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Abstract

In this work, we propose a dynamic-programming-based explanation for the reported
stability of the female and male ratios in biological populations. Using tools of variational
theory applied to the study of ground states in one-dimensional crystal, we introduce the
notion of historically adapted populations as global minimizers of maintenance cost functions,
and prove that historically adapted populations typically present an observable stability in
the sex ratio. This mathematical formulation suggests that stable observable sex ratio is an
intrinsic feature of populations that are efficient in the use of the resources.
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1 Introduction

It seems to be Charles Darwin who first pointed out the real challenge behind the development of a
sex-ratio theory (see the conclusion of Chapter 8 in [4]). Sex-ratio studies today form a fascinating
topic in evolutionary biology, which underline the impact of natural selection on the allocation of
resources to male and female progeny. Using a frequency-dependent argument, Fisher provided [6]
a theoretical explanation for the prevalence of near 1:1 sex ratio under natural selection. The effort
to understand the stability of biased sex ratios has enabled the central theory to find successive and
fruitful extensions. For instance, Hamilton’s local mate competition hypothesis [8] was originally
introduced to clarify how the interactions between siblings produce very female-biased sex ratios
in parasitic wasps.

In sex-ratio theory the point of view that consists in describing collective phenomena from the
actions and expectations of individuals has been very useful. Charnov’s book on sex allocation
[3] is an extremely successful illustration of this tendency. By considering nonlinear and unequal



returns from parental investment in sons and daughters, Charnov has developed a mathematical
formulation, able not only to conceptually explain cases of both Fisherian and non-Fisherian
sex ratios but also to provide predictions to be tested in experiments. Another example of a
fundamental contribution from the philosophical approach based on methodological individualism
is the so-called Trivers—Willard hypothesis [11], which suggests that natural selection should favor
parental ability to adjust the sex ratio of their offspring in response to environmental conditions.

The focus on individual behavior leads to the important discussion about selection criteria
for reproductive strategies. Nowadays questions arising from parent-offspring conflict, parental
investment, sibling antagonism, and mate choice may be mathematically addressed by evolutionary
game dynamics (see, for instance, [9]).

We will adopt here a different and, to the best of our knowledge, novel point of view, which
consists mostly in a global perspective by proposing a population-based optimization model. Fo-
cusing on the entire population as a dynamical agent without directly paying attention to specific
biological parameters, the consideration of an implicit maintenance cost function will give qual-
itative insights for a common biological feature: an observable sex ratio. As a matter of fact,
our main result will argue in favor of the hypothesis that the very possibility of a sex ratio being
recognized in nature may reflect a balance between the size of the population and the finiteness of
resources.

The tools used in this work can be applied to study many other situations where some popu-
lation (not necessarily biological) is partitioned in a finite number of classes and a cost function
on the size of the classes is assigned (for example, to study social and economical behaviors, mean
field games, etc.). We remark that the mathematical techniques developed here have founda-
tions in common with dynamic programming and the variational theory applied to the study of
ground states of generalized Frenkel-Kontorova models on a one-dimensional crystal (see, for ex-
ample, [1, 2]). Actually, statistical physics methods have already been successfully exploited in
evolutionary games on graphs, especially when social networks are seen as the result of individ-
ual interactions governed by some kind of interdependency, such as sexual relationships (see, for
example, [10]).

In order to be more concrete, suppose we periodically census the size of each gender in some
biological population. Let (z) € IN? be the (i + 1) census, where x; and y; indicate the number of

females and males, respectively. An infinite list w = ((zg), (ii), (zi), ...) can be viewed as a possible
(yet maybe unlikely) historical record of each gender of a particular population. Obviously, not all
w has a biological meaning: This could be the case, for instance, of w = (((1)), (8), (8), (909), (909), c).
Hence one evidently needs some criteria to select among all registers those that may indeed rep-
resent a possible history of some population. This can be obtained by considering a function that
associates some maintenance cost with any finite register of a population history. Such a cost
function shall necessarily capture chief features® of the biological population to be modeled.

A cost function leads us to the notion of historically adapted populations, which intuitively
correspond to those populations more efficient in the use of available resources. The concept of
“historically adapted population” shall not be understood as “survival of the fittest.” In fact, we are

not focusing on competition either between species or among individuals, but only looking for the

'In particular, it must assign a high cost to finite population histories that should be unlikely.



optimal rates for each gender in populations under certain environmental conditions. In particular,
we neither claim that actual populations are historically adapted nor assume the existence of
natural selection criteria acting on populations. Even so, the mathematical proof of profuseness
of historically adapted populations with an identifiable sex ratio might insinuate why sex-ratio
random variations in a given population seem to be a very rare phenomenon in nature.

