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Abstract
Nonlinear symmetric cone programming (NSCP) generalizes important optimization
problems such as nonlinear programming, nonlinear semi-definite programming and
nonlinear second-order cone programming (NSOCP). In this work, we present two
new optimality conditions for NSCP without constraint qualifications, which implies
the Karush–Kuhn–Tucker conditions under a condition weaker than Robinson’s con-
straint qualification. In addition,we show the relationship of both optimality conditions
in the context of NSOCP, where we also present an augmented Lagrangian method
with global convergence to a KKT point under a condition weaker than Robinson’s
constraint qualification.

Keywords Second-order cones · Symmetric cones · Optimality conditions ·
Constraint qualifications · Augmented Lagrangian method

1 Introduction

The nonlinear symmetric cone programming (NSCP) problem is an optimization prob-
lem where the constraints are defined on a general symmetric cone. In recent years,
the interest in NSCP has grown considerably. The reason is that many well-known
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optimization problems are particular cases of NSCP, including the nonlinear program-
ming (NLP), the nonlinear second-order cone programming (NSOCP) and nonlinear
semidefinite programming (NSDP) problems. The theoretical tool that allows us to
unify the study of all these problems is the notion of Euclidean Jordan algebras. In
particular, Faraut and Korányi studied in [27] the concept of cone of squares, where it
is shown that every symmetric cone can be represented as a cone of squares of some
Euclidean Jordan algebra. Although the interest in optimization problems with conic
constraints is increasing, the studies related to these problems are still insufficient.

For theNLPcase, sequential optimality conditions have been considered very useful
in the past years due to the possibility of unifying and extending results of global con-
vergence for several algorithms [5]. These necessary optimality conditions appeared
in NLP as an alternative for conditions of the form “KKT or not-CQ,” which means
that every local optimizer is either a Karush–Kuhn–Tucker (KKT) point, or it does not
satisfy a constraint qualification (CQ). In fact, sequential optimality conditions are
necessary for optimality without requiring a CQ. Besides, they imply a condition of the
form “KKT or not-CQ” under so-called strict constraint qualifications [14] in place of
“CQ,” which are stronger than the ones appearing inmore theoretical venues but, more
interestingly, are weaker than CQs usually employed in global convergence analysis
(such asMangasarian–Fromovitz CQ/Robinson’s CQ). Due to their relevance, sequen-
tial optimality conditions were extended to different classes of optimization problems
such as multiobjective optimization [28, 32], NSDP [12], NLP with complementar-
ity constraints [11, 46], generalized Nash equilibrium problems [25], optimization
of discontinuous functions [21], optimization in Banach spaces [38], variational and
quasi-variational inequalities [35, 39] and quasi-equilibrium problems [24].

One of the most relevant sequential optimality conditions is the so-called
Approximate-Karush–Kuhn–Tucker (AKKT) condition, which is related to several
first- and second-order algorithms. For more details, see [10, 13–15, 19]. In this paper,
we consider an extension of the AKKT condition for NSCP problems. For measuring
the complementarity condition, we use the eigenvalues of the constraint functions and
of the approximate Lagrange multipliers. We also introduce another optimality con-
dition that is more suited to the conic framework, by measuring the complementarity
with the Jordan product. In the NLP case, it coincides with the stronger condition
known as Complementary-AKKT (CAKKT) [16]. A detailed study for NSOCP is pre-
sented, where we show that CAKKT is in fact stronger than AKKT. We also present
the global convergence of an augmented Lagrangian algorithm to points satisfying
AKKT and, under an additional smoothness assumption, CAKKT. These optimality
conditions are strictly better than Fritz-John’s, usually employed in this context.

This paper is organized as follows. In Sect. 2, we recall some theoretical results on
Euclidean Jordan algebras. In Sect. 3, we propose the sequential optimality conditions
for NSCP and present some of their properties. In Sect. 4, we analyze in detail the case
of NSOCP. In Sect. 5, we introduce the augmented Lagrangian algorithm for NSOCP,
and we show that the limit points of a sequence generated by the method satisfy our
optimality conditions. An illustrative numerical experiment is also conducted. Finally,
some conclusions are presented in Sect. 6.

The following notations will be adopted in this paper. For any matrix A ∈ R
n×�,

its transpose is denoted by AT ∈ R
�×n . A vector z ∈ R

� can be written as (z0, z̄) ∈
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R × R
�−1. Let h : Rn → R

� be a function with components hi : Rn → R, with
i = 1, . . . , �. Then, for any x ∈ R

n , we canwrite h(x) = ([h(x)]0, h(x)
) ∈ R×R

�−1.

Also, the Jacobian of h at x ∈ R
n is denoted by Jh(x) ∈ R

�×n , and the gradient of hi
at x is written as ∇hi (x). In R�, the Euclidean norm and the Euclidean inner product
will be denoted by ‖ · ‖ and 〈·, ·〉, respectively. If J is a finite-dimensional inner
product space and P : Rn → J is an operator, then the adjoint of P with respect to
the Euclidean inner product in R

n is given by P∗ : J → R
n . We denote by int(C)

the interior of a set C . The matrix I� is the � × � identity matrix. The �-dimensional
second-order cone is given by

K� :=
{

z = (z0, z̄) ∈ R × R
�−1

∣∣∣∣
‖z̄‖ ≤ z0 for � ≥ 2

z ≥ 0 for � = 1

}

.

