/4 ogn 1réll?§nwk+3( +logn), /logn 1I§nl?§ank <

g
<o, )

Therefore, the result follows from proposition [7] O

4.2 Exponential Dichotomies

One of the most important properties of exponential dichotomies is their roughness. In
clear terms, they are not destroyed by small perturbations on the matrix entries. Our
proof relies on this persistence. Therefore, for completeness we state the following result.
A proof can be found in [13].

Lemma 9. Suppose that the linear differential equation admits an exponential di-

chotomy on Ry. If

n
6 := sup [|B(t)|| < —,
s [BO)] < g7

then the perturbed equation

y=[V{)+ By

has a similar exponential dichotomy in the sense that: there exist a constant K >0 and
a projector P, which preserves the rank of the original projector P and commutes with the
evolution operator T associated with the perturbed equation, such that, fort > s >0,

|T(t,5)P(s)|| < Ke 172K ang || T71(t, s)(Ig — P)(t)|| < Ke~(1=2K(=9),
The next propositions will be important in our proof.
Proposition 10. Consider the equation
y=[V(t) —aHly, (10)

where H 1is a positive-definite matriz. Let T be the associated evolution operator. Then,
there exist a constant K > 0 that only depends on H such that

I7(t,8)]| < Kpgem (@ RulVIDE=s) g >,

where Ag > 0 is the smallest eigenvalue of H.

12



—a(t—s)H

Proof. First we solve & = —aHx. Clearly, in this case T'(t,s) =€ is the associated

evolution operator. Notice that there is a positive constant Ky such that |T(¢, s)|| <
Ky exp|—aXg(t — s)] for all ¢ > s, where Ay > 0 is the smallest eigenvalue of H. For the
full equation , the variation-of-constants formula yields

t
Pt s) - T(t,s) = / TtV ()T, 5) dr.
Hence, we obtain

t
I (t, 5)| < Kprem A=) +KH/ =MD V()| | (7 5)]| dr-

S

Now introducing ws +(u) = w(u) = || T(u, s)|| exp[—aXg (t — u)], we have

t
w(t) < Kyw(s) + Ky|[V| / w(r) dr.
S
Using a Gronwall estimate, we conclude that
IT(t, )| < Kge=@Aa—KullVID(t=s),
O

Proposition 11. For the equation & = V (t)x, suppose that the associated evolution oper-
ator T werifies ||[T~(t,s)|| < Ke="*=%) for all t > s. Then, the perturbed equation

y=[V(Q)+Hly
admits an evolution operator T satisfying
|71t 5)| < Ke@KIHDE=9) gy > g

Proof. Notice that the respective evolution operators verify the following partial differential
equations

T Ht,s) =T t,s)V(t) and T (t,s) = =T (t,s)[V(t) + H].

Using variation of constants, we then obtain
T\t s) — T (t,s) = / A, ) HIT (¢, 7) .
s
Hence, by the triangle inequality, we have
T4t )] < Ke =) 4 K| H| / N, )l dr
s

Following the same steps as in the previous proposition, now with ws;(u) = w(u) =
|71 (u, s)|| exp[—n(t — u)], we obtain the result. O

13



4.3 The Proof

We follow the strategy presented at the end of section 3.

Proof of Theorem [1}

Step i. — In corollary pl we have already established in a precise way how the prescribed
expected degrees w;’s almost surely determine actual degrees k;’s.

Step ii. — We can rewrite the equation @ as follows
X = [Qt,a) + cA ® H]X, (11)
where Q(t, o) := @, [Vi(t) — ar;H]. Now consider the system

Y =Q(t,a)Y. (12)

Since the system is block diagonal, we can solve each block independently. Let

be the associated evolution operator. On the one hand, applying proposition [10|to the first
£(n) blocks, we conclude that

| Ti(t,s)|| < Kpgexp [ — (adn é‘éﬁn) ki — Kg 15?33&) Vi) (= s)], V1<i<{(n).