The paper is organized as follows. In section 2, we present the mathematical model we shall
study. In section 3, we introduce the notion of historically adapted populations and show some
of their properties. In section 4, we present arguments for the existence of an asymptotic average
sex ratio for historically adapted populations. Concluding remarks are discussed in section 5. In
Appendix A, one can find the mathematical proofs of the results used in the paper.

2 The model

In this section, we shall present a mathematical formulation to model two-sex populations in a
finite-resource environment. As far as we know, such a theoretical strategy to deal with sex-ratio
questions is totally original.

Denote the set of all nonnegative integers by IN. Define then

Q.= (]NQ)]N = {(L) N s x,y €Ny Vie ]N}.
1€
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The elements of 2 will be called the (possible) histories for the population. Each history w € Q
can be interpreted as a list of consecutive censuses of female and male populations. Given w =
(;j)iem € Q and m,n € N with m < n, we set w[m| := (zz) and w[m,n| = (Z_’)m<i<n, which
are the restrictions of the infinite history w to the moment m and to the finite history from the
moment m until the moment n, respectively.

We will now define a class of cost functions that shall be used to select those censuses that
may, in fact, be realized. First of all, we would like to emphasize that, although we will explicitly
express only the dependence on population sizes, a maintenance cost function must depend on
several biological and physical variables. We will just omit this multiple dependence in our analysis.
Thus, let C': N? x N2 — R be a function bounded from below, which means

i C(0) G) > = <1>
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The value C' ((;), (g)) shall be interpreted as the maintenance cost to have a population with x
females and y males, followed by a population with z females and y males. In particular, we are
assuming that the maintenance cost takes into account only two successive population censuses.
This assumption is made for simplicity and can be justified by observing that this model captures
the main features of the general case, when the maintenance cost is a function of a finite number
of consecutive censused-population sizes (see section 5).

In a finite-resource environment, it is reasonable to assume that, uniformly and independently
of the initial population size, the cost to generate and maintain a new population tends to infinity



as its size increases. In mathematical terms, the latter hypothesis can be expressed as follows:
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On the other hand, it is also reasonable to suppose that the population maintenance cost is, in
some sense, more affected by the current population than by the former one. Roughly speaking,
such an assumption means that, although the cost for a small initial population generating a very
numerous new one may be high, the maintenance of a numerous population has a high cost by
itself, independently of its previous size. Therefore, we shall assume that there exists a constant
Ko > 0 such that the cost of having (;) in any census does not vary more than K¢ as a function
of the possible values for the former population, or more precisely, we assume
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3 Historically adapted populations

The intuitive idea is that a historically adapted population should minimize the maintenance cost
along the time. Although, in most of the cases, there is no meaning in talking about a minimum
cost for infinite histories, the idea of histories minimizing the cost along the time will be useful. As
a matter of fact, this heuristic motivation will allow us to highlight a central functional equation
that will lead us to a rigorous definition of historically adapted populations.

3.1 Heuristic motivation

In order to explore heuristically a definition of historically adapted populations, consider that
the function C' is nonnegative?. Note that the total maintenance cost of a population history
w = (g:’)iem is given by >, C ((g:j), (g:)), which may clearly diverge. Assume for now that
there exists a history with finite total maintenance cost (that is, for which the series converges).
Thus, the smallest total cost for some history beginning from a given initial population (‘zg) is just

“(53) . ((5;){?52),...) ;C ((Zj/::) @:))] ' W
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yo) € R for any

(zg) € IN2. Moreover, as the cost function C' is supposed to be nonnegative, obviously v > 0

Since we are assuming that the total cost is finite for some history, then u(

2Mathematically there is no loss of generality with such an assumption, since C' is bounded from below.



everywhere. Now, note that the above equation can be rewritten as
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Hypothesis (2) implies that the infimum in the above equation is actually a minimum. Therefore,

for each (‘;S) € IN?, there exists (;) € IN? such that

()= (G- G)) ) ©

One now has a recursive way to construct an interesting history. Indeed, given an initial
population (zg), we find (zi), which satisfies (6), and, inductively, from the population (zlj) at
the moment i — 1, we obtain a population (z) at the subsequent moment such that u(z:i) =

C’((z?j), (i’)) + u(z’) Since its total maintenance cost is equal to the smallest one we could

expect for some history beginning from (zg), the history w = (‘;?)E]N constructed by the above
(2

procedure will be called an adapted history. We remark that there is not necessarily uniqueness

and there might exist infinitely many adapted histories starting from a given initial population.