2 Symmetric Cones and Euclidean Jordan Algebras

In this section, we review some results on symmetric cones and Euclidean Jordan
algebras. We refer to [18, 27] for more details. Here, let E be a finite-dimensional
real vector space with an inner product 〈·, ·〉. In order to define symmetric cones, we
need the concept of self-dual and homogeneous cones. The dual of a cone K ⊆ E is
defined by K∗ := {u ∈ E | 〈u, v〉 ≥ 0 for all v ∈ K}. Moreover, K is self-dual if
K = K∗. Furthermore, the cone K is homogeneous if for each u, v ∈ int(K), there
exists a linear bijection T such that T (u) = v and T (K) = K.

Definition 2.1 The cone K is symmetric if it is self-dual, homogeneous and has
nonempty interior.

Some well-known optimization problems are defined on symmetric cones, as in the
case of: the nonlinear programming (NLP) problem on the nonnegative orthant, the
nonlinear second-order cone programming (NSOCP) problem on the second-order
cone (or Lorentz cone), the nonlinear semidefinite programming (NSDP) problem on
the positive semidefinite cone, and others. The concept of Euclidean Jordan algebra
allows us to unify the study of NLP, NSOCP, NSDP, and other problems obtained
through a mix of different conic constraints by means of a symmetric conic constraint.
The definition is given as follows.

Definition 2.2 Let E be a finite-dimensional real vector space with an inner product
〈·, ·〉 and a bilinear operator ◦ : E × E → E . Then, we say that (E, ◦) is an Euclidean
Jordan algebra if for all u, v, w ∈ E :
(i) u ◦ v = v ◦ u,

(ii) u ◦ (u2 ◦ v) = u2 ◦ (u ◦ v), where u2 = u ◦ u,

(iii) 〈v ◦ w, u〉 = 〈v,w ◦ u〉.
It is well known that an Euclidean Jordan algebra E can be decomposed as a direct

sum of simple Euclidean Jordan algebras

E = E1 ⊕ E2 ⊕ · · · ⊕ Es, (1)
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which induces a decomposition of a symmetric cone K as a direct sum of symmetric
cones, i.e.,

K = K1 ⊕ K2 ⊕ · · · ⊕ Ks,

where each algebra (Ei , ◦) is such that it is not possible to obtain nonzero sub-algebras
Ui , Vi of Ei such that Ei = Ui ⊕Vi . Let us now present a characterization of symmetric
cones in terms of cones of squares.

Theorem 2.1 ([27, Theorem III.2.1]). Let E be a finite-dimensional inner product
space. A cone K ⊆ E is symmetric if and only if K is a cone of squares of some
Euclidean Jordan algebra (E, ◦), i.e., K = {u ◦ u | u ∈ E}.

With the above theorem, we can use Euclidean Jordan algebra theory to study prop-
erties of symmetric cones. In particular, given a symmetric cone K we will consider
its natural Euclidean Jordan algebra such that K is its cone of squares. For example,
we can characterize the second-order cone K� ⊂ R

� as a cone of squares defining the
Jordan product

(z0, z) ◦ (y0, y) = (〈z, y〉, z0y + y0z) , (2)

for all z = (z0, z) ∈ R×R
�−1 and y = (y0, y) ∈ R×R

�−1. Moreover, to characterize
the positive semidefinite coneSm+ as a cone of squares,we define X◦Y = (Y X+XY )/2
for X ,Y ∈ S

m , where S
m is the linear space of all real symmetric matrices with

dimension m × m equipped with the inner product 〈X ,Y 〉 := tr (XY ). Considering
the nonnegative orthant Rm+ equipped with the Euclidean inner product, the Jordan
product is the usual Hadamard product. Now, we present the notion of a spectral
decomposition in Euclidean Jordan algebras, which is a natural extension of the usual
decomposition for symmetric matrices.

Theorem 2.2 ([27, Theorem III.1.2]). Let (E, ◦) be an Euclidean Jordan algebra and
u ∈ E . Then, there exist the so-called idempotents 0 �= ci (u) ∈ E , i = 1, . . . , r
satisfying

ci (u) ◦ c j (u) = 0, i �= j, (3)

ci (u) ◦ ci (u) = ci (u), i = 1, . . . , r ,

c1(u) + · · · + cr (u) = e, i = 1, . . . , r , (4)

and the so-called eigenvalues λi (u) ∈ R with i = 1, . . . , r such that

u = λ1(u)c1(u) + · · · + λr (u)cr (u),

where e satisfies u ◦ e = e ◦ u = u for all u.

The number r , which is the rank of the algebra, and the identity element e in
the above theorem are uniquely defined. We also say that ci (u), i = 1, . . . , r , in
the previous theorem form a Jordan frame for u. We can see in [27, Proposition
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II.2.] that the functions λi , when the order is fixed, are all continuous over E and
uniquely determined by u. By (4) andDefinition 2.2 (iii), we have that 〈ci (u), c j (u)〉 =
〈ci (u)◦ci (u), c j (u)〉 = 〈ci (u), ci (u)◦c j (u)〉which is equal to zero by (3) when i �= j ,
and hence, the idempotents are orthogonal.

The elements u ∈ E and v ∈ E are said to operator commute if they share a Jordan
frame, that is, if there exists a common Jordan frame {c1, . . . , cr } such that

u = λ1(u)c1 + · · · + λr (u)cr and v = λ1(v)c1 + · · · + λr (v)cr .

