REGULARIZATION OF DISCONTINUOUS FOLIATIONS: BLOWING UP AND SLIDING CONDITIONS VIA FENICHEL THEORY

Paulo Ricardo da Silva Universidade Estadual Paulista - São José do Rio Preto

IV- EBSD - Unicamp, 2016

Let M be a smooth manifold (possibly with corners) and a non-flat smooth vector field defined on M.

(V, Y), where $V \subset M$ is an open set Y is a smooth vector field in V is a local vector field in M.

A 1-dimensional oriented foliation on M is a collection

$$\mathcal{F} = \{(U_i, X_i)\}_{i \in I}$$

of local vector fields such that

- $\{U_i\}$ is an open covering of M and
- For each pair $i, j \in I$, $X_i = \varphi_{ij}X_j$ for some strictly positive smooth function φ_{ij} defined on $U_i \cap U_j$.

We say that a local vector field (V, Y) is a generator of the foliation \mathcal{F} if the augmented collection

$$\{(U_i, X_i)\}_{i \in I} \cup \{(V, Y)\}$$

also satisfies conditions 1. and 2. Let $\Phi : \widetilde{M} \to M$ be a smooth diffeomorphism from \widetilde{M} to M. We say that \mathcal{F} and $\widetilde{\mathcal{F}}$ defined respectively in M and \widetilde{M} are related by Φ if for each local vector field $(\widetilde{U}, \widetilde{X})$ which is a generator of $\widetilde{\mathcal{F}}$, the push-forward of this local vector field under Φ , namely

$$(V, Y) = (\Phi(\widetilde{U}), \Phi_*\widetilde{X}),$$

is a generator of \mathcal{F} .

A discontinuous 1-foliation on a manifold M is given by closed subset $\Sigma \subset M$ with empty interior and a 1-dimensional oriented foliation \mathcal{F} defined in $M \setminus \Sigma$. The set Σ is called the discontinuity locus of \mathcal{F} . We can write the decomposition

 $\Sigma = \Sigma^{smooth} \cup \Sigma^{sing}$

where Σ^{smooth} denotes the subset of points where Σ locally coincides with a submanifold of M. We shall say that \mathcal{F} has a smooth discontinuity locus if $\Sigma = \Sigma^{\text{smoth}}$.

We will say that discontinuous 1-foliation \mathcal{F} defined in M and with discontinuity locus Σ is blow-up smoothable if there exists a finite sequence of blowing-ups

$$M = M_0 \longleftarrow \cdots \longleftarrow M_k = \widetilde{M}$$

and a smooth 1-foliation $\widetilde{\mathcal{F}}$ defined in \widetilde{M} such that:

- 1. The map $\Phi: \widetilde{M} o M$ is a diffeomorphism outside Σ , and
- 2. $\widetilde{\mathcal{F}}$ and \mathcal{F} are related by Φ , seen as a map from $\widetilde{M} \setminus \Phi^{-1}(\Sigma)$ to $M \setminus \Sigma$.

Let \mathcal{F} be a discontinuous 1-foliation defined on a manifold M and with discontinuity locus Σ . A local multi-generator of \mathcal{F} is a pair $(U, \{X_1, \ldots, X_k\})$ satisfying the following conditions:

1. We can write $U \setminus \Sigma$ as a finite disjoint union

$$U \setminus \Sigma = U_1 \sqcup \cdots \sqcup U_k \tag{1}$$

of open sets $U_1, ..., U_k$.

For each i = 1, ..., k, X_i is a smooth vector field defined in U and such that

$$(U_i, X_i|_{U_i})$$
 is a local generator of \mathcal{F} . (2)

We will say that \mathcal{F} is piecewise smooth if there exists a collection \mathcal{C} of local multi-generators as above whose domain forms an open covering of Σ such that the following condition holds: For each two local multi-generators

$$(U, \{X_1, \ldots, X_k\}), (V, \{Y_1, \ldots, Y_l\})$$

belonging to $\mathcal C,$ there exists a strictly positive smooth function φ defined in $U\cap V$ such that

$$X_i = \varphi Y_j$$
 on $U_i \cap V_j$ (3)

for each pair of indices $i = 1, \ldots, k$ and $j = 1, \ldots, l$.

Theorem

Let \mathcal{F} be a piecewise smooth 1-foliation on a manifold M whose discontinuity locus Σ is an smooth submanifold of codimension one. Then, \mathcal{F} is blow-up smoothable.

We will say that \mathcal{F} has an analytic discontinuity locus if the ambient space M is an analytic manifold and the discontinuous locus Σ is an analytic subset of M. In other words, we assume that Σ is locally defined (at each point of M) as the vanishing locus of an analytic function.