3.2 Rigorous definition

The existence of histories with finite total maintenance cost is a very strong demand made for
our heuristic definition of historically adapted populations. Besides being a tremendous restriction
for the model, such an assumption implies counterintuitively that the maintenance cost of these
populations vanishes as time goes by. Anyway, the observation is not totally naive that an adapted
history should be one for which in some sense C(@::)’ (z:)) goes to the infimum of the cost
function C' as k tends to +00. More important, the previous heuristic discussion leads us to propose
a general definition of adapted histories, which extends the intuitive idea of global minimizing
histories for situations where the notion of finite total maintenance cost has no meaning.

It is straightforward that whenever a function u : N? — R is bounded from below and verifies
an equation like (5), we can use it to construct adapted histories. If the maintenance cost function
C satisfies hypotheses (1), (2), and (3), then one can show that there exist a bounded function®
u: IN? = R and a real constant v (both depending on the function C') such that

() g QO Q) wa (e o

3Such a function is a fixed point for a suitable Lax-Oleinik operator (see Definition 2, Theorem 3, and Remark 4
in Appendix A).




Since C satisfies (2) and v is bounded, we can again deduce that for each (‘;g) there exists (‘;i)
such that u(zg) = C((IO), (f;)) - u(;) — ~. Hence, given any initial population (

Yo Yo
a recursive way adapted histories starting from (zg) as we have made in section 3.1.

z“), we define in

Definition 1. Let v : N*> — R be a bounded function satisfying the functional equation (7) for
some constant v. Then w = (il) N is said to be an adapted history for the maintenance cost C' if

i

Ti— Ti— o Z; .
u( 1)20(( 1>,( >)+u( )—fy, forall i > 1. (8)
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We remark that in this context the quantity u(zg) is not necessarily given by the expression (4),
and then it cannot be interpreted as the smallest total cost we would expect for any history starting
from (zg) Anyway, if w = (‘rl) is an adapted history, then it is easy to see that its average

Yi/ i€N
maintenance cost tends to v as time goes by, or in mathematical terms

i ((5). () = ®

Therefore, it follows from the functional equation (7) that v can be interpreted as the minimum
asymptotic average maintenance cost we can expect for arbitrary histories, and this minimum
value 7 is necessarily attained by any adapted history. Thus, even without uniqueness of adapted
histories, we have uniqueness of the quantity v (see Remark 4 in appendix A).

Ifw= (z)le]N is an adapted history, we can recover the global minimizing property, since any

finite history w[m,n] = (

y:)mgign
the same initial and final populations*. More precisely, for all m,n € IN with m < n and for any

other population history & = (%' € Q verifying w[m| = w[m| and win| = w[n/, it follows that

yi)ie]N
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k=m-+1

minimizes the maintenance cost among all finite histories with

where =1y is due to (8); =(2) comes from a telescopic series; =3 follows again from a telescopic
series, as well as from the fact that w[m] = w[m] and wln] = w[n|; =) is due to (7); and <
follows from inf .« [C((57), (7)) +u(G)] < C((G1), ) +u(G)-

A more pertinent point about historically adapted populations is that, as we will see in the
next section, they provide a theoretical argument in favor of the hypothesis of prevalence of stable

sex ratios for populations under stable environmental conditions.

4In the language of solid state physics, such a property means that the adapted histories behave like ground
states of one-dimensional crystal models (see, for instance, [1]).



4 On the existence of the asymptotic average sex ratio

Investigating the identification of a sex ratio, we will find that when the population maintenance
cost takes into account the gender proportions, then a sex ratio will be observed in historically
adapted populations. In fact, since those populations are global minimizers of cost functions, one
may argue that a sex ratio will emerge as a consequence of the finiteness of available resources
whenever gender densities have a linear influence on the maintenance cost.

The gender proportions of the (i + 1) censused population (z) correspond obviously to the
quantities z;/(x; + y;) and y;/(x; + y;). Nevertheless, we have seen that there exists at least one
historically adapted population starting from any arbitrary population. Such a fact means that
all first values for a sex ratio can then be achieved, and it shows that the analysis of initial data
may be ineffective. Anyway, one can still ask whether later generations tend toward a sex-ratio
equilibrium. Mathematically, it corresponds to looking for some asymptotic sex ratio, that is, given

an adapted history w = (5) B to ask for the existence of the limits
i/ q
'Z’. .
lim . and lim Yi .
=00 Tj + Y; =00 Ty + Y;

The historically-adapted-population approach does not guarantee that convergence, but it will
allow one to ensure the convergence in average of sex ratio, namely, the existence of the limits

n
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More important, if the sex ratio converges in average, then there are infinitely many arbitrarily long
periods of time for which it remains as close as one wants to the average limit. This mathematical
property might therefore explain the documented stability of sex ratio in nature.

