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1-dimensional oriented foliation

Let M be a smooth manifold (possibly with corners) and a non-flat
smooth vector field defined on M.
(V ,Y ), where V ⊂ M is an open set Y is a smooth vector field in
V is a local vector field in M.
A 1-dimensional oriented foliation on M is a collection

F = {(Ui ,Xi )}i∈I

of local vector fields such that

{Ui} is an open covering of M and

For each pair i , j ∈ I , Xi = ϕijXj for some strictly positive
smooth function ϕij defined on Ui ∩ Uj .
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Local generator of the foliation

We say that a local vector field (V ,Y ) is a generator of the
foliation F if the augmented collection

{(Ui ,Xi )}i∈I ∪ {(V ,Y )}

also satisfies conditions 1. and 2. Let Φ : M̃ → M be a smooth
diffeomorphism from M̃ to M. We say that F and F̃ defined
respectively in M and M̃ are related by Φ if for each local vector
field (Ũ, X̃ ) which is a generator of F̃ , the push-forward of this
local vector field under Φ, namely

(V ,Y ) =
(
Φ(Ũ),Φ∗X̃

)
,

is a generator of F .
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Discontinuous 1-foliation

A discontinuous 1-foliation on a manifold M is given by closed
subset Σ ⊂ M with empty interior and a 1-dimensional oriented
foliation F defined in M \ Σ.
The set Σ is called the discontinuity locus of F . We can write the
decomposition

Σ = Σsmooth ∪ Σsing

where Σsmooth denotes the subset of points where Σ locally
coincides with a submanifold of M. We shall say that F has a
smooth discontinuity locus if Σ = Σsmoth.
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Foliation blow-up smoothable

We will say that discontinuous 1-foliation F defined in M and with
discontinuity locus Σ is blow-up smoothable if there exists a finite
sequence of blowing-ups

M = M0 ←− · · · ←− Mk = M̃

and a smooth 1-foliation F̃ defined in M̃ such that:

1. The map Φ : M̃ → M is a diffeomorphism outside Σ, and

2. F̃ and F are related by Φ, seen as a map from M̃ \ Φ−1(Σ) to
M \ Σ.
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Piecewise smooth 1-foliations

Let F be a discontinuous 1-foliation defined on a manifold M and
with discontinuity locus Σ. A local multi-generator of F is a pair
(U, {X1, . . . ,Xk}) satisfying the following conditions:

1. We can write U \ Σ as a finite disjoint union

U \ Σ = U1 t · · · t Uk (1)

of open sets U1, ..,Uk .

2. For each i = 1, .., k , Xi is a smooth vector field defined in U
and such that

(Ui ,Xi |Ui
)is a local generator of F . (2)
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We will say that F is piecewise smooth if there exists a collection
C of local multi-generators as above whose domain forms an open
covering of Σ such that the following condition holds: For each
two local multi-generators

(U, {X1, . . . ,Xk}), (V , {Y1, . . . ,Yl})

belonging to C, there exists a strictly positive smooth function ϕ
defined in U ∩ V such that

Xi = ϕYj on Ui ∩ Vj (3)

for each pair of indices i = 1, . . . , k and j = 1, . . . , l .
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Theorem

Let F be a piecewise smooth 1-foliation on a manifold M whose
discontinuity locus Σ is an smooth submanifold of codimension
one. Then, F is blow-up smoothable.

We will say that F has an analytic discontinuity locus if the
ambient space M is an analytic manifold and the discontinuous
locus Σ is an analytic subset of M. In other words, we assume
that Σ is locally defined (at each point of M) as the vanishing
locus of an analytic function.
Under these conditions, it follows that the singular part Σsing of Σ
is a closed analytic subset, which moreover lies in the closure of
the smooth part Σsmooth.
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From the Theorem of Resolution of Singularities we conclude that
there exists an analytic proper map Φ : N → M defined by a finite
sequence of blowing-ups such that

1. Φ is a diffeomorphism outside Σsing.

2. D = Φ−1(Σsing) is a finite union of boundary components

D1, · · · ,Dk ⊂ ∂N

of codimension one.

3. The closure of Φ−1(Σsmooth) is a smooth submanifold Ω ⊂ N.

The next result states that, under the above conditions, the
foliation F pulls-back to a discontinuous foliation in N which has a
smooth discontinuity locus.
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Theorem

Let F is a piecewise smooth 1-foliation with analytic discontinuity
locus. Then, using the above notation, there is a piecewise smooth
1-foliation G defined in N, which is related to F by Φ, and whose
discontinuity locus is Ω .

