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Flows defined by ordinary differential equations

Let U ⊆ Rn be an open set and X : U → Rn be a Ck-vector field. The
trajectories of X are the solutions of the differential equation

x′ = X(x).

• (existence and unicity) ∀x ∈ U , ∃Ix 3 0 and ϕx : Ix → U such that
ϕ′x(t) = X(ϕx(t)) and ϕx(0) = x.

• (group structure) y = ϕx(s), s ∈ Ix, Iy = Ix − s and ϕy(0) = y, ϕy(t) =
ϕx(t+ s),∀t ∈ Iy.
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The set
D = {(t, x) : x ∈ U , t ∈ Ix}

is open and
ϕ : D → Rn, ϕ(t, x) = ϕx(t)

is called flow of X.

If X(p) 6= 0 we say that p is a regular point and if X(p) = 0 we say that p is a
singularity.
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The orbit of x ∈ U is the set O(x) = {ϕ(t, x) : t ∈ Ix}. There are 3 kinds of
orbits:

• (homeomorphic to R): ϕx(t1) 6= ϕx(t2), ∀t1, t2 ∈ Ix with t1 6= t2;

• (only one point): ϕx(t1) = ϕx(t2), ∀t1, t2 ∈ Ix;

• (homeomorphic to S1): other cases (periodic orbits).

A limit cycle is an isolated periodic orbit. An equivalence relation on U is defined
as follows: p ∼ q if and only if p ∈ O(q). The partition of U in equivalence classes
is called phase portrait.
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Figure 1: Kinds of orbits.

Paulo Ricardo da Silva | Escola Brasileira de Sistemas Dinâmicos - UNICAMP 7/83



Main goal: to describe the phase portrait !!!!!

The simplest case: linear systems. In this case the phase portrait can be fully
described.

X : Rn → Rn, X(x) = A.x, A ∈M(n), ϕ(t, x) = etAx.

A particularity of linear systems is the absence of limit cycles. The study reduces
to the study of eigenvalues and eigenvectors of the matrix A. The origin is a
singularity. There is a residual subset H(n) ⊂M(n), formed by the hyperbolic
vector fields. The eigenvectors of A ∈ H(n) generate invariant directions on the
phase portrait. The sign of the real part of the eigenvalues determines if the
origin is attracting or repelling.
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General case: For non-linear systems the description of the phase portrait depends
on several local techniques. In the neighborhood of regular points, we use the
flow box theorem to determine the phase portrait. Essentially the phase portrait
is equivalent to the one of the constant field Y = (1.0, ..., 0). In the neighbor-
hood of hyperbolic singularities (those satisfying than JX ∈ H(n)) we can use
the Grobmann-Hartmann theorem, which says that the phase portrait of X is
equivalent to one of the linear part JX in a neighborhood of the origin.

When JX /∈ H(n) but has some nonzero eigenvalue we use the theorem of the
central manifold. If n = 2 and the eigenvalues are both zero we use the process
of blow up. For polynomial systems we also can analyze the global phase portrait
using the Poincaré compactification.
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When we can not apply the existence and
uniqueness theorem
Some special systems:

• constrained systems or systems with impasse;

• implicit systems;

• slow-fast systems;

• non-smooth systems.
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System with impasse. Consider x ∈ Rn, aij , fi of class Cr in Rn, i, j =
1, . . . , n. A system with impasse (or constrained system) is

a11(x)ẋ1 + · · ·+ a1n(x)ẋn = f1(x)
...

...
an1(x)ẋ1 + · · ·+ ann(x)ẋn = fn(x)

In matrix notation A(x)ẋ = F (x) where A = (aij) and F = (f1, f2, . . . , fn) is
a vector field. The points of IA = {x ∈ Rn : detA(x) = 0} are called impasse
points.
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{
x′ = −x
y′ = −2y

, detA = 0⇔ x− y = 0⇔ y = x.

The phase portrait can be obtained by the phase portrait of red system by
removing from its orbits the impasse points and inverting the orientation along
orbits on regions where detA is negative.
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Figure 2: Phase portrait of a system with impasse
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In the works of Sotomayor, Zhitomirskii and Llibre one can get the local phase por-
trait of a constrained system near impasse points in the generic case of class C∞
systems. They also study structural stability of Cr and polynomial constrained
systems and bifurcations of one-parameter families of constrained systems giving
the stratification of the impasse surface for a generic family of constrained systems.