For a symmetric matrix, its spectral decomposition coincides with the classic eigen-
value decomposition, the idempotents being the outer product of the eigenvectors,
namely ci (u) = qi (u)qi (u)T , where qi (u) is the corresponding eigenvector of the
symmetric matrix u. For the particular case of the Euclidean Jordan algebra associ-
ated with the second-order cone K� ⊂ R

�, the spectral decomposition of z ∈ R
� is

given by z = λ−(z)c−(z) + λ+(z)c+(z) where λ−(z) = z0 − ‖z‖, λ+(z) = z0 + ‖z‖
and

c−(z) =

⎧
⎪⎨

⎪⎩

1

2

(
1,− z

‖z‖
)

if z �= 0,

1

2
(1,−w) if z = 0,

c+(z) =

⎧
⎪⎨

⎪⎩

1

2

(
1,

z

‖z‖
)

if z �= 0,

1

2
(1, w) if z = 0,

(5)

where w is any vector in R�−1 such that ‖w‖ = 1. See, for instance, [31] for spectral
properties of the second-order cone.

The following result summarizes some interesting properties that relate the inner
product, the Jordan product and the eigenvalues. See, for instance, [43, Proposition
2.1] and [27, Theorem III.4.1].

Proposition 2.1 Let (E, ◦) be an Euclidean Jordan algebra, with K as its cone of
squares. For u, v ∈ E , the following properties hold.

(i) u ∈ K (u ∈ int(K)) if and only if the eigenvalues of u are nonnegative (positive);
(ii) if u, v ∈ K, then u ◦ v = 0 if and only if 〈u, v〉 = 0;
(iii) if u, v ∈ K is such that 〈u, v〉 = 0, then u and v operator commute,
(iv) when the algebra is simple, 〈u, v〉 = θ tr(u ◦ v) where tr(u) = ∑r

i=1 λi (u) and
θ is constant.

In item (iv), θ = 1/2 for a second-order cone of dimension at least 2, and θ = 1 for
the semidefinite cone. The projection onto a symmetric coneK is also easily computed
when the spectral decomposition is available.

Proposition 2.2 [43, Proposition 2.5] Let (E, ◦) be an Euclidean Jordan algebra, with

K as its cone of squares. Let u =
r∑

i=1

λi (u)ci (u) be a spectral decomposition of u ∈ E .

Then, the projection of u onto K is given by

[u]+ =
r∑

i=1

max{0, λi (u)}ci (u).
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The following proposition will be relevant in our analysis:

Proposition 2.3 Let (E, ◦) be an Euclidean Jordan algebra of rank r and {uk} ⊂ E
with uk → u. Then, there exists a subsequence of the Jordan frames {ci (uk)}ri=1 of u

k

converging to a Jordan frame {ci (u)}ri=1 of u.

Proof It follows from the boundedness of the sequence of Jordan frames, continuity
of eigenvalues and continuity of ◦. See, for instance, the proof of Theorem 2.7.25 in
[17]. ��

3 Nonlinear Symmetric Cone Programming

The nonlinear symmetric cone programming (NSCP) problem is defined as follows:

Minimize
x∈Rn

F(x),

subject to G(x) ∈ K,
(NSCP)

where F : Rn → R andG : Rn → E are continuously differentiable functions,K ⊆ E
is a symmetric cone, and E is a finite-dimensional inner product space. The Lagrangian
function L : Rn × E → R of (NSCP) is defined by

L(x, σ ) := F(x) − 〈G(x), σ 〉.

We say that (x, σ ) ∈ R
n ×E is a KKT pair for (NSCP) if the following conditions are

satisfied:

∇L(x, σ ) = ∇F(x) − JG(x)∗σ = 0,

〈G(x), σ 〉 = 0,

G(x) ∈ K,

σ ∈ K,

(6)

where JG(x) : R
n → E is the Jacobian of G at x and JG(x)∗ is its adjoint. By

considering the Euclidean Jordan algebra (E, ◦) such that K is its cone of squares, by
Proposition 2.1 we can replace condition (6) by G(x) ◦ σ = 0. Since this implies that
G(x) and σ operator commute, it is easy to see that condition (6) can also be replaced
by

λi (G(x))λi (σ ) = 0, i = 1, . . . , r ,

where the ordering of the eigenvalues is the order given by their common Jordan frame.
It is known that some constraint qualification is required in order to make KKT

conditions hold at local optimal solutions. As well-known constraint qualifications for
(NSCP), we can cite nondegeneracy and Robinson’s CQ.
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Definition 3.1 We say that x ∈ R
n satisfies the nondegeneracy condition if

Im JG(x) + T lin
K (G(x)) = E,

where T lin
K (G(x)) is the lineality space of the tangent cone ofK atG(x) and Im JG(x)

denotes the image of the linear mapping JG(x).

Nondegeneracy was studied by Bonnans and Shapiro in [22], which is also related to
the so-called transversality condition. When nondegeneracy is satisfied at a point, the
associated Lagrange multiplier is unique. When T lin

K (G(x)) is replaced by the tangent
cone of K at G(x) in the definition of nondegeneracy, we arrive at Robinson’s CQ,
which is clearly weaker than nondegeneracy and can also be defined in the following
equivalent way:

Definition 3.2 We say that x ∈ R
n satisfies Robinson’s CQ if there exists d ∈ R

n such
that

G(x) + JG(x)d ∈ int(K).

When Robinson’s CQ is satisfied, the set of Lagrange multipliers is nonempty and
bounded.