Under these conditions, it follows that the singular part Σ^{sing} of Σ is a closed analytic subset, which moreover lies in the closure of the smooth part Σ^{smooth} .

From the Theorem of Resolution of Singularities we conclude that there exists an analytic proper map $\Phi: N \to M$ defined by a finite sequence of blowing-ups such that

- 1. Φ is a diffeomorphism outside Σ^{sing} .
- 2. $D = \Phi^{-1}(\Sigma^{\text{sing}})$ is a finite union of boundary components

$$D_1, \cdots, D_k \subset \partial N$$

of codimension one.

3. The closure of $\Phi^{-1}(\Sigma^{\text{smooth}})$ is a smooth submanifold $\Omega \subset N$. The next result states that, under the above conditions, the foliation \mathcal{F} pulls-back to a discontinuous foliation in N which has a smooth discontinuity locus.

Theorem

Let \mathcal{F} is a piecewise smooth 1-foliation with analytic discontinuity locus. Then, using the above notation, there is a piecewise smooth 1-foliation \mathcal{G} defined in N, which is related to \mathcal{F} by Φ , and whose discontinuity locus is Ω .

Corollary

Under the assumptions of the Theorem 2, suppose further that the discontinuity locus of \mathcal{F} has codimension one. Then, \mathcal{F} is blow-up smoothable.

Regularization of discontinuous 1-foliation

Let \mathcal{F} be a discontinuous 1-foliation on a manifold M, with discontinuity locus Σ . A regularization of \mathcal{F} (with *p*-parameters) is a discontinuous 1-foliation \mathcal{F}^{r} defined in the product manifold

$$M \times (\mathbb{R}^p, 0)$$

which satisfies the three following conditions:

1. \mathcal{F}^{r} is tangent to the fibers of the canonical projection

 $\pi: M \times (\mathbb{R}^p, 0) \to (\mathbb{R}^p, 0)$

2. The restriction $\mathcal{F}_0^{\mathbf{r}}$ of $\mathcal{F}^{\mathbf{r}}$ to the fiber $\pi^{-1}(0)$ coincides with \mathcal{F} ,

3. The discontinuity locus $\Sigma^{\mathbf{r}}$ of $\mathcal{F}^{\mathbf{r}}$ is a subset of $\Sigma \times \{\prod_{i} \varepsilon_{i} = 0\}$, where $(\varepsilon_{1}, ..., \varepsilon_{p})$ are the coordinates in $(\mathbb{R}^{p}, 0)$.

Suppose that the discontinuity locus of \mathcal{F} is a smooth submanifold $\Sigma \subset M$ of codimension one.

- 1. $f : N\Sigma \to M$, which maps $N\Sigma$ diffeomorphically to an open neighborhood $W = f(N\Sigma)$ of Σ ;
- 2. A smoothly varying metric $|\cdot|$ on the fibers of the bundle $N\Sigma \rightarrow \Sigma$ (such that |p| = 0 iff $p \in \Sigma$).
- 3. A monotone transition function $\phi:\mathbb{R}^+\rightarrow [-1,1]$

Using the map f, we pull-back \mathcal{F} to a discontinuous 1-foliation \mathcal{G} on $N\Sigma$, with discontinuity locus given by the zero section $\Sigma \subset N\Sigma$.

Without loss of generality, we can assume that $N\Sigma$ is covered by local charts

$$egin{array}{cccc} V imes \mathbb{R}&\longrightarrow&V\ (x,y)&\longmapsto&x \end{array}$$

for some open set $V \subset \Sigma$, and that \mathcal{F} has a local multi-generator of the form $(V \times \mathbb{R}, \{X_+, X_-\})$, where X_+ (resp. X_-) is a smooth vector field in $V \times \mathbb{R}$ which generate \mathcal{G} on $U_+ = \{y > 0\}$ (resp. $U_- = \{y < 0\}$). For each $\varepsilon > 0$, we now define a smooth vector field X_{ε} in $V \times \mathbb{R}$ as follows

$$X_{\varepsilon} \stackrel{ ext{def}}{=} rac{1}{2} \left(1 + \phi \left(rac{y}{arepsilon}
ight)
ight) X_{+} + rac{1}{2} \left(1 - \phi \left(rac{y}{arepsilon}
ight)
ight) X_{-}$$

Notice that, by construction

$$X_arepsilon(x,y) = egin{cases} X_+(x,y) & y \geq arepsilon, \ X_-(x,y) & y \leq -arepsilon, \end{cases}$$

Moreover, if we choose another multi-generator of \mathcal{G} , say $(V \times \mathbb{R}, \{Y_+, Y_-\})$ then we define a family Y_{ε} exactly as above but replacing X_{\pm} by Y_{\pm} , we conclude that $Y_{\varepsilon} = \varphi X_{\varepsilon}, \forall \varepsilon > 0$. In other words, the X_{ε} and Y_{ε} define precisely a same smooth 1-foliation in the domain $V \times \mathbb{R}$.