In the works of —,Cardin and Teixeira techniques of singular perturbation are
used to analise these systems.
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Implicit system.

F : R3 → R, Cr, r ≥ 1, 0 regular value of F.

M = {(x, y, p) ∈ R3;F (x, y, p) = 0}

is a Cr- manifold. Here p = dy
dx .

Our interest is when the derivative Fp(q) = 0 at some q ∈M .
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M as above:

q0 = (x0, y0, p0) ∈M,

The contact-plane is

CPq0 = {T = (x, y, p) ∈ R3 : dy = p0dx}.

Assume CPq0 intersects Tq0M in a line.

It defines a direction field on a neighborhood of q0 ∈M .
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Figure 3: Directional field.
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The integral curves of F (x, y, p) = 0 are the integral curves of this direction field.
To solve this equation it is necessary to find these curves.

A direction field, as described above, can be obtained taking the vector field

ξ = Fp
∂

∂x
+ pFp

∂

∂y
− (Fx + pFy) ∂

∂p
. (1)

The direction of the p-axis in the space R3 is called vertical direction.

Paulo Ricardo da Silva | Escola Brasileira de Sistemas Dinâmicos - UNICAMP 18/83



A point q ∈M is said to be regular if it is not a critical point of π(x, y, p) = (x, y).
In other words, a point of M is regular if the tangent plane at this point is not
vertical. The other points of the surface M are said singular. The set of singular
points, C, is called criminant ofM and its image, D, via the application π, is called
the discriminant. Note that if q ∈ C then F (q) = Fp(q) = 0. If Fpp(q) 6= 0 then
q is a fold point of F , and if Fpp(q) = 0 and Fppp(q) 6= 0 q it is a cusp point of F .
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Consider the differential equation p2 = x. In this case the surfaceM is a parabolic
cylinder. The discriminant curve is the y-axis. In order to find the integral curves,
we write down the conditions for dx, dy and dp at the point q=(x,y,p) of the
surface M :


p2 = x, the condition q ∈M
2pdp = dx, the condition of tangence to M
dy = pdx, the condition of the contact plane

Consequently, in coordinates (p,y), the integral curves are determined from the
equation dy = 2p2dp.

Hence, the integral curves on M are given by the relations y + C = 2
3p

3, x = p2.
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Figure 4: Integral curves on
M .

Figure 5: Projection of inte-
gral curves on the
plane (x,y).
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Geometric singular perturbation theory
ε0 > 0, U × V ⊆ Rm × Rn.

Slow System
{

εẋ = f(x, y, ε)
ẏ = g(x, y, ε)

with (x, y, ε) ⊆ U × V × (−ε0, ε0), f, g ∈ Cr, r ≥ 1.

Fast System
{

x′ = f(x, y, ε)
y′ = εg(x, y, ε)
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Reduced system: Put ε = 0 in the first equation!

{
0 = f(x, y, ε)
ẏ = g(x, y, ε)

The dimension problem is reduced : m+ n→ n.

Another way to get a smaller dimension problem is considering ε = 0 in the second
equation. In this case we get a problem with dimension m.{

x′ = f(x, y, ε)
y′ = 0
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The set
M0 = {(x, y, 0) ∈ U × V × {0} : f(x, y, 0) = 0}

is called slow manifold.

If the rank of Dxf(x, y, 0) is m we have thatM0 is a graphic x = ψ(y) and the
reduced system becomes

x = ψ(y), ẏ = g(ψ(y), y, 0).
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ε can be considered as an additional variable:

Sε :


x′ = f(x, y, ε)
y′ = εg(x, y, ε)
ε′ = 0.

(p0, 0) ∈M0. The linear part of the above system, with ε = 0, has the following
matrix:  fx fy 0

0 0 0
0 0 0



Paulo Ricardo da Silva | Escola Brasileira de Sistemas Dinâmicos - UNICAMP 25/83



λ = 0 is the trivial eigenvalue with algebraic multiplicity n+ 1. The remaining
eigenvalues are called non–trivial. The number of non-trivial eigenvalues with
real part negative, zero or positive is denoted by ks, kc, ku.

