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Abstract. In this paper we present a justification for a single-species model, with dispersal and 
migration characteristics, as well as a compartmental division of the population in order to obtain an 
epizootic model, with a periodically varying contagion rate. The numerical method used is described 
and numerical results are presented and commented. 
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1. Introduction 
 

In the years from 1999 through to 2001 the authors were part of a group which, under the 
leadership of Rossi, C., from the University of Siena, studied several different aspects of the Iberá 
region, in northeastern Argentina, as part of the project “The sustainable management of wetland 
resources in Mercosul” (Rossi and others, 1999). Part of these studies involved the population 
dynamics of certain charismatic species with regards to ecotourism – and its positive influence 
insofar as strategies of natural conservation as well as the survival of local human populations are 
concerned. This problem appeared in a more general picture: that of a sustainable community. 

Previous authors have presented the case for efficient modelling and simulation of 
population dispersal problems with the use of systems of partial differential equations (see Gurney 
and Nisbet, 1975; Cosner, 1996; Murray, 1989; Pregnolatto, 2002). Cosner and others have argued in 
favour of more research with this kind of modelling effort. In agreement with  Skellam’s suggestion, 
as well as that of Kareiva’s population dispersal characterization, both of which chose the route of 
linear short-term PDE (in the sense of not being significantly affected by the population dynamics), 
we intend, here, in a similar attitude, to propose the use of a system with which we can undertake the 
study of a cyclic epizootic problem that arose in a general study of capybara3 (Hydrocoerus 
hydrochaeris) population dynamics and dispersal.  

                                                 
1 silvio@ime.unicamp.br 
2 joni@ime.unicamp.br 
3 “Capybara” in the local Tupy-Guarany language, “Grass-eater” 
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Capybaras are the greatest rodents that exist, and may weigh well over 100 pounds in adult 
individuals, which may reach 1.30m in length. They live in groups that vary from 20 to 30 
individuals; they are gregarious and always live near water. Two or three times a year, they mate, and 
litters are from 4 to 6 offspring. Their greatest activities are at the beginning and at the end of the day 
– they have nocturnal and diurnal habits. They are prey to american pumas and occasionally, to the 
local “yacaré”, south-american crocodiles, besides, of course, humans. They co-exist peacefully with 
livestock. 

Although we do recognize the need for the study certain species from the point of view of  
eco-systems, an approach which seems to exclude the modelling of single populations, and in spite of 
the fact that capybaras are not quite at end of the trophic chain in many environments, nevertheless, 
the option here is for a study of the derengadera disease in local populations, with these animals 
being considered here in the single population picture. 

This disease severely affects this species in the Iberá region, and local park rangers refer to 
it as having the effect of literally exterminating the capybara population every seven years or so. The 
adopted choice of modelling this single species implies that some simplification is necessary and, 
indeed, what can justify this attitude is the possibility of executing numerical simulations with which 
initial approximations can be studied and experience obtained with which to grow from in the sense 
of adopting improved models, numerical methods and computer algorithms. 
 
 
2. Description of modelling choices 
 

The model we have opted for in this case is one that considers both a population dispersal 
model, in the above-mentioned sense, as well as compartmental models for the epizootical 
considerations. Previous modelling efforts in this direction, that is to say, combining spatial 
distribution, population dynamics and diseases have been presented by Thieme (1977), Shigesada 
(1980), Capasso and Madalena (1981), Webb (1982), Keeling and Grenfell (1997), Grasman (1998), 
as well as Murray (1989) – this latter including the study of travelling diseases. 

The innovative aspect of the model we present is in combining of a non-linear population 
dynamics (for which we have adopted a Verhulst-type of evolutionary dynamics, although other 
choices could have been made), descriptive of the reproductive characteristics of the studied species 
included in a classical compartmental epidemiological model (using the traditional term, although the 
case is that of an epizootical situation). 