We define, for each $\varepsilon > 0$, a smooth foliation $\mathcal{G}_{\varepsilon}$. By construction, such foliation coincides which the original foliation \mathcal{G} outside the region $\{p \in N\Sigma : |p| < \varepsilon\}$.

The Sotomayor-Teixeira regularization of \mathcal{F} is the discontinuous 1-foliation $\mathcal{F}^{\mathbf{r}}$ defined in the product space $M \times (\mathbb{R}^+, 0)$ as follows: For $\varepsilon = 0$, we let $\mathcal{F}_0^{\mathbf{r}} = \mathcal{F}$. For $\varepsilon > 0$, we consider the foliation in M given by

$$\mathcal{F}^{\mathsf{r}}_arepsilon = egin{cases} \mathcal{F} & ext{ on } M \setminus W \ f_*\mathcal{G}_arepsilon & ext{ on } W \end{cases}$$

This defines a globally smooth 1-foliation in M.

More generally, under the same assumptions of the previous example, we can define regularization of \mathcal{F} by dropping the assumption of monotonicity and x-independence of the transition function. Namely, by replacing the choice of function ϕ in item 3. by the choice of a smooth function

$$\psi: \Sigma \times \mathbb{R}_+ \to [-1, 1] \tag{4}$$

such that $\psi(x, t) = -1$ if $t \le -1$ and $\psi(x, t) = 1$ if $t \ge 1$. Correspondingly, we replace the expression of X_{ε} given above by

$$X_{\varepsilon} \stackrel{\text{def}}{=} \frac{1}{2} \left(1 + \psi\left(x, \frac{y}{\varepsilon}\right) \right) X_{+} + \frac{1}{2} \left(1 - \psi\left(x, \frac{y}{\varepsilon}\right) \right) X_{-}$$
(5)

The resulting regularization will be called a regularization of transition type.

Let \mathcal{F} be a discontinuous 1-foliation defined on a manifold M and with discontinuity locus Σ . Consider a p-parameter regularization $\mathcal{F}^{\mathbf{r}}$ of \mathcal{F} . We will say that point $p \in \Sigma$ is a point of sliding for $\mathcal{F}^{\mathbf{r}}$ if there exists an open neighborhood $U \subset M$ of p and a family of smooth manifolds

$$S_{\varepsilon} \subset U$$

defined for all $\varepsilon \in ((\mathbb{R}^*)^p, 0)$ such that:

- 1. For each ε , S_{ε} is invariant by the restriction of $\mathcal{F}_{\varepsilon}^{\mathsf{r}}$ to U.
- For each compact subset K ⊂ U, the sequence S_ε ∩ K converges to Σ ∩ K as ε goes to zero for some given Hausdorff metric d_H on compact sets of M

The set of sliding points for $\mathcal{F}^{\mathbf{r}}$ is a relatively open subset of Σ , which we denote by $\operatorname{Slide}(\mathcal{F}^{\mathbf{r}})$.

Assume that the discontinuity locus Σ is an analytic set of dimension d. Then, we can define a more refined notion of sliding by considering different strata of Σ

More precisely, under the above hypothesis, there exists an unique filtration by analytic sets

$$\Sigma^0 \subset \Sigma^1 \subset \cdots \subset \Sigma^d = \Sigma$$

where, for each k = 1, ..., d, the set $\Sigma^k \setminus \Sigma^{k-1}$ is a smooth manifold of dimension k.

Using this decomposition, we say that point $p \in \Sigma^k \setminus \Sigma^{k-1}$ is a stratified point of sliding for \mathcal{F}^r if the conditions 1. and 2. of the above definition holds, when we replace the convergence condition in 2. by

$$d_H(S_{\varepsilon}\cap K,\Sigma^k\cap K)\to 0$$

as ε goes to zero. The set of all points $\Sigma^k \setminus \Sigma^{k-1}$ satisfying the above condition is called sliding region of dimension k, and denoted by $\operatorname{Slide}^k(\mathcal{F}^r)$.

Regularizations of transition type: blowing-up and conditions for sliding

In this section, we consider piecewise smooth 1-foliations whose discontinuity set are smooth submanifold of codimension one. Our main goal is to describe conditions which guarantee that a point belongs to the sliding region of given a regularization of transition type.