We say that p0 is normally hyperbolic if all non–trivial eigenvalues are non–zero.
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Figure 6: Fast flow and normally hyperbolic points.
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Assuming normal hyperbolicity, Fenichel proved that all equilibrium points and
invariant compact sets are preserved by singular perturbation. For example,
suppose m = 1, n = 2, and reduced problem with a saddle occuring in a normally
hyperbolic point p with ∂f

∂x (p) > 0. Then for ε ∼ 0 there exists an equilibrium
point pε with stable dimension 1 and with unstable dimension 2 (one from the
saddle and another from the fast flow)
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Figure 7: Fast and slow dynamics.
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Theorem. (Fenichel) Let N be a j-dimensional compact invariant manifold on
the normally hyperbolic part of the slow manifold. Suppose that the stable and
unstable manifolds of N , with respect to the reduced system, have dimensions
j + js and j + ju, respectively. Then there exists a family of invariant manifolds
{Nε : ε ∼ 0} such that N0 = N and Nε with stable and unstable manifolds with
dimensions (j + js + ks) and (j + ju + ku).
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Example. Fitzhugh–Nagumo equation.
x′1 = x2
x′2 = cx2 − f(x1) + y

y′ = ε

c
(x1 − γy)

with f(x1) = x1(x1 − a)(x1 − 1), 0 < a < 1
2 , c > 0 and 0 < ε� 1.

We have slow system

x2 = 0, y = f(x1), ẏ = 1
c

(x1 − γy).

Take γ and a such that the intersection of x1 = γy with y = f(x1) occurs in
three points: 0, P and Q. The reduced system has 5 equilibrium: 0, P,Q, S and
I. The signal of ẏ determines if the equilibrium are attracting or repelling .
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Figure 8: Slow flow of the Fitzhugh–Nagumo equation
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The fast system is obtained taking ε = 0 in the original system

x′1 = x2, x′2 = cx2 − f(x1) + y, y′ = 0.

The jacobian matrix is  0 1 0
−f ′(x1) c 1

0 0 0


with eigenvalues 0,

c+
√
c2 − 4f ′(x1)

2 and
c−

√
c2 − 4f ′(x1)

2 .
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There exist 5 equilibria but only 3 unfold for ε > 0:

0 = (0, 0, 0), P = (p, 0, f(p)), Q = (q, 0, f(q)).

The equilibra 0, P and Q are normally hyperbolic and

S = (s, 0, f(s)) I = (i, 0, f(i))

don’t. More precislly, f ′(x1) = 0 for x1 = s and x1 = i and thus the jacobian
matrix has two zero eigenvalues.
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Denote ju and js the number of eigenvalues with positive and negative real
parts, respectively, considering the slow system. Moreover denote by ku and
ks the number of eigenvalues with positive and negative real parts, respectively,
considering the fast system. Thus 0, P and Q satisfy

• ju(0) = 0, js(0) = 1, ku(0) = 2, ks(0) = 0;

• ju(P ) = 0, js(P ) = 1, ku(P ) = 2, ks(P ) = 0;

• ju(Q) = 0, js(Q) = 1, ku(Q) = 1, ks(Q) = 1 .
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For ε > 0 the perturbations 0ε = 0, Pε = P and Qε = Q satisfy

• the local stable manifold of 0ε has dimension 1 and the local unstable
manifold of 0ε has dimension 2.

• the local stable manifold of Pε has dimension 1 and the local unstable
manifold of Qε has dimension 2.

• the local stable manifold of Qε has dimension 2 and the local unstable
manifold of Pε has dimension 1.

Theorem. ∃ ε1 > 0 and a smooth function c = c(ε), ε ∈ (0, ε1) such that the
Fitzhugh–Nagumu equation has a heteroclinic orbit connecting 0ε and Qε for
0 < ε < ε1.
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We say singular orbit any orbit with three parts

• one part in the stable manifold of p1 of the reduced system;

• one part in the unstable manifold of p2 of the reduced system;

• one orbit of the fast system connecting the two parts above.