3.1 NewOptimality Conditions

As previously stated, in general, most optimality conditions are of the form “KKT or
not-CQ.” An alternative to this type of optimality conditions, that do not require any
CQ, is a so-called sequential optimality condition. The sequence needed for checking
this condition is usually the one generated by standard algorithms. This provides
global convergence results stronger than the usual ones. In this section, we present an
extension of the condition called Approximate-Karush–Kuhn–Tucker (AKKT) that
was studied in [5, 45] for NLP and [12] for NSDP. In NLP, the AKKT condition is a
strong optimality condition satisfied by limit points of many first- and second-order
methods. For more details, see [20, 21, 26, 33–35, 44, 47]. We will also introduce a
generalization of the Complementary-AKKT (CAKKT) condition introduced for NLP
in [16], which is stronger than AKKT. This study was initiated in [12] but the notion of
the Jordan product simplifies this task. In [12], the notion of a Trace-AKKT (TAKKT)
point was introduced as a substitute for CAKKT, but here we will shed a light in this
discussion by the introduction of CAKKT while clarifying the relationship between
AKKT and TAKKT, which was an open question in [12]. Let us start by presenting
our definition of AKKT for NSCP.

Definition 3.3 Let x∗ ∈ R
n be a feasible point. We say that x∗ is an Approximate-

Karush–Kuhn–Tucker (AKKT) point for (NSCP) if there exist sequences {xk} ⊂ R
n
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and {σ k} ⊂ K with xk → x∗ such that

lim
k→∞ ∇L(xk, σ k) = 0, (7)

if λi (G(x∗)) > 0 then λi (σ
k) = 0 for sufficiently large k, (8)

lim
k→∞ ci (σ

k) = ci (G(x∗)), (9)

for all i = 1, . . . , r , where

G(x∗) = λ1(G(x∗))c1(G(x∗)) + · · · + λr (G(x∗))cr (G(x∗)), (10)

σ k = λ1(σ
k)c1(σ

k) + · · · + λr (σ
k)cr (σ

k), (11)

are spectral decompositions of G(x∗) and σ k , respectively.

Notice that the definition of the AKKT condition is independent of the choices of
ci (G(x∗)) and ci (σ k) for i = 1, . . . , r . We recall that in the definition of AKKT
for NLP, the Lagrange multipliers associated with inactive constraints at x∗ are taken
equal to zero. In NSCP, we need a notion that gives us a way to associate the “inactive”
eigenvalues of G(x∗) with the zero eigenvalues of σ k . In the above definition, the
relation (9) provides the necessary condition for pairing the eigenvalues correctly.
The equivalence below provides a way of detecting an AKKT sequence in terms of a
sequence of tolerances {εk} that converges to zero.
Lemma 3.1 A feasible point x∗ ∈ R

n satisfies the AKKT condition for (NSCP) if, and
only if, there are sequences {xk} ⊂ R

n, {σ k} ⊂ K, {εk} ⊂ R+ with xk → x∗, εk → 0,
such that

‖∇L(xk, σ k)‖ ≤ εk, (12)

‖[−G(xk)]+‖ ≤ εk, (13)

λi (G(xk)) > εk ⇒ λi (σ
k) = 0, for sufficiently large k, (14)

‖ci (σ k) − ci (G(xk))‖ ≤ εk, (15)

for all i = 1, . . . , r , where

G(xk) = λ1(G(xk))c1(G(xk)) + · · · + λr (G(xk))cr (G(xk)),

σ k = λ1(σ
k)c1(σ

k) + · · · + λr (σ
k)cr (σ

k),

are spectral decompositions of G(xk) and σ k , respectively.

Proof Let us assume that x∗ ∈ R
n satisfies the AKKT condition. By the definition

of AKKT, we can take the spectral decompositions for G(x∗) and σ k given by (10)
and (11) with ci (G(xk)) → ci (G(x∗)) and ci (σ k) → ci (G(x∗)) for i = 1, . . . , r ,
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such that (7)–(9) hold. Now, note that

‖[−G(xk)]+‖ =
∥
∥∥∥∥

r∑

i=1

max{0,−λi (G(xk))}ci (G(xk))

∥
∥∥∥∥

→
∥∥
∥∥∥

r∑

i=1

max{0,−λi (G(x∗))}ci (G(x∗))
∥∥
∥∥∥

= 0, (16)

because x∗ is feasible. Define the sequence {εk} ⊂ R+ as follows:

εk := max
{
‖∇L(xk, σ k)‖, ‖[−G(xk)]+‖, λi (G(xk)) : i ∈ I (x∗),

‖ci (σ k) − ci (G(xk))‖ : i = 1, . . . , r
}

,

where I (x∗) := {i | λi (G(x∗)) = 0}. Observe that the limit for k → ∞ of each
term inside the above maximum is zero from (7), (9) and (16). By the continuity of the
involved functions, we have that εk → 0. Hence, (12), (13) and (15) hold. Now, let k be
sufficiently large. To prove (14), note that for j ∈ {1, . . . , r} such that λ j (G(xk)) > εk
we have that

λ j (G(xk)) > εk ≥ λi (G(xk)) for all i ∈ I (x∗).