4.1 Linearly perturbed maintenance cost functions

Let C': N> x N? — R be a cost function verifying hypotheses (1), (2), and (3). Given a vector
A = (ay,as) € R, the linearly perturbed maintenance cost function with weights a; and as on the
gender densities is the function Cy : N2 x IN? — R given by

(QO)-(() =
() 0)-e(C) () sty sty wovemo

Notice that a; and as assign cost (or benefits if negative) on the latest gender densities of the
population. Besides, the original maintenance cost function C' could include linear and nonlinear
feedbacks for the gender densities. We shall study the asymptotic average sex ratio for historically
adapted populations with respect to perturbed maintenance cost functions in the above form.

It is straightforward that Co) = C. Besides, C4 converges uniformly to C' as the vector A
tends to (0,0) (see (12)). Much more crucial is the fact that hypotheses (1), (2), and (3) also hold

7



for the perturbed cost C'4. Thus, we can apply the result of section 3.2 to get the existence of

A

wh = (ig) € (), an adapted history for the maintenance cost C'y. Therefore, for a fixed cost
i " 1€IN

function C, we can consider the map I'c : R> — R given by

x i
r lim C k= 1),< k)), for all A € R2
ol4) "HOO”Z . ((yk 1 yit

(The above function is well defined due to (9).)

Notice that if v is the minimum asymptotic average maintenance cost with respect to C,
then clearly I'c(0,0) = ~. Furthermore, one can easily show that I'c is a concave application,
which, in particular, means that I'c is continuous everywhere and differentiable almost everywhere
with respect to the Lebesgue measure®. As a matter of fact, one may say a little more on the

differentiable behavior of the map I'¢, since one can show that
Fc(al, ag) = fc(al — ag) + v+ asq, i (al, CLQ) S RQ, (10)

where fo: R — R is a concave function such that fo(0) = 0 (see Remark 6). Thus, for almost all
A € R, the map I'¢ is actually differentiable along the straight line {(a,a — A) : a € R}.

The points of differentiability of I'c are essential for the discussion on the existence of an
asymptotic average sex ratio for historically adapted populations. Let then VI'¢(A) denote the
gradient vector of the function I'c at the point A € R2. We are able to show that, whenever
A = (a1, az) is a point of differentiability of I'c, one necessarily has

n A

1 x yi
1 —§ k k = VIc(A) = (fhlar — as),1 — fh(ar — as)), 11
ngrgon 2 (xk +3/k xk +yk) c(4) (fc(al as) folay a2)) (11)

for any adapted history w” = (;2) N € 2 with respect to the maintenance cost function C'4. This
is precisely the statement of Thleoégm 7 in appendix A.

First of all, (11) means that, for almost all linearly perturbed maintenance cost functions,
the respective historically adapted populations do share the same asymptotic average sex ratio.
Moreover, this common value is constant for each family of cost functions {C{a,q—a)}aer, When A
is a point of differentiability of fo. In particular, since fo is concave, then f/, is nonincreasing
whenever it is defined. Therefore, if A; < A, are two points of differentiability of fo, then the
asymptotic average female proportion in historically adapted populations with respect to Caq—a)
will not be less than the one in historically adapted populations with respect to C,p—a,)-

The convergence in average of the sex ratio has a main consequence: a recurrent stability
along time for this biological feature. In fact, a simple lemma (see Lemma 8) ensures that there
will exist infinitely many arbitrarily long periods of time for which sex ratios must be as close as
desired to the average limit. In more mathematical terms, suppose A = (a1, as) € R? is a point of

differentiability of the map I'¢, and w? = (z;‘) € () is an adapted history with respect to the

i 7 i€N

5See Proposition 5 and Remark 6 in Appendix A.



maintenance cost function C'y. Hence, given ¢ > 0 arbitrarily small and M > 0 as large as one
A

wants, there are infinitely many finite histories w”[m,n] = (ig) such that n —m > M and
i " m<i<n

n A
Z <J}£aji y]? - fé’(al - a2)>

k=m+1

< €.

This property might clearly provide a reasonable explanation for the observed stability of sex
ratio in nature, underlying the major role of the nontrivial interaction between a finite-resource
environment and the growth and maintenance of a two-sex population.

4.2 From perturbed to nonperturbed maintenance costs

We have an asymptotic average sex ratio for historically adapted populations with respect to
almost all linearly perturbed maintenance cost functions. However, I'c may be nondifferentiable
along countably many straight lines {(b,0 — A) : b € R}, and the limit (11) is guaranteed only
if A € R? is a point of differentiability of I'c. Note that this limit could exist for some point
of nondifferentiability of I'c, but the argumentation in the proof of Theorem 7 cannot be used
to decide if this is the case. In particular, one cannot ensure that I'c is differentiable at A =
(0,0), which would imply the existence of an asymptotic average sex ratio for historically adapted
populations with respect to the original nonperturbed maintenance cost function C.