Denote Wu
1 the unstable manifold of p1, for the slow system. Denote N u

1 the
unstable manifold, via fast flow ( joining the orbits from Wu

1 ). Anagously, we
define Ws

2 and N s
2 .

Theorem (Szmolyan) If p1 and p2 are normally hyperbolic and N u
1 t N s

2 then
there exists one orbit of Sε, ε ∼ 0, connecting pε1 and pε2.
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Figure 9: Singular orbit.
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Dumortier and Roussarie studied, via GSP-theory, the canard phenomenon in
Van der Pol’s equation

εẍ+ (x2 + x)ẋ+ x− a = 0.

Essentially the phenomenon is the rapid growth of a limit cycle that was created
in a Hopf bifurcation. Consider the change of variable

y = εẋ+
∫ x

0
(ξ + ξ2)dξ.

Xε,a =

 x′ = y − x2

2 −
x3

3
y′ = ε(a− x)
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For ε = 0 the vector field X0,a has a curve L = {y = x2

2 + x3

3 } of singularities
and out of L the flow is horizontal. Excluding n = (−1, 1

6 ) and s = (0, 0), all
singularities on L are normally hyperbolic. The bifurcation diagram of Xε,a with
ε > 0: At H = {a = 0} and H ′ = {a = −1} occur Hopf bifurcations. Between

H and H ′, Xε,a has an unstable singularity (a, a
2

2 + a3

3 ) and an attracting limit
cycle Γε,a around it. Outside this region the system has a stable singularity

(a, a
2

2 + a3

3 ).
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H ′ H

Figure 10: Bifurcation diagram of the Van der Pol’s equation
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Theorem. There exists a curve C0 = {a = c0(ε)} with c0(ε) =
√
εa(
√
ε) and

a ∈ C∞ with a′(0) = −1 such that for a continuous curve C = {a = c(ε)} with
c(ε) ≤ 0 and c(0) ∈ [−1

2 , 0] we have:

a)lim
ε→0

Γε,c(ε) = Γ0 ⇐⇒ for small ε > 0 : c(ε) > c0(ε), and

lim(−ε log(c(ε)− c0(ε))) ≤ 0;

b)lim
ε→0

Γε,c(ε) = ΓB ⇐⇒ for small ε > 0 : c(ε) < c0(ε), and

lim(−ε log(c0(ε)− c(ε))) ≤ 0.
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Figure 11: What happens with Γε,a when ε → 0? The first is s and we
denote Γ0. The last is the big , ΓB. The intermediaries are the
canards
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Figure 12: Blowing-up the non-normally hyperbolic points.
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Figure 13: Saturing by the flow.
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Flows defined by differential equations with
discontinuous righthand side

From now on we will consider only discontinuous vector fields. We refer it also as
Nonsmooth Dynamical System or Piecewise Smooth System.

One of the most important researchers on this subject is Teixeira. He introduced,
joint with Sotomayor, a regularization process. Moreover, they made a systematic
study, inspired by Peixoto’s Theorem, of the structural stability of these systems.
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To fix our ideas, we suppose that our equation is as follows

ṗ = X(p), p ∈ Rn

with switching on Σ = {F = 0}, 0 being a regular value of F .

• Σ+ = {F > 0} Σ− = {F < 0}

• X = X+ in Σ+ and X = X− in Σ−.
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Sliding occurs when for any initial condition near Σ the corresponding solution
trajectories are attracted to Σ.

Given p ∈ Σi, i = +,−, the orbit through p is formed by the orbit of Xi through
p on Σi and if the orbit intersects Σ then we follow the Fillipov convention, whith
the regions in Σ given by classified as:

• Sliding Region: Σsl = {p ∈ Σ : X+.F < 0, X−F > 0}. Any orbit which
meets Σsl remains tangent to Σ for positive time.

• Escaping Region: Σes = {p ∈ Σ : X+.F > 0, X−F < 0}. Any orbit which
meets Σes remains tangent to Σ for negative time.