In particular, j /∈ I (x∗), that is, λ j (G(x∗)) > 0. Hence, from (8), λ j (σ
k) = 0, and

so (14) holds.
Let us now assume that there are {xk}, {σ k}, {εk} satisfying xk → x∗, εk → 0

and (12)–(15). The continuity of the involved functions and (13) ensure that x∗ is
feasible. The limit (7) follows trivially from (12). Since {ci (σ k)} and {ci (G(xk))}
are bounded for all i = 1, . . . , r , we may take a subsequence if necessary such that
ci (G(xk)) → ci (G(x∗)) for all i = 1, . . . , r . Hence, (9) follows from (15). Now, if
we suppose that λi (G(x∗)) > 0, then λi (G(xk)) > εk for k large enough. Thus, by
(14) we have that λi (σ

k) = 0, which means that (8) holds. Therefore, x∗ ∈ R
n is an

AKKT point. ��
We can use the previous lemma to define a simple stopping criterion for algorithms

for NSCP. Let εopt, εfeas, εcompl and εspec be small tolerances associated with optimal-
ity, feasibility, complementarity and spectral decomposition, respectively. Then, an
algorithm for solving NSCP that generates an AKKT sequence {xk} ⊂ R

n and a dual
sequence {σ k} ⊂ K can be safely stopped when:

‖∇L(xk, σ k)‖ ≤ εopt,

‖[−G(xk)]+‖ ≤ εfeas,

λi (G(xk)) > εcompl ⇒ λi (σ
k) = 0 for all i,

‖ci (σ k) − ci (G(xk))‖ ≤ εspec for all i .
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In order to prove that the AKKT condition necessarily holds at local minimizers of
anNSCPproblem,wewill use the standard external penalty technique.More precisely,
consider the problem

Minimize
x∈Rn

F(x),

subject to G(x) ∈ K, x ∈ �,
(17)

where � ⊆ R
n is a nonempty closed set. For this problem, the function P(x) :=

‖ [−G(x)]+ ‖2 is a measure of infeasibility, in the sense that P(·) is continuous and
nonnegative, and x is feasible for (17) if, and only if, P(x) = 0 and x ∈ �. This func-
tion can be used for constructing a penalized problem that has the property described
below.

Lemma 3.2 [29], [19, pp. 16, 26] Choose a sequence {ρk} ⊂ R with ρk → +∞. For
each k, let xk be a solution, if it exists, for the following penalized problem

Minimize
x∈Rn

F(x) + ρk P(x),

subject to x ∈ �.

Then, all limit points of {xk} are global minimizers of (17).
Theorem 3.1 Let x∗ ∈ R

n be a local minimizer of (NSCP). Then, x∗ satisfies the
AKKT condition.

Proof Consider the problem

Minimize
x∈Rn

F(x) + 1

2
‖x − x∗‖2,

subject to G(x) ∈ K,

x ∈ B(x∗, δ),

(18)

where B(x∗, δ) := {x ∈ R
n | ‖x − x∗‖ ≤ δ} for δ > 0 such that x∗ is the unique

solution of (18). Let xk ∈ R
n be a solution of

Minimize
x∈Rn

F(x) + 1

2
‖x − x∗‖2 + ρk

2
‖[−G(x)]+‖2,

subject to x ∈ B(x∗, δ).
(19)

By the continuity of the involved functions and the compactness of B(x∗, δ), the
sequence {xk} is well defined for all k.

In addition, the setB(x∗, δ) is nonempty andcompact, hence, byLemma3.2wehave
that all limit points of {xk} are global solutions of (18) and xk → x∗. Now, for large
enough k, we have that xk is a localminimizer of F(x)+ 1

2‖x−x∗‖2+ ρk
2 ‖[−G(x)]+‖2.

Then, we obtain

∇F(xk) + (xk − x∗) − ρk JG(xk)∗[−G(xk)]+ = 0. (20)
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Let us define for all k, σ k := ρk[−G(xk)]+ ∈ K. Let us also consider the spectral
decompositions

G(xk) = λ1(G(xk))c1(G(xk)) + · · · + λr (G(xk))cr (G(xk)),

σ k = ρk max{0, λ1(−G(xk))}c1(G(xk)) + · · · + ρk max{0, λr (−G(xk))}cr (G(xk)).

Note that −λi (G(xk)) = λi (−G(xk)) for all i = 1, . . . , r . If λi (G(x∗)) > 0, then
λi (G(xk)) > 0 for k large enough. Thus, λi (σ

k) = ρk max{0, λi (−G(xk))} = 0.
Moreover, ci (σ k) = ci (G(xk)) → ci (G(x∗)) is trivially satisfied. Taking the limit
when k → ∞ in (20), we have

lim
k→∞ ∇L(xk, σ k) = lim

k→∞ ∇F(xk) − JG(xk)∗σ k = 0.

Hence, x∗ satisfies the AKKT condition. ��
There are many different and equivalent ways to measure complementarity in the

KKT conditions. However, they give rise to different sequential optimality conditions.
We introduced the AKKT condition by using eigenvalues to measure complementar-
ity, and we now present a definition of CAKKT in the context of NSCP by measuring
complementarity with the Jordan product. This is a natural way of avoiding the com-
putation of eigenvalues in the context of NSCP. Also, our definition will coincide with
the well-known CAKKT for NLP in the particular case of the nonnegative orthant.
The definition is as follows:

Definition 3.4 Let x∗ ∈ R
n be a feasible point. We say that x∗ is a Complementary–

Approximate–Karush–Kuhn–Tucker (CAKKT) point for (NSCP) if there exist
sequences {xk} ⊂ R

n and {σ k} ⊂ K with xk → x∗ such that

∇L(xk, σ k) → 0, (21)

G(xk) ◦ σ k → 0. (22)

Theorem 3.2 Let x∗ ∈ R
n be a local minimizer of (NSCP). Then, x∗ satisfies the

CAKKT condition.