Recall that by hypothesis max;>1 ||Vi|| < +00. On the other hand, proposition [11| shows
that the remaining blocks will verify

||Ti—1(t, s)|| < Koexp [— (170 — ol H|| g(n)aa'x< m)(t — s)], Vi(n) <i<n,
n)<i<n

where 19 and K are the universal constants introduced in @ These observations lead us
to consider the operator T'(t, s) associated with equation in a block form with respect
to the direct sum R @ R4 (—=4n) namely

fe9=( "G vey )

as well as the natural projectors

s (I 0 s (0 0
p=(W8) e wep=() 0

14



Since the operator norm induced by the Euclidean norm has the property

7 _ P m1 _ H—1
1T (t,5)]| = mavx [Tyt )| and [Tt 9)] = max |77 2. 5)],

in order to characterize an exponential dichotomy, the contraction rates for stable and
unstable directions must satisfy

K >1 ||V
a min K > Xz, [V and a max K < o (13)
1<i<t(n) AH ((n)<i<n | H ||
Suppose from now on that n is large enough so that
120|| H || K iy ma: Vi

( max wk)’y > (logn)w 2| H|[ Ky max;>1 | ||

1<k<n 607]0)\]{
Thus, defining

4K i>1 || Vi
_ 4Kpg maxiz ||Vi] and  Ci= M
CoNET 3F2||HH
let o« > 0 be such that
< <O(1 7
c alrggsxn W ( og n)
Notice now that
€ <o max wp = 1Ozc max wy > KHmaXiZl IVl
2 1<k<n k 2 Olgkgn k AH ’
3 1— "o
2 7 —al —
o g, e <200 )T = el (mpr w) < gy

Therefore, from corollary ' 5, for n sufficiently large, we conclude that the event (| . oc-
curs with probability at least 1 — 2n~1/5. With the same estimate for the probability,
equation admits thus an exponential dichotomy with constants

IA( = max{f(H,Ko} and

. 1 > 3 1—v
) = min {iAHcooz max wy — Ky max WVills mo — §HHHI‘20¢( 11%1]?§xnwk) }

Step iii. — Now we wish to incorporate back the perturbation A ® H. Notice that
loA® H|| < a||A||||H]|. Moreover, since A is a real symmetric matrix, |A| = Amax. Thus,
in order to apply lemma [0 we need to estimate the probability of the event alpax < A,
where

A~

! min{1 A Co max w KH HVH 3F o max w )1_7}
= — - X = X
a2 R E] O S T ] R IIHH 2" Nagk<n ¢
1 Ky L o
> — mm{ H Il, —}>O.
AK? [H T 2]
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Thanks to proposition |8 with probability at least 1 — n=1/2,

3
OAmax < 5a(11£1]?2<nwk)6, where 1 <6 <3—1/5.

Using the definition of o and hypothesis [H2], notice then that

7y

) Iy y—246-1

Sa max w < 5C=%( max w .
(1§k§n k) I‘Y(lgkgn k)

By hypothesis v > 1 — /2. Hence,

2461 _6%-66+4
( max wk)7 L < ( max wk) 4
1<k<n 1<k<n
tends to zero as n goes to infinity, which concludes the proof. O

5 Comments on the Proof of Theorem [3|

The proof of theorem [3] follows the same lines of the previous one. Corollary [6] provides us
now the first step. Moreover, the last step is exactly as before, only with a convenient 7)
as described below.
Concerning the second step, the set of arguments remains unchanged. However, one
first introduces constants
oo SEHmaxizy ||Vill ~._ Mo

and = .
i 2| Hl

Note that, if ¢/C < o /7; for some j < £(n), then, for all n, it will be possible to consider
a suitable parameter @ > 0 as in the statement. Applying proposition to the first j
blocks and proposition [L1| to the remaining ones, one has thus to estimate the probability
of the event

Ky maxi1 | Vi

. o
;> d i < T 14
o 11&1& Ki Y an ajrgag); Ki TH] (14)
Corollary [6] and the fact that
> <20 d L > ¢
20r m n a0 m c
9T 151?§Xn Wk & 97 1§l?§n Wk =3

show that occurs with probability at least 1 — 2n~1/5. Hence, exponential dichotomy
is found with this estimated probability, being now
b >o0.

2o | QU

i

ol

1 c = 3
N = min< —«ao; max wi — —,2C — —o7; max w }>min{
" {2 I Zken PR 27 {<hin F
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