• Sewing Region: Σsw = {p ∈ Σ : (X+.F )(X−F ) > 0}. Any orbit which
meets Σsw crosses Σ.
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y=x

Figure 14: Flow of a discontinuous differential equations

On Σsl
⋃

Σes the flow slides on Σ; it follows XΣ called sliding vector field . The
sliding is on the convex combination of X+ and X− and it is tangent to Σ.
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Regularization of non–smooth systems
Example. X− = (x + 1,−y + 1) and X+ = (0, 1) in R2. X = X− if y > x,

and X = X+ if y < x. On Σ = {(x, x);x ∈ R} X is bivaluated.

(x, x) ∈ Σ with x < 0 are sewing points and (x, x) ∈ Σ with x > 0 are sliding
points.

Rotation of angle π/4:

Y + =
√

2
2 (−1, 1), x > 0; Y − =

√
2

2 (x+ y, x− y + 2), x < 0.
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ϕ : R → (−1, 1) given by ϕ(s) = 2
π arctan(s) satifies ϕ′(s) > 0 for s ∈ R and

lim
s→±∞

ϕ(s) = ±1. On Σ̃ = {x = 0} we apply the regularization

((ẋ, ẏ), ε̇) = (Yε, 0)

where
Yε = Y + + Y −

2 + ϕ(x
ε

)Y
+ − Y −

2 .

With a blow up we get a singular perturbation problem

x = r cos θ, ε = r sin θ, r ≥ 0, θ ∈ [0, π].
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rθ̇ =
√

2
4 sin θ (1− r cos θ − y + ϕ(cot θ)(1 + r cos θ + y)) ,

ẏ =
√

2
4 (3 + r cos θ − y + ϕ(cot θ)(−1− r cos θ + y)) .

λ(θ) = ϕ(cot θ) is a decreasing continuous function connecting (θ, λ) = (0, 1)
and (θ, λ) = (π,−1). With r = 0 in the first equation we get ϕ(cot θ) = y−1

y+1 ,
connecting (θ, y) = (0, 0) and (θ, y) = (π,∞). The slow flow is

ẏ = (3− y) + y − 1
y + 1(y − 1) > 0.

The fast flow is θ′ =
√

2
4 sin θ · (1− y + ϕ(cot θ)(1 + y)) .
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Figure 15: Phase portrait on the singular set.
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Local analysis when discontinuities occur on an algebraic variety.

First case: regular switching. Consider ṗ = X(p), p ∈ R3 with

Σ = {z = 0},Σ+ = {z > 0},Σ− = {z < 0},

X+ = (f1, g1, h1), X− = (f2, g2, h2)

XΣ defined by

XΣ = 1
h1 − h2

(h1f2 − h2f1, h1g2 − h2g1). (2)
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Theorem (Regular sliding) There exists a singular perturbation problem

rθ̇ = α(x, y, θ, r), ẋ = β(x, y, θ, r), ẏ = γ(x, y, θ, r) (3)

with x, y ∈ R, θ ∈ (0, π), r ≥ 0, such that the slow manifold

S = {α(x, y, θ, 0) = 0}

and Σsl
⋃

Σes are homeomorphic and the reduced problem obtained considering
r = 0 in (3) and the sliding vector field (2) are topologically equivalent.
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Proof.

• Step 1. A transition function ϕ : R→ R is a differentiable function sat-
isfying that ϕ(s) = 1, for s ≥ 1 ; ϕ(s) = −1 for s ≤ −1 and ϕ′(s) > 0
∀s ∈ (−1, 1).

• Step 2. Regularization process:

Xε =
[

1
2 + 1

2ϕ
(z
ε

)]
X+

[
1
2 −

1
2ϕ
(z
ε

)]
X−.

• Step 3. Blow up

z = r cos θ, ε = r sin θ, r ≥ 0, ε ∈ [0, π].
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Figure 16: Slow-fast system. Double arrow represents fast flow. The green
surface is the slow manifold which is homeomorphic to the
sliding region Σsl.
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The geometric interpretation of our result is as follows. By means of a polar blow
up we may replace the discontinuity Σ by the cylinder R2 × [0, π]. In this cylinder
we draw the phase portrait of the fast-slow system (3), which is composed by a
slow manifold and a vertical fast flow. On the slow manifold we have the phase
portrait of the reduced system. The projection of the slow manifold on the surface
Σ coincides with the sliding region and the reduced system has the same phase
portrait as the sliding system.