Corollary

Under the assumptions of the Theorem 2, suppose further that the
discontinuity locus of F has codimension one. Then, F is blow-up
smoothable.

P.R. da Silva Regularization of Discontinuous Foliations



Regularization of discontinuous 1-foliation

Let F be a discontinuous 1-foliation on a manifold M, with
discontinuity locus Σ. A regularization of F (with p-parameters) is
a discontinuous 1-foliation F r defined in the product manifold

M × (Rp, 0)

which satisfies the three following conditions:

1. F r is tangent to the fibers of the canonical projection

π : M × (Rp, 0)→ (Rp, 0)

2. The restriction F r
0 of F r to the fiber π−1(0) coincides with F ,

3. The discontinuity locus Σr of F r is a subset of
Σ×

{∏
i εi = 0

}
, where (ε1, .., εp) are the coordinates in

(Rp, 0).
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Sotomayor-Teixeira regularization and its generalizations

Suppose that the discontinuity locus of F is a smooth submanifold
Σ ⊂ M of codimension one.

1. f : NΣ→ M, which maps NΣ diffeomorphically to an open
neighborhood W = f (NΣ) of Σ;

2. A smoothly varying metric | · | on the fibers of the bundle
NΣ→ Σ (such that |p| = 0 iff p ∈ Σ).

3. A monotone transition function φ : R+ → [−1, 1]

Using the map f , we pull-back F to a discontinuous 1-foliation G
on NΣ, with discontinuity locus given by the zero section Σ ⊂ NΣ.
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Without loss of generality, we can assume that NΣ is covered by
local charts

V × R −→ V
(x , y) 7−→ x

for some open set V ⊂ Σ, and that F has a local multi-generator
of the form (V × R, {X+,X−}), where X+ (resp. X−) is a smooth
vector field in V × R which generate G on U+ = {y > 0} (resp.
U− = {y < 0}).
For each ε > 0, we now define a smooth vector field Xε in V × R
as follows

Xε
def
=

1

2

(
1 + φ

(y
ε

))
X+ +

1

2

(
1− φ

(y
ε

))
X−
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Notice that, by construction

Xε(x , y) =

{
X+(x , y) y ≥ ε,
X−(x , y) y ≤ −ε,

Moreover, if we choose another multi-generator of G, say
(V × R, {Y+,Y−}) then we define a family Yε exactly as above
but replacing X± by Y±, we conclude that Yε = ϕXε, ∀ε > 0. In
other words, the Xε and Yε define precisely a same smooth
1-foliation in the domain V × R.
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We define, for each ε > 0, a smooth foliation Gε. By construction,
such foliation coincides which the original foliation G outside the
region {p ∈ NΣ : |p| < ε}.
The Sotomayor-Teixeira regularization of F is the discontinuous
1-foliation F r defined in the product space M × (R+, 0) as follows:
For ε = 0, we let F r

0 = F . For ε > 0, we consider the foliation in
M given by

F r
ε =

{
F on M \W
f∗Gε on W

This defines a globally smooth 1-foliation in M.
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Regularization of transition type

More generally, under the same assumptions of the previous
example, we can define regularization of F by dropping the
assumption of monotonicity and x-independence of the transition
function. Namely, by replacing the choice of function φ in item 3.
by the choice of a smooth function

ψ : Σ× R+ → [−1, 1] (4)

such that ψ(x , t) = −1 if t ≤ −1 and ψ(x , t) = 1 if t ≥ 1.
Correspondingly, we replace the expression of Xε given above by

Xε
def
=

1

2

(
1 + ψ

(
x ,

y

ε

))
X+ +

1

2

(
1− ψ

(
x ,

y

ε

))
X− (5)

The resulting regularization will be called a regularization of
transition type.