To fix the notation, we choose a piecewise smooth 1-foliation \mathcal{F} defined in a manifold M, and whose discontinuity locus is a smooth submanifold $\Sigma \subset M$ of codimension one. According to the definition at each point $p \in \Sigma$ we can choose local coordinates $(x_1, \ldots, x_{n-1}, y)$ and two smooth vector fields X_+ and X_- such that $\Sigma = \{y = 0\}$ and X_+ and X_- are generators of \mathcal{F} on the sets $\{y > 0\}$ and $\{y < 0\}$, respectively.

First of all, we prove a result which will allow to use some powerful tools from the theory of smooth dynamical systems to study such regularization.

Theorem

Let \mathcal{F}^r be a regularization of transition type of \mathcal{F} . Then, \mathcal{F}^r is blow-up smoothable.

We will show that a single blowing-up suffices to obtain a smooth foliation. More precisely, consider the blowing up

$$\Phi: N \to M \times (\mathbb{R}^+, 0)$$

with center on Σ . We claim that there exists a smooth foliation in \mathcal{G} in N which is related to $\mathcal{F}^{\mathbf{r}}$ by Φ .

Now, we will study the sliding regions. The criterion that we are going to describe needs one additional definition: Using the notation introduced above, the height function of \mathcal{F}^r is the smooth function h^r with domain $(x, t) \in \Sigma \times \mathbb{R}$ defined by

$$h^{\mathbf{r}} = \psi \, \mathcal{L}_{(X_+ - X_-)}(y) + \mathcal{L}_{(X_+ + X_-)}(y)$$

where $\psi(x, t)$ is the transition function and $\mathcal{L}_X(f)$ denotes the Lie derivative of the function f with respect to the vector field X. We remark that that the Lie derivative of $X_+ - X_-$ and $X_+ + X_-$ needs to be evaluated only at points of Σ .

More explicitly, if we write X_+ and X_- in terms of the local trivializing coordinates (x, y) described above as

$$X_{\pm} = a_{\pm} rac{\partial}{\partial y} + \sum_{i=1}^{n-1} b_{i,\pm} rac{\partial}{\partial x_i}$$

(for some smooth functions a_{\pm} and $b_{i,\pm}$) then the height function is given by

$$h^{\mathbf{r}}(x,t) = \psi(x,t) \left(a_{+}(x,0) - a_{-}(x,0) \right) + \left(a_{+}(x,0) + a_{-}(x,0) \right).$$

Based on this function, define the following subsets in $\Sigma \times \mathbb{R}$:

$$\mathbf{Z}^{\mathbf{r}} = \left\{ h^{\mathbf{r}}(x,t) = 0 \right\}$$
$$\mathbf{W}^{\mathbf{r}} = \left\{ \frac{\partial h^{\mathbf{r}}}{\partial t}(x,t) \neq 0 \right\}$$

 $\mathsf{NH}^\mathsf{r}=\mathsf{Z}^\mathsf{r}\cap\mathsf{W}^\mathsf{r}$

< ∃ >

Theorem

Let $\mathcal{F}^{\mathbf{r}}$ be a regularization of transition type of \mathcal{F} , defined by a transition function ψ as above. Then,

 $\pi(\mathsf{NH}^{\mathsf{r}}) \subset \operatorname{Slide}(\mathcal{F}^{\mathsf{r}}) \subset \pi(\mathsf{Z}^{\mathsf{r}}).$

where $\pi: \Sigma \times \mathbb{R} \to \Sigma$ is the canonical projection.

Let us now describe the behavior of a regularization in the complement of the sliding set. For this, we introduce the so-called sewing region.

Keeping the above notation, we will say that a point $p \in \Sigma$ is a point of sewing for the regularization \mathcal{F}^r if there exists an open neighborhood $U \subset M$ of p and local coordinates (x, y) defined in U such that

- 1. $\Sigma=\{y=0\}$ and,
- 2. For each sufficiently small $\varepsilon > 0$, the vertical vector field $\frac{\partial}{\partial y}$ is a generator of $\mathcal{F}_{\varepsilon}^{\mathbf{r}}$ in U.

We will denote the set of all sewing points by $Sew(\mathcal{F}^r)$.

Theorem

Let $\mathcal{F}^{\mathbf{r}}$ be a regularization of transition type of \mathcal{F} , defined by a transition function ψ . Then,

$$\pi(\mathsf{Z}^{\mathsf{r}})^\complement \subset \operatorname{Sew}(\mathcal{F}^{\mathsf{r}})$$

where $\pi(\mathbf{Z}^{\mathbf{r}})^{\complement}$ denotes the complement of $\pi(\mathbf{Z}^{\mathbf{r}})$ in Σ .