The proposed mathematical tool therefore combines population dynamics modelling with 
that of population dispersal for the traditional compartments S, I, M, functions of the space variables 
(x,y)∈Ω⊂R2 and of a temporal variable, t∈(0, T]⊂R1. These represent the three compartments into 
which the entire population is divided: S=S(x,y,t), the susceptibles, I=I(x,y,t), the infected and 
M=M(x,y,t) the removed, or deceased animals. The non-linear system of differential equations we 
present is: 
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In this system, th
1. kS and kI respectivelly stand for dispersion coefficients for healthy and afflicted capybaras; 
2. VS and VI represent (possible) migration tendencies, in the form of vector fields; 
3. σS and σI stand for environmental hostilities for both susceptible and infected individuals – 

for which different values are expected, since infected animals disperse considerably less 
than susceptibel ones; 

4. λ is the intrinsic reproduction rate for susceptible animals, and only for these, since infected 
individuals do not reproduce; 

5. α is the rate of infection, inducing the change of compartment, from the susceptible to the 
infected state; and, finally 

6. β is the mortality rate for infected capybaras. 
 

Non-linearities arise in the first two equations of system (1) due to the chosen dynamics as well 
as the infection process.  In the first equation, on the right side, the first term combines the Verhulst-
like dynamics including susceptible and infected animals in the environmental limitation but not in 
the reproduction – since infected animals do not reproduce. 
 
 
3. The chosen model 
 

System (1) does not, in itself, represent a new model, but a suggestion from BASSANEZI 
(2000), changing the characteristic of the infection rate, introduces a relevant modification: 
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In this second model, a variation of the first one, in fact, three new parameters 

are introduced: 
1. s the mean reproduction rate for the considered insect species; 

2.  is the scope of the variation in the reproduction rate; and 
3. γ is used in order to adjust the variation to the chosen time scale. 
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The purpose of this change is to introduce a periodical behaviour of the population of insects, 
whi  the region 
are the m
approach
summer, lation in the driest season, which is the local winter. 
 
in the e odel. System (2) introduces a modification in one of these 
cons t
cyclic v s of the disease-inducing insect and, consequently, in the 
infe n

Both systems (1) and (2) are sufficiently complex as to challenge mathematicians and 
appl

. Initial and boundary conditions 

main, as is quite common in initial studies, is a rectangle. Now this may, 
metimes, discourage ecologists (who work with maps and regions) in their contacts with applied 

mathem
stages of modelling and simulation:  
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s  domain 
a and a transformation 

curves, for example) from 

 consider a constant 
 quant

 which effectively occur: 
 boundaries exist so that 

er  
ary along which there is such a passage, and it is proportional to the local 

pop on. Ω ⊂ 2 as 

ch act as the disease vectors. These can be of several types, but the most common in
utucas (Diptera Tabanideae) the population of which has a dynamic aspect which can be 
ed in he form of a sinus, with maximum population in the wet season, that is to say in 
 and a minimum in popu
System (1) is a non-linear system of partial differential equations, with constant coefficients 
pidemiological4 part of the m

tan s: from a fixed parameter α into a function of time: an approach to the periodical effect of 
ariations in population level

ctio  rate. 
 

ied mathematicians alike: both analytic solutions as well as numerical ones present considerable 
difficulties, some of them quite serious. 
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aticians, but there are two arguments in favour of the use of these “special” domains in initial 

ains using systems of 
ehaviours for numerical 
necessary, discarded;  
 that the chosen

- first, there have been many simulations upon rectangular dom
diffusive-advective systems and this may signify that there are “expected” 
solutions, a pattern against which the obtained results can be matched and, if

- a second reason, which mathematicians do not, in general, state, i
may very often be considered as homeomorphic to the chosen, original, dom
could be used to transform the results (when presented in the form of level 
a well-behaved rectangle to the original, natural, map-like domain. 

The initial condition chosen for the numerical simulations was 
distribution of the susceptible population, no dead individuals, and a sm
individuals at a point along the region’s boundary. 
 The adopted boundary conditions intend to simulate situations
long parts of the boundary there are no individuals; on other parts, natural

in, 

to
all ity of infected 

a
th e is no movement or passage of individuals leaving or entering the domain and, finally, there are
parts of the bound

ulati In other words, considering the boundary of the domain   R
ΓΓ∪ΓΓ= .   subsets disjoints  with 0 ∪Ω∂ 21 i

                                                 
4 The term epidemiological is not correct since it refers to diseases in human, the appropriate term 
should be epizootical. Nonetheless, the term is adopted here in the mathematical sense, which 
identifies a system with Kermack and McKendrick characteristics (see Murray, J.D.) 
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The stated boundary conditions can now be expressed as: 
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where the parameter µ  represents a permeability constant standing for the proportion of local 
population, which crosses the mentioned part of the boundary. The deceased individuals are evidently 
not considered in this last situation. 