Proof Considering that the sequences {xk} and {σ k} built in the proof of Theorem 3.1,
it remains to prove (22). We start by noting that since x∗ is a feasible point of (19) for
all k, and xk is the corresponding global minimizer, the following holds for all k:

F(xk) + 1

2
‖xk − x∗‖2 + ρk

2
‖[−G(xk)]+‖2 ≤ F(x∗).

This implies that ρk‖[−G(xk)]+‖2 → 0. However, we have

‖[−G(xk)]+‖2 = 〈[−G(xk)]+, [−G(xk)]+〉

=
r∑

i=1

‖ci (G(xk))‖2 max{0,−λi (G(xk))}2,
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where G(xk) = ∑r
i=1 λi (G(xk))ci (G(xk)).

It follows that ρk max{0,−λi (G(xk))}2 → 0 for all i = 1, . . . , r .
Now, sincemax{0,−λi (G(xk))}2 = −λi (G(xk))max{0,−λi (G(xk))} and {ci (xk)}

are bounded for all i , we conclude that

G(xk) ◦ σ k =
r∑

i=1

ρkλi (G(xk))max{0,−λi (G(xk))}ci (G(xk)) → 0,

which completes the proof. ��
Note that in the case of NLP where the cone is the nonnegative orthant, since the

Jordan product is the Hadamard product, (21)–(22) reduce to the usual CAKKT con-
dition [16]. Also, since 〈Gi (xk), σ k

i 〉 = θi tr (Gi (xk) ◦ σ k
i ), i = 1, . . . s (considering

the decomposition (1) and Proposition 2.1 item iv), one can easily extend the definition
of Trace-AKKT (TAKKT) from NSDP [12] to general NSCP by replacing (22) by the
weaker statement

〈G(xk), σ k〉 → 0,

that is, CAKKT implies TAKKT. Hence, by Theorem 3.2, TAKKT is also a necessary
optimality condition for NSCP.

In the context of NSDP [12], for avoiding eigenvalues, it was natural to consider the
inner product, giving rise to the TAKKT condition. However, TAKKT is somewhat not
natural in the context of NLP. In fact, in [12], the relationship of TAKKT and AKKT
was not known. The following example shows that these conditions are independent
conditions.

Example 3.1 (TAKKT does not imply AKKT) Consider the following NLP problem:

Minimize
x∈R3

F(x) := (x2 − 2)2/2 + x3/2,

subject to x21 ≥ 0,

− x1x2 ≥ 0,

− x21 x
2
2 + ex3 ≥ 0.

Let us prove that TAKKT holds at x∗ := (0, 1, 0). Let the primal sequence {xk}
be defined by xk := (1/k, 1, 0) and the dual sequence {σ k} be defined by σ k :=
(k2/2, k, 1/2) for all k. Hence, ∇L(xk, σ k) = (1/k, 1/k2, 0) → 0 and

〈
σ k, ((xk1 )

2, xk1 x
k
2 , (x

k
1 )

2(xk2 )
2 − ex

k
3 )
〉 = 1/(2k2) → 0,

which implies that TAKKT holds. Note, however, that any sequences {x̄ k}, {σ̄ k} such
that∇L(x̄ k, σ̄ k) → 0 are such that the approximate Lagrangemultiplier σ̄ k

3 associated
with the third constraint converges to 1/2. Since the third constraint is inactive at x∗,
this shows that AKKT does not hold.
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Since it is known [12] that AKKT does not imply TAKKT, the example above
shows that these conditions are independent. This is somewhat surprising as AKKT is
considered to be the simplest condition, at least in the context of NLP. Despite TAKKT
not implying even AKKT, that is, an approximate Lagrange multiplier for TAKKT
may fail in detecting inactive constraints, it is remarkable that TAKKT is a necessary
optimality condition still strictly stronger than Fritz-John’s optimality condition. In
this context, our extension of CAKKT fits much better our purpose of presenting an
optimality condition free of eigenvalue computations. The strength of CAKKT will
be shown in the context of NSOCP by showing that it implies AKKT.

Now, to fix ideas, let us revisit [12, Example 1], where our optimality conditions
are verified at a local minimizer of a NSDP that does not satisfy the KKT conditions.

Example 3.2 Consider the NSDP problem:

Minimize
x∈R 2x,

subject to G(x) :=
[

0 −x
−x 1

]
∈ S

2+

at its unique global minimizer x∗ := 0. Since there is no d ∈ R such that

G(x∗) + JG(x∗)d :=
[
0 0
0 1

]
+ d

[
0 −1

−1 0

]
∈ int (S2+),

Robinson’s CQ fails. (Hence, Fritz-John’s condition holds.) The sequences {xk} and
{σ k} defined by

xk := − k

k2 − 1
and σ k :=

[
k −1

−1 1/k

]
∈ S

2+

attest that x∗ is an AKKT point (see [12]). To see that CAKKT holds at x∗ (thus, also
TAKKT holds), it is enough to compute G(xk) ◦ σ k := 1

2 (G(xk)σ k + σ kG(xk)) and
note that it converges to zero. A simple inspection shows that the KKT conditions do
not hold [12].