Although we cannot always guarantee the existence of an asymptotic average sex ratio, the
characterization of I'c given in (10) allows us to deduce that even in the worst case the average
sex ratio takes values in some fixed interval (see Theorem 10). As a matter of fact, for all B =
(b,b— A) € R?, there exist real constants Ln and Ra (depending only on the cost function C' and
on the real parameter A) such that

0 < La <liminf — Z B+ 5 < limsup — Z B+ < Ra <1,
yr

n—oo MN n—soo N

whenever w? = (?133) o € Q) is an adapted history for the maintenance cost function Cp.

For any points B = (b,b — A) and B = (3,3 — A) with A < A, one can show that Rx < La
(see Remark 11). Hence the respective intervals [La, Ra] and [Lx, Rx| may intersect each other
only at their common boundary. In particular, a small perturbation, let us say, on A will imply
that the corresponding average sex ratios of historically adapted populations must take its values
outside the interval (Lz, Ra). One might interpret this fact as a kind of instability of average sex
ratios for points of nondifferentiability of I'¢.

To illustrate the above discussion, let us consider an extreme situation. Suppose that there
exists some point B = (B, — A) such that Ly = 0 and Rz = 1. It is straightforward that, for
any other point B = (b,b — A) with A # A, we have

either lim or lim 1,
WHOOHZZ'kB-Fyk naoonzka—kyk



for all adapted history w? = (zf;) X € ) with respect to Cp. So only for cost functions Cg;_a),
i 1e

there could exist historically adapted populations with two genders coexisting as time goes by.

A brief concluding remark is that, for the special case of the nonperturbed maintenance cost
function C' = C{g,p), there always exist constants 0 < Lo < Ry < 1 such that average sex ratios
of historically adapted populations for C' either converge to some point of the interval [Ly, Ro] or
take values in this interval in a periodic or random way, without convergence.

5 Discussion

We proposed a new theoretical paradigm for sex-ratio problems: Reproductive interactions are
supposed to have interconnectedness governed by a maintenance cost function depending explicitly
on the size of male and female populations. By considering an environment with finite resources, we
are compelled to take three hypotheses on the maintenance cost function: There exists a minimum
cost (or a maximum benefit) that could be achieved by some population; the cost diverges to
infinity as the latest population increases; the cost is dominated by the current population size.
In this framework, we were able to show that there always exist historically adapted populations,
which are populations minimizing the maintenance cost along time. Furthermore, the main result
established here has guaranteed that, for almost all linearly perturbed maintenance cost functions,
the average sex ratios of the respective historically adapted populations do converge.

We notice that formalism developed in previous sections and its consequences can be immedi-
ately generalized to various other situations. We would like to briefly discuss some of them.

Cost dependence on a finite number of consecutive censuses. One may consider a main-
tenance cost function C' : N?* — R depending on L > 2 consecutive population census, which can
be seen again depending on two coordinates C' : N2(E=1 x IN2(L=1) 5 R via the identification

()66 =0((C) () G ) @) ().

One may now use such a point of view to rewrite the assumptions on the cost function and to
easily obtain the analogous results for historically adapted populations.

Age-structured population models. We can introduce, for instance, the quantities of new-
borns of each gender. Hence, if newborns are included as a cost factor, then, for almost all perturbed
cost functions, there shall exist an identifiable primary sex ratio in historically adapted popula-
tions. More generally, one may analyze a maintenance cost function depending on M > 2 age

classes for both genders, namely, a function C' : N?M x IN?M 3 R, C(((&zjgﬁ), (((g%g;\‘f))))

Sequential and simultaneous hermaphroditism. By adding variables in our model, we can
without difficulty extend our study to the occurrence at the same time of separate and combined
sexes in some biological system. For instance, if X and Y denote the sizes of the dioecious part
of the population, concerning the sex reversal part, let h, and H, be the number of sequential
hermaphrodites reproducing early in life, respectively, as females and as males. The number

10



of individuals after sex changes will be indicated then by hY and H?, respectively. At last, let Z
denote the number of individuals having simultaneously both male and female reproductive organs.
Therefore, the distribution of dioecy versus hermaphroditism can be investigated, for example, by
the means of a maintenance cost function C' : N” x N" — R,

Periodic cost functions. The population maintenance cost may vary periodically along time.