The sliding vector field idealized by Filippov can not be uniquely extended for a
self–intersecting switching manifold. However the following theorems say that for
each double, triple, cone or Whitney descontinuity, we are able to, after a finite
number of blow–ups, reduce the study to the regular case. Consequently we have
a sliding vector field well defined.
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Second case: critical switching.

• X defined in U ⊂ R3 with switching set Σ.

• Ũ neighborhood of 0 ∈ R3 and a C∞– diffeomorphism φ : Ũ → U .

• φ induces X̃ = (X̃+, X̃−) on Ũ with X̃i(p̃) = dφ−1Xi(p), i = +,−.

The φ-induced vector fields are determined by X̃+ and X̃− on φ−1(Σ+) and on
φ−1(Σ−), respectively. Besides, the switching manifold is Σ̃ = φ−1(Σ).

We restrict the degeneracy of the singularity so as to admit only those which
appear when the regularity conditions in the definition of smooth surfaces of R3

in terms of implicit functions and immersions are broken in a stable manner. In
this case Σ is locally diffeomorphic to one of the following sets
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• D = {(x, y, z) ∈ R3;xy = 0} (double crossing);

• T = {(x, y, z) ∈ R3;xyz = 0} (triple crossing);

• C = {(x, y, z) ∈ R3; z2 − x2 − y2 = 0} (cone) or

• W = {(x, y, z) ∈ R3; zx2 − y2 = 0} (Whitney’s umbrella).
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Figure 17: Regular (blue), double (green) and triple (bold) crossing switch-
ing points
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Figure 18: Cone (C) switching manifold.

Paulo Ricardo da Silva | Escola Brasileira de Sistemas Dinâmicos - UNICAMP 62/83



W

x

y

z

Figure 19: Whitney’s umbrella (W) switching manifold.
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Theorem. Suppose that Σ = D. The map

φ : S1 × [0,+∞)× R→ R3

given by φ(θ, r, z) = (r cos θ, r sin θ, z) induces a vector field X̃ satisfying that
any discontinuity q ∈ Σ̃ is regular.

Theorem. Suppose that Σ = T . The map φ : (0, π)× (0, 2π)× [0,+∞)→ R3

given by

φ(q) = φ(θ1, θ2, r) = (r sin θ1 cos θ2, r sin θ1 sin θ2, r cos θ1)

induces a non–smooth vector field X̃ satisfying that any discontinuity q ∈ Σ̃ is
either regular or a double crossing.
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Theorem. Suppose that Σ = C. The map φ : (0, π)× (0, 2π)× [0,+∞)→ R3

given by

φ(q) = φ(θ1, θ2, r) = (r sin θ1 cos θ2, r sin θ1 sin θ2, r cos θ1)

induces a non–smooth vector field X̃ satisfying that any discontinuity q ∈ Σ̃ with
φ(q) 6= 0 is regular. Moreover the switching manifold on (0, π)× (0, 2π)× {0} is
homeomorphic to two non–intersecting circles.

Theorem. Suppose that Σ =W. The map

φ : R \ {0} × R× R→ R3

given by
φ(u, v, w) = (u, uv, w)
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induces a non–smooth vector field X̃ satisfying that any discontinuity q ∈ Σ̃ with
u 6= 0 is regular. Moreover, if q ∈ Σ̃ is a discontinuity with u2 + w2 = 0 then q
is a double crossing.
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Figure 20: Switching curves on S2 after blow up - case D.
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Figure 21: Switching curves on S2 after blow up - case T .
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Figure 22: Switching manifold after blow up - case C.
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Figure 23: Switching manifold after blow up - case W.
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Local analysis considering non–regular regularization (M,Σ, X) is a PSVF
with M being an open set on Rn, Σ = h−1(0) for some Cr h : M → R.
[X−(p), X+(p)] is the convex combination of X−(p) and X+(p):

[X−, X+] = {
(

1
2 + λ

2

)
X+ +

(
1
2 −

λ

2

)
X− : λ ∈ [−1, 1]}.