P.R. da Silva Regularization of Discontinuous Foliations



Sliding regions

Let F be a discontinuous 1-foliation defined on a manifold M and
with discontinuity locus Σ. Consider a p-parameter regularization
F r of F . We will say that point p ∈ Σ is a point of sliding for F r

if there exists an open neighborhood U ⊂ M of p and a family of
smooth manifolds

Sε ⊂ U

defined for all ε ∈ ((R?)p, 0) such that:

1. For each ε, Sε is invariant by the restriction of F r
ε to U.

2. For each compact subset K ⊂ U, the sequence Sε ∩ K
converges to Σ ∩ K as ε goes to zero for some given Hausdorff
metric dH on compact sets of M
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The set of sliding points for F r is a relatively open subset of Σ,
which we denote by Slide(F r).
Assume that the discontinuity locus Σ is an analytic set of
dimension d . Then, we can define a more refined notion of sliding
by considering different strata of Σ
More precisely, under the above hypothesis, there exists an unique
filtration by analytic sets

Σ0 ⊂ Σ1 ⊂ · · · ⊂ Σd = Σ

where, for each k = 1, . . . , d , the set Σk \ Σk−1 is a smooth
manifold of dimension k .
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Using this decomposition, we say that point p ∈ Σk \ Σk−1 is a
stratified point of sliding for F r if the conditions 1. and 2. of the
above definition holds, when we replace the convergence condition
in 2. by

dH(Sε ∩ K ,Σk ∩ K )→ 0

as ε goes to zero. The set of all points Σk \ Σk−1 satisfying the
above condition is called sliding region of dimension k, and
denoted by Slidek(F r).
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Regularizations of transition type: blowing-up and
conditions for sliding

In this section, we consider piecewise smooth 1-foliations whose
discontinuity set are smooth submanifold of codimension one. Our
main goal is to describe conditions which guarantee that a point
belongs to the sliding region of given a regularization of transition
type.
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To fix the notation, we choose a piecewise smooth 1-foliation F
defined in a manifold M, and whose discontinuity locus is a
smooth submanifold Σ ⊂ M of codimension one. According to the
definition at each point p ∈ Σ we can choose local coordinates
(x1, . . . , xn−1, y) and two smooth vector fields X+ and X− such
that Σ = {y = 0} and X+ and X− are generators of F on the sets
{y > 0} and {y < 0}, respectively.
First of all, we prove a result which will allow to use some powerful
tools from the theory of smooth dynamical systems to study such
regularization.
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Theorem

Let F r be a regularization of transition type of F . Then, F r is
blow-up smoothable.

We will show that a single blowing-up suffices to obtain a smooth
foliation. More precisely, consider the blowing up

Φ : N → M × (R+, 0)

with center on Σ. We claim that there exists a smooth foliation in
G in N which is related to F r by Φ.
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Now, we will study the sliding regions. The criterion that we are
going to describe needs one additional definition: Using the
notation introduced above, the height function of F r is the smooth
function hr with domain (x , t) ∈ Σ× R defined by

hr = ψL(X+−X−)(y) + L(X++X−)(y)

where ψ(x , t) is the transition function and LX (f ) denotes the Lie
derivative of the function f with respect to the vector field X . We
remark that that the Lie derivative of X+ − X− and X+ + X−
needs to be evaluated only at points of Σ.
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More explicitly, if we write X+ and X− in terms of the local
trivializing coordinates (x , y) described above as

X± = a±
∂

∂y
+

n−1∑
i=1

bi ,±
∂

∂xi

(for some smooth functions a± and bi ,±) then the height function
is given by

hr(x , t) = ψ(x , t)
(
a+(x , 0)− a−(x , 0)

)
+
(
a+(x , 0) + a−(x , 0)

)
.
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Based on this function, define the following subsets in Σ× R:

Zr =
{
hr(x , t) = 0

}
Wr =

{∂hr
∂t

(x , t) 6= 0
}

NHr = Zr ∩Wr
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Theorem

Let F r be a regularization of transition type of F , defined by a
transition function ψ as above. Then,

π(NHr) ⊂ Slide(F r) ⊂ π(Zr).

where π : Σ× R→ Σ is the canonical projection.

Let us now describe the behavior of a regularization in the
complement of the sliding set. For this, we introduce the so-called
sewing region.
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Keeping the above notation, we will say that a point p ∈ Σ is a
point of sewing for the regularization F r if there exists an open
neighborhood U ⊂ M of p and local coordinates (x , y) defined in
U such that

1. Σ = {y = 0} and,

2. For each sufficiently small ε > 0, the vertical vector field ∂
∂y is

a generator of F r
ε in U.

We will denote the set of all sewing points by Sew(F r).
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Theorem

Let F r be a regularization of transition type of F , defined by a
transition function ψ. Then,

π
(
Zr
){ ⊂ Sew(F r)

where π(Zr){ denotes the complement of π(Zr) in Σ.
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