Such a situation corresponds to considering a family of cost functions C;, Cs, ..., Cxy : N2xIN?2 — R
. . i n — .

and, for any finite history w|m,n| = (g?ji)mﬁign’ a total cost ;1 Ch_1 (mod N)((?’j:ii), (3’;)) The

analysis of the periodic case may be reduced to our time-independent case just by introducing a

conjunction cost map

C((2) () = if(en) 2y (exnyene [C1 (€)1 + G (6, () + o+ O (G2, ()] -

Y1 Y2 TN—-1

It would certainly be very interesting to take into account two or more generalizations at the
same application. For instance, an age-structured model with sex reversal individuals might help
to understand whether there should exist a special age for sex change. Here again, from the
biological perspective, in this particular situation as well as in many other potential applications
(for example, to study social or economical characteristics), such a form of modeling requires
one first to describe more explicitly the properties of a maintenance cost function regulating the
reproductive interactions of a given population.

Appendix A

In this appendix we shall give the mathematical proofs of the results previously discussed. From
now on, let C': N? x N? — R be a function verifying assumptions (1), (2), and (3). The main
idea is to associate with such a maintenance cost function a suitable Lax-Oleinik operator and use
its fixed points to construct historically adapted populations as well as to study their asymptotic
properties. Lax-Oleinik fixed point techniques have been successfully explored in several areas. A
very important example comes from calculus of variations: the Lax-Oleinik semigroup, which is
essential in Fathi’s weak KAM theory for Lagrangian mechanics (see [5]).

First of all, we need to introduce the spaces on which our Lax-Oleinik operator will act. Denote
by ¢>°(IN?) the set of all real valued bounded functions on IN?, and denote by ¢>°(IN?) /R the set of
all real valued bounded functions on IN? modulo constants, that is, the set of equivalence classes
[f] = {g € (*(IN?) : f— g = cte}. Both ¢*°(IN?) and ¢*(IN*)/R are Banach spaces with norms
1 lloo := SUP (=) 2 |f(z)| and ||[f]||x = infrer || f + ||, respectively.

Definition 2 (The Lax-Oleinik operator). Let T be the operator acting on £>°(IN?) by

(o) = g o () G) /Gl v G e

whenever f is a real valued bounded function on IN?.

11



Notice that the operator Ty is well defined, since

nic= 1 < 7er < s 0 ((7).(3)) #1150+ 0 (§): (0)) +11

The above upper bound also implies that the infimum in the definition of the Lax-Oleinik operator
is actually a minimum. Indeed, as the cost function C' verifies hypothesis (2), T f(;) will be
selected among a finite number of values. Furthermore, note that To(f + k) = Te(f) + & for any
k € R. Thus, we can consider T¢ acting on ¢°(IN?)/R.

Theorem 3. The operator T : £°(IN?) /R — (*°(IN?) /R has a fized point.
Proof. We remark first that
T z
il =oseth) = sw (7)< (7)].
(5).(ewe LAY Y

where f is any element of the equivalence class [f].
Given X\ € (0,1), let M, be the multiplication by 1 — A acting on ¢>°(IN?)/R. The operator
Tc o M, is a contraction and has therefore a fixed point [uy] € (*°(IN?)/R, that is, (T o My)[uy] =

Te[(1 — Nuy] = [uy]. Hence, observe that
1 1 R
H[u,\]H# = 5osc ((Te o My)uy) = 508C (Te(1 = Nuy) < 70

In particular, the family {[us]}re0,1) has an accumulation point [u] € £2°(IN?)/R as A goes to zero.
Choose A; — 0 such that [uy,] — [u] as i — co. Since T is 1-Lipschitz, we have

Telul = lim Te[(1 — X\)uy,] = lm [uy,] = [u].
1—+00 1—>+00
[
Remark 4. We have Telu] = [u] for some equivalence class [u] € (*°(IN?)/R. Therefore, if

u € (*°(IN?) is an element of the equivalence class [u], it follows that

()= g o (6) G) -G v () e

for some real constant v. Recall that such a functional equation allows one to construct an adapted
history w = (?) - starting with any given initial population (zg) In particular, it is easy to see

that, for any adapted history w = (i’) o and all arbitrary history w = (g) B

i S2[e () Go) o) )] -
<m0 [e (o) Go) +G) —Go)]
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Thus, one clearly has (9) and
1 n — B —
v= inf liminf — ZC’ <(gik 1), (?k)) .
(g:)iemeﬂ noo ML — Yk—1 Yk

Now, given A € R?, consider the perturbed maintenance cost

() G) = (GG ()

with the convention that zero over zero is equal to zero. It is straightforward that C4 verifies (1),
(2), and (3), and R, = R¢. Furthermore

ICa = Cgllo = sup

(e

<A B( L4 >>‘§HA—BH, VA, BER:.  (12)

x+y T+

Let I'c : R* — R be the map defined by
: Tp—1 Tk
I'c(A) = inf liminf— C - )
o (iens® "7 nz ! ((?sz—1) (yk>)
Obviously I'¢(0,0) = . Moreover, we have the following proposition.
Proposition 5. The function I'c is concave.