A continuous combination of X− and X+ is a 1–parameter family of vec-
tor fields X̃(λ, p), Cr, r ≥ 1, with (λ, p) ∈ [−1, 1]×M, and satisfying that
X̃(−1, p) = X−(p), X̃(1, p) = X+(p). We denote

[X−, X+]c = {X̃(λ, p), λ ∈ [−1, 1]}.
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Let Xε be a regularization of X.

(a) We say that Xε is of the kind Filippov if Xε(p) ∈ [X−(p), X+(p)], for any
p ∈M.

(b) We say that Xε is of the kind Nonlinear if there exists a continuous com-
bination such that [X−, X+]c 6= [X−, X+] and Xε(p) ∈ [X−(p), X+(p)]c,
for any p ∈M.
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(a) We say that p is a c–sewing point and denote p ∈ Σswc if

(X̃.h)(p) 6= 0, ∀λ ∈ [−1, 1].

(b) We say that p is a c–slidding point and denote p ∈ Σslc if

∃λ ∈ [−1, 1], (X̃.h)(p) = 0.

Proposition 1. Σswc ⊆ Σsw and Σsl ⊆ Σslc .

For each p ∈ Σslc there exists λ(p) ∈ [−1, 1] such that (X̃.h)(p) = 0. We say
that X̃(λ(p), p) is a c–sliding vector field .
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Example. h(x, y) = y, X+ = (1, 1− x) and X− = (1, 3− x).

X̃ = (−1 + 2λ2,−x− λ+ 2λ2).

Two possible sliding vector fields

Xλ1 =
(
−3 + 4x+

√
1 + 8x

4 , 0
)

Xλ2 =
(
−3 + 4x−

√
1 + 8x

4 , 0
)
.

Σsl = (1, 3), Σslc = (−1
8 , 1) ∪ (1, 3).

In (−1
8 , 1) are defined two c–sliding vector fields (Xλ1 and Xλ2 ) and on (1, 3)

is defined only Xλ2 .
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A nonlinear regularization of X− and X+ is the 1–parameter family

Xε = X̃(ϕ
(
h

ε

)
, p).

Note that if h > ε then ϕ
(
h

ε

)
= 1 andXε = X+; and if h < −ε then ϕ

(
h

ε

)
= −1

and Xε = X−. The regularization of the the kind nonlinear does not depend of
the transition function considered.
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Teorema 2. There exists a singular perturbation problem

rθ̇ = α(r, θ, p), ṗ = β(r, θ, p), (4)

with r ≥ 0, θ ∈ [0, π], p ∈ Σslc and slow manifold S satisfying that the following.

(a) For any p ∈ Σslc there exist homeomorphic neighborhoods p ∈ Ip and
Sp ⊂ S. A sliding vector field X̃(λ(p), p) is defined in Ip and it is
Cr − equivalent to the slow flow on Sp ⊂ S.

(b) For any p ∈ Σslc consider ` = #{θ ∈ (0, π) : (θ, p) ∈ S}. There exist `
choices of sliding vector fields defined in p.

(c) Iff all points on S are normally hyperbolic and S has only one conneted
component then there exists only one choice for the sliding vector field in
Σsc.
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Example. X = (X+, X−) as in previous Example.

Xε = X̃(ϕ
(y
ε

)
, x, y).

The trajectories of Xε satisfies the system

x′ = −1 + 2ϕ
(y
ε

)2
, y′ = −x− ϕ

(y
ε

)
+ 2ϕ

(y
ε

)2
.

Consider the blow up y = r cos θ and ε = r sin θ with r ≥ 0 and θ ∈ [0, π]. Thus,
denoting ψ(θ) = ϕ(cot θ), the system becomes

rθ̇ = −x− ψ(θ) + 2ψ(θ)2, ẋ = −1 + 2ψ(θ)2.
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Figure 24: Sewing (blue) and sliding (red) regions.
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The slow manifold is given by

x = −ψ(θ)(2ψ(θ)− 1).

x is a smooth curve connecting (θ, x) = (0, 1) and (θ, x) = (π, 3). x′ = ψ′(4ψ − 1)
and it is zero if ψ = 1

4 . In this case x = −1
8 . The slow flow is given by

x′ = −3 + 4x±
√

1 + 8x
4

which is exactly the same expression of the sliding Xλ1 and Xλ2 .
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Global regularization
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