

SEMINÁRIO DE EQUAÇÕES DIFERENCIAIS

Lower bounds on blow up solutions of the three-dimensional Navier–Stokes equations in homogeneous Sobolev spaces

RICARDO PARREIRA DA SILVA

UNESP/Rio Claro

16/04/2013 (Terça-Feira) 16:00 horas Sala 321 do IMECC

Resumo: Suppose that u(t) is a (weak) solution of the three-dimensional Navier–Stokes equations, either on the whole space or with periodic boundary conditions, that has a singularity at time T. We show that the norm of u(T - t) in the homogeneous Sobolev space \dot{H}^s must be bounded below by $c_s t^{-(2s-1)/4}$ for 1/2 < s < 5/2 ($s \neq 3/2$), where c_s is an absolute constant depending only on s; and by $c_s ||u_0||_{L^2}^{(5-2s)/5} t^{-2s/5}$ for s > 5/2. (The result for 1/2 < s < 3/2 follows from well known lower bounds on blowup in L^p spaces.) We show in particular that the local existence time in $\dot{H}^s(\mathbb{R}^3)$ depends only on the \dot{H}^s -norm for 1/2 < s < 5/2, $s \neq 3/2$. Work in collaboration with: James Cooper Robinson (University of Warwick) and Witold Sadowski (Warsaw University)