Proof. Given A, B € R? and t € [0,1], let w = (zzj)zem be an adapted history with respect to the
cost function Cyaq(1—yp. Therefore, by the very definition of I'c, we get

Te(A) +(1— HTe(B) < gggoii () () ro-nes () ()]

R Tp_ x
= JLI&E;CM—F(I—QB (( ‘ 1>, ( k)) =Tc(tA+ (1 -1)B).

Yr—1 Yk
]

Remark 6. A real valued concave function on R™ is locally Lipschitz continuous® and hence,
by Rademacher’s theorem, differentiable almost everywhere with respect to the Lebesgue measure.
Thus, Theorem 5 implies that Lebesque-almost every A € R? is a point of differentiability of the
map I'c. As a matter of fact, one may be a little more precise on the description of the points of
differentiability of I'c. To that end, notice that we can write

Lo(ar, a2) = folar —ag) + v+ az, V(a,a2) € R?,

6 Actually, it is not hard to directly check that, for all A, B € R?, we have [['c(A) — T'¢(B)| <||A— B|.

13



with fo : R — R defined by

: R s »’fk1) (@))
A):= inf liminf— g C o + A — VA € R.
fel&) (%) e n7oon [ ((?kl Yk Tk + Yk K

Yi/ieN k=1

Certainly fc(0) = 0. Moreover, as in the proof of Proposition 5, one may immediately verify
that the function fo is concave and therefore differentiable almost everywhere with respect to the
Lebesgue measure on the real line. So we conclude that, for Lebesque-almost every A € R, the map
I'c is indeed differentiable along the straight line {(a,a — A) : a € R}.

The next theorem shows that points of differentiability of I'¢ play a crucial role on the study of
average sex ratio for historically adapted populations. Its proof is very similar to Gomes’s argument
for the asymptotic behavior of optimal trajectories defined by discrete viscosity solutions (see [7]).
Theorem 7. Let A = (a1, a3) € R? be a point of differentiability of T'c, and let w? = (ij) N be

i 1€
an adapted history for the maintenance cost Cy. Then, one has

A
lim —~ - Z (x Y ) = VIc(A) = (felar — a2),1 = fi(ar — as)).
k=1 N7k

i oy oy

A

2 T x4 z4 A
Proof. Let uy € €>°(IN?) be such that uA( ) +Tc(A) = TCAuA(y;,) = Ca((™), (yjjl)) +ua(Pi),
for all ¢ € IN. Therefore, for all n > 1, we obtaln

A n A A A
o 2: Lp1 L, T,
(yé) Pt v, ) \uit vt )

For h > 0 and B € R?, let uaypp € €°°(IN?) be such that T¢, ., ,uasnp = Uarns + To(A+hB). It
is straightforward that

zy - Ty iy Ty
uarnB| 4 | < ZCA+hB UG ) ) tuas| ) —nle(A+hB), Vn>1.
Yo —1 Yk—1 Yk Yn
Thus, clearly
A A
0 Lo
UA+hB —Ug <
! <y§) (y§>

<2 (5 (i aptigs) ) et 1) rot@) s () ()

. xA
Since uapp ( 0
yo

follows that
2R¢ FC(A + hB) — FC(A) 1 & x,? y,?
- + <({B - Z A A A A :

) —uA+hB( ) +uA( ﬁ) —uA( 22) > —osc(Te,, puarns) —o0sc(To,ua) > —28¢, it
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The same argument can be applied to —B, and hence we also deduce that

Bli( zj} yii > <2ﬁC_FC(A_hB)_FC(A).
‘n - ot +yd it + oy ~ hn h

k=

So setting h = m/n for a fixed m > 0 and taking n — oo, as A is a point of differentiability of
['c, from the last two inequalities we get that

yiA
_2he +(B,VI¢(A)) < <B hmlnf ( Yk )> <
m neo Mo xk +yk xk —l—yk

<B lim sup — Ly < e >> < 250 + (B, VI'¢(A)).

n—oo N 1 l‘k +yk xk +yk

Finally, taking m — 400, we obtain

. 1 — x;;‘ y,‘;‘
B, lim — E = (B,VI¢(A)),

k=1

and then, since the equality holds for all B € R?, we conclude that

1 7 yi
lim — " < ) = VI¢(A).
neen i Ik + yk xk + yk

]

Despite being a weak form of convergence, in fact, convergence in average underlines a recur-
rence property of the sequence. More precisely, we have the following result from real analysis.