3.2 The Strength of the Optimality Conditions

In this section, we will measure the strength of AKKT and CAKKT for NSCP in
comparison with an optimality condition of the type “KKT or not-CQ.” Let us show
that our necessary optimality condition is at least as good as “KKT or not-Robinson’s
CQ” (also called Fritz-John’s condition).

Theorem 3.3 Let x∗ ∈ R
n be an AKKT or CAKKT point that satisfies Robinson’s CQ.

Then, x∗ satisfies the KKT condition.
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Proof We will prove only the case where AKKT holds. The case where CAKKT
holds can be deduced easily from the proof below. Let {xk} ⊂ R

n and {σ k} ⊂ K with
xk → x∗ be such that

lim
k→∞ ∇L(xk, σ k) = 0, (23)

If λi (G(x∗)) > 0 then λi (σ
k) = 0 for sufficiently large k, (24)

lim
k→∞ ci (σ

k) = ci (G(x∗)), (25)

for all i = 1, . . . , r , where

G(x∗) = λ1(G(x∗))c1(G(x∗)) + · · · + λr (G(x∗))cr (G(x∗)),
σ k = λ1(σ

k)c1(σ
k) + · · · + λr (σ

k)cr (σ
k), (26)

are spectral decompositions of G(x∗) and σ k , respectively.
If {σ k} is contained in a compact set, there exists σ ∈ K such that, taking a

subsequence if necessary, σ k → σ . Then, by (23) we have that

∇F(x∗) − JG(x∗)∗σ = 0.

Now, consider the index sets

I1 := {i | λi (G(x∗)) > 0} and I2 := {i | λi (G(x∗)) = 0}.

Note that, by (25), G(x∗) and σ operator commute. Then, we obtain

G(x∗) ◦ σ =
∑

i∈I1
λi (G(x∗))λi (σ )ci (G(x∗)) +

∑

i∈I2
λi (G(x∗))λi (σ )ci (G(x∗)) = 0,

since λi (G(x∗)) = 0 for i ∈ I2 and λi (σ ) = 0 for i ∈ I1, which implies KKT. Now,
suppose that {σ k} is not contained in a compact set. Let us consider a subsequence

such that tk := ‖σ k‖ → ∞. Then,
σ k

tk
→ σ ∗ �= 0 for some σ ∗ ∈ K. Then, by (23)

and (24) we have that

lim
k→∞

∇F(xk)

tk
− JG(xk)∗ σ k

tk
= −JG(x∗)∗σ ∗ = 0, (27)

and by taking the limit in (26),

G(x∗) ◦ σ ∗ =
∑

i∈I1
λi (G(x∗))λi (σ ∗)ci (G(x∗))

+
∑

i∈I2
λi (G(x∗))λi (σ ∗)ci (G(x∗)) = 0, (28)
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To see that (27) and (28) contradict Robinson’s condition, let d ∈ R
n be such that

G(x∗) + JG(x∗)d ∈ int(K).

Thus, we have

0 = 〈G(x∗), σ ∗〉 + 〈JG(x∗)∗σ ∗, d〉
= 〈G(x∗) + JG(x∗)d, σ ∗〉.

Since 0 �= σ ∗ ∈ K and w := G(x∗) + JG(x∗)d ∈ int(K), we have that σ ∗ − εw ∈
int(K) for some ε > 0, and hence, 〈σ ∗−εw,w〉 < 0,which contradicts the self-duality
of K. ��

Even in the context of NLP, it is well known that AKKT or CAKKT is strictly
stronger than “KKT or not-Robinson’s CQ” (see [5, 16]). That is, both AKKT or
CAKKT may be able to detect nonoptimality, while Fritz-John’s condition may fail.
This is the main reason we are interested in global convergence results based on
(C)AKKT.

Wefinish this sectionbynoting that one candefine a constraint qualification (AKKT-
regularity), strictlyweaker thanRobinson’sCQ, imposing that the constraint set is such
that for every objective function such that AKKT holds at x∗, the KKT conditions also
hold, which can also be defined in a geometric way in terms of the continuity of a point-
to-set KKT cone. The same holds true for CAKKT and TAKKT. We do not formalize
these conditions here since they are direct extensions of what was done in [12]. Also,
based on a first version of this paper, new constant rank constraint qualifications which
imply (C)AKKT-regularity have been defined in the context of NSOCP [8, 9]. See also
[6, 7] for the definition of similar CQs in the context of NSDP which are also related
with AKKT.

In the next section, we particularize our definitions to the context of NSOCP, where
the KKT conditions have a particular structure, and we characterize AKKT as a per-
turbation of these conditions.We also show that, similarly to the case of NLP, CAKKT
is strictly stronger than AKKT in the context of NSOCP. After a first version of this
paper has appeared, this proof for NSDP has been done in [4]. The fact that AKKT
does not imply CAKKT is known from [16].

4 Nonlinear Second-Order Cone Programming

Besides the nonnegative orthant and the positive semidefinite cone, an important exam-
ple of symmetric cone is the second-order cone. In this section, we will study the
nonlinear second-order cone programming (NSOCP) problem, which is a particular
case of NSCP. Since the second-order cone has a very particular structure, we present
the AKKT and CAKKT conditions in a more specific form.