Analytic solutions, as mentioned previously are not considered in this work, although the 
xistence and uniqueness will be part of a different paper since the purpose of this work is to present 

 

theoretical results which can guarantee not only existence of 
solution

rmulation will used instead of the 
classical

e
the model and some of the numerical simulations. 
 

5. Discretization and approximation 
 
 In order to be able to use 

s, but convenient orders of convergence in numerical results, and considering the possibility 
of using the resulting algorithms in irregular map-like domains, the option will be for the Finite 
Element Method in discretizing space variables.  

This choice implies in a Galerkin Method variable separation, so that a Finite Difference 
scheme can be adopted in the time variable. In fact, the natural choice here indicates an Implicit 
Crank-Nicholson scheme, and the combination of these choices permits second-order approximations 
in space and in time. This strategy implies that: (i) the variational fo

 one, given by the above defined systems; and (ii) S(x,y,t), I(x,y,t) and M(x,y,t) will be 
approximated using: 
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In this triple substitution functions Sj, Ij, Mj are functions only of the time variable t, whereas 
functions φj  are of the space variables (x,y). These are the test functions of the Finite Element 
Method,which means that the domain Ω is also approximated by Ωh

5, the discretized domain. 
Substitution of these approximations in (2) transforms the PDE system into a system of ODE’s, given 
by:  
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This non-linear system also presents analytic difficulties of such an order as to justify 
approximating it by a numerical scheme. The choice, as mentioned previously, is for the Crank-
Nicolson method, and the reason for adopting this implicit scheme is its second order approximation 
in time, besides its be

  (5) 

ing unconditionally stable. This means that instead of calculating the values of 
nctions Sj(t), Ij(t) and Mj(t) on the successive time-steps  tn, that is, Sj(tn), Ij(tn) and Mj(tn), the 

scheme will calculate the values This leads to the substitution of the 
differential terms in (5) – for all three sets of functions Sj , Ij and Mj – by the corresponding Crank-
Nicolson operators. This will lead to another non-linear system, although n  longe
differential equation. Classical methods can be used for approximating solutions. In this case, we 
resort to the successive linearization approach, in fact a predictor-corrector second-order scheme (see 
Douglas and Dupont, 1970). 
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5 This means that although Ωh and Ω may, eventually be different, as h→0, then Ω→Ωh, in a certain 
sense, with h representing in some way the ‘size’ of the discretization.  
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6. Vi

itions are those mentioned in the beginning of paragraph 4, and population dispersal parameters 
re considered to be constant in the domain, since this is practically what actually happens on dry 

land in the region. 
Each figure presents six different aspects of one of the simulations: the first three figures show three-
dimensional graphs of surfaces with the final spatial distribution of, respectively, susceptible, 
infected and deceased individuals over the generic domain; the next three figures represent a certain 
spatial point of the domain along time, giving the local population level for, likewise, susceptible, 
infected and deceased populations. In spite of the obviously artificial rectangular form of the domain 
used in the programme, the purpose is that of obtaining information on the behaviour of both the 
model and the algorithmic approach, and matching these to what local information can be obtained. 
Analysis of the first three shows that the population of infected animals subsists where susceptibles 
were previously: susceptibles become infected and these, in turn, become deceased, and the third 

raph shows this sequence. The population level of susceptibles is very low, but still there is a 
variation, from which a population come-back could, under certain circumstances, be obtained. The 
last three graphs emphasize these same conclusions for population levels at a certain point as time 
goes by: in fact, the third graph shows that, while infected populations survive, the population of 
dead animals is still increasing. 

sualization of numerical results 
 
The above-mentioned algorithm was programmed in a Matlab® environment and results 

were treated using this software’s resources for visualization possibilities. Initial and boundary 
cond
a

g

 
Figure 1: Simulation for 1 000 steps in the time. 
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7. Comments and conclusions 
 
The results are promising in the sense that it would very important to run the programme 

using a geographically appropriate model, and with conveniently obtained parameters. Observation 
of the obtained figures exhibits both the expected complementary coupled behaviour of the numerical 
solutions as well as situations affected by the introduced periodic variation in contagion. Aspects of 
classical behaviours for Susceptible-Infected were as to be expected, as well as the growth of 
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deceased animals along the general time-period. This model, however, was not designed as to include 
the population comeback from the extremely low values for susceptible individuals. For this it would 
be necessary to include both the dynamics for the infecting insect as well as the interaction between 
the capybaras and these insects. 
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