Lemma 8. Let {a;} C R be a sequence such that lim,,_,oo(1/n) Y _jax =a € R. Let I C IN be a
subset of positive density, that is,

1 <EkE<
1im#{k€H 1<k<n}

n—oo n

=:03>0.

Then, for all € > 0 and for any integer L > 0, there exist m,n € I, with n > m > L, such that

n

Z (i — )

k=m-+1

< €.

For the convenience of the reader, we give a short proof of this lemma.

Proof. Without loss of generality, we can assume that o = 0. Fix p € (0, ¢/8). There exists then
a positive integer ny € I such that

#{kel: 1<k:<n}>ﬁ”

and <pn, Vn2>n,

n
Do
k=1

15



We may suppose that ng > L. Clearly {d,_, ax : ng <n <mn;} C [—pny, pnq]. Considering thus

ny € N with n; > max {no,

%#{kEH:lngno}},

we ensure that

Bnl . Bnl _ ﬁnl
2 4 4

#kelng<k<m}=#{kel: 1<k<m}—#{kecl:1<k<ng}>

By the pigeonhole principle, there must be m,n € TN {ng,ng + 1,...,n,}, with n > m, such that

p T H#Hkel:ing<k<n}-—-1

2pn, 2pn1 8p -
= =— <e.
#{kel:iny<k<n} ﬁnl/él B

n

Y a

k=m+1

]

Concerning then the stability of the average sex ratio for historically adapted populations, one
obtains an immediate consequence.

Corollary 9. Let A = (ay,as) € R? be a point of differentiability of T'c, and let w? = (x’i) be

Yi 7 ieN
an adapted history for the maintenance cost function C4. Then, for all € > 0 and M > 0, there
A
exist infinitely many finite histories w[m,n| = (zA) cic with n —m > M, such that
> (o )| -2 (2
— a1 — (1= felar —a) ) = (——f'c(al—az)) <e
k=m+1 ZE? + y]? k=m+1 IL‘? + y’?

Proof. Just apply the previous lemma to o; = P‘% and I = {[M],2[M],3[M], ...}, where [M]

denotes the smallest integer greater than or equal to M. O]

We recall that the one-sided derivatives of fo at a point A are given by

S — Je(A A — fo(A
FL(A+) ‘:}}E&M +f2 fe(A) 4 (A=) = lim fo( +I‘2 fe(B)

Since fc is a real valued concave function, its one-sided derivatives are defined everywhere. The

next theorem uses the one-sided derivatives of fo to find an estimate for the asymptotic average

sex ratio even when it does not converge.

Theorem 10. Given B = (b,b — A) € R?, define La := fL(A+) and Ra = fL(A—). Then, for
B

all adapted history w? = (33) € Q with respect to Cg, one has

S\
LA <liminf — 5 < lim su < RA.
A n—o00 nz B n—)oopnz B+yk .
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Proof. We will prove the result only for the point B = (0,0), since the proof for any other point

is analogous. Let w = (;’) o € 2 be an adapted history with respect to the cost function C'. For
171

any point A = (a,a — H) with H > 0, we clearly have

> <(xk_1), (mk)) --y¢ <(‘T’“‘1), <x’“)> I o
L Yr—1 Yk ni Yr—1 Yk no= Tkt Yk

Since liminf,, o (1/n) > 7, Ca (@:ii)’ (g:)) >To(A) and lim, o (1/n) >0, C ((z::), (g:)) =
['¢(0,0) = ~, we obtain

n

1 Tk
T'o(A) <+ Hliminf — ~ H.
c(A) <7+ Hlimin nE re

k=1

Therefore, as fo(H) =T¢(A) —v — (a — H), we get that
fe(H) = fe(0) _ fe(H) . . .1 i Ty,

H H oo M Ay + Vi

which yields

n

1
~(0+) < liminf — .
f6(0+) < limin n;xﬁyk

Tk

One obtains the inequality limsup,, ,.(1/n) >, zx/(xr + yx) < f&(0—) in a similar way, using
points A = (a,a — H) with H < 0. O

Remark 11. If B is a point of differentiability of I'c, then the left-sided and right-sided derivatives
coincide and we clearly recuperate the statement of Theorem 7. Notice also that, since fo is
concave, then both maps A — fL(A+) and A — fL.(A—) are nonincreasing functions and verify
0 < fL(A+) < fL(A=) <1 for all A € R. For any points B = (b,b— A) and B = (3,8 — A),
with A < A, it follows that

Rx = fo(A+) < fo(A=) = La,
which implies that the respective intervals [La, Ra] and [La, Ra] may intersect each other only

at their common boundary.
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