123



Journal of Optimization Theory and Applications

The nonlinear second-order cone programming that we are interested is given
below:

Minimize
x∈Rn

f (x),

subject to g(x) ∈ K ,
(NSOCP)

where f : Rn → R and g : Rn → R
m are continuously differentiable functions

and K := Km1 × · · · × Kmr is the Cartesian product of second-order cones Kmi ,
i = 1, . . . , r , such thatm1 +· · ·+mr = m. Let us define the feasible set of (NSOCP)
by

F := {x ∈ R
n | gi (x) ∈ Kmi for all i = 1, . . . , r}.

The topological interior and boundary of the cone Kmi are characterized, respectively,
by

int(Kmi ) := {(x0, x) ∈ R × R
mi−1 | ‖x‖ < x0} and

bd(Kmi ) := {(x0, x) ∈ R × R
mi−1 | ‖x‖ = x0}.

The boundary of Kmi excluding the null vector will be denoted by bd+(Kmi ). For
x ∈ F , we define the following index sets:

II (x) := {i = 1, . . . , r | gi (x) ∈ int(Kmi )},
IB(x) := {i = 1, . . . , r | gi (x) ∈ bd+(Kmi )},
I0(x) := {i = 1, . . . , r | gi (x) = 0}.

Now, consider the Lagrangian function L : Rn × R
m1 × · · · × R

mr → R given by

L(x, μ1, . . . , μr ) := f (x) −
r∑

i=1

〈gi (x), μi 〉.

We say that x ∈ R
n is a KKT point for (NSOCP) if there exist multipliers μi ∈ R

mi ,
i = 1, . . . , r , such that

∇x L(x, μ1, . . . , μr ) = 0,

gi (x) ◦ μi = 0, i = 1, . . . , r ,

gi (x) ∈ Kmi , i = 1, . . . , r ,

μi ∈ Kmi , i = 1, . . . , r , (29)
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where the Jordan product ◦ is defined in (2). As it can be seen in [1, Lemma 15], the
complementarity condition (29) is equivalent to the following conditions:

i ∈ II (x) ⇒ μi = 0,

i ∈ IB(x) ⇒ μi = 0 or μi =
(
[μi ]0,−αi (x)gi (x)

)
with [μi ]0 �= 0, (30)

where αi (x) = [μi ]0/[gi (x)]0 for i = 1, . . . , r . The relations i ∈ II (x) and i ∈ IB(x)
can be written in terms of the eigenvalues of gi (x) as follows:

gi (x) ∈ int(Kmi ) ⇔ λ−(gi (x)) > 0, λ+(gi (x)) > 0, (31)

gi (x) ∈ bd+(Kmi ) ⇔ λ−(gi (x)) = 0, λ+(gi (x)) > 0. (32)

In the case of (30), due to the expression of μi and the definition of c−(·) and c+(·)
in (5), an important observation is that μi and gi (x) operator commute but c−(μi ) =
c+(gi (x)) and c+(μi ) = c−(gi (x)).

4.1 Optimality Conditions

Let us now rewrite our optimality conditions in the case that the symmetric cone K is
the second-order cone K .

Theorem 4.1 A feasible point x∗ ∈ R
n satisfies the AKKT condition for (NSOCP) if,

and only if, there exist sequences {xk} ⊂ R
n and {μk

i } ⊂ Kmi for all i with xk → x∗
such that

lim
k→∞ ∇ f (xk) −

r∑

i=1

Jgi (x
k)Tμk

i = 0, (33)

i ∈ II (x
∗) ⇒ μk

i = 0 for sufficiently large k, (34)

i ∈ IB(x∗) ⇒ μk
i = 0 ∀k or μk

i ∈ bd+(Kmi ) with − μk
i

‖μk
i ‖

→ gi (x∗)
‖gi (x∗)‖ . (35)

Proof By the definition of AKKT for (NSCP), we need only to verify the relation
between the complementarity condition requested in AKKT for NSCP (8) and (9) and
the complementarity conditions given by (34) and (35).

Assume that the feasible point x∗ ∈ R
n satisfies the AKKT condition for NSCP.

We have the following spectral decomposition for gi (x∗) ∈ Kmi :

gi (x
∗) = λ1(gi (x

∗))c1(gi (x∗)) + λ2(gi (x
∗))c2(gi (x∗)),

where λ1(gi (x∗)) := λ−(gi (x∗)) and λ2(gi (x∗)) := λ+(gi (x∗)). We have two cases
to consider:

(i) If i ∈ II (x∗), then, from (31), λ1(gi (x∗)) > 0 and λ2(gi (x∗)) > 0. By AKKT
for NSCP, we have that λ1(μk

i ) = λ2(μ
k
i ) = 0 and therefore, μk

i = 0.
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(ii) If i ∈ IB(x∗), then, from (32), λ1(gi (x∗)) = 0 and λ2(gi (x∗)) > 0. By AKKT
for NSCP, we have that λ2(μk

i ) = 0. Note that we have two options for λ2(μ
k
i ):

(a1) If λ2(μ
k
i ) = λ+(μk

i ) = [μk
i ]0 + ‖μk

i ‖ for infinitely many k, then λ2(μ
k
i ) = 0

implies μk
i = 0 and we may relabel the sequence such that μk

i = 0 for all k.

(a2) Otherwise, λ2(μ
k
i ) = λ−(μk

i ) = [μk
i ]0 − ‖μk

i ‖ for sufficiently large k, with

λ1(μ
k
i ) = [μk

i ]0 + ‖μk
i ‖ > 0. Hence, λ2(μ

k
i ) = 0 implies μk

i ∈ bd+(Kmi ).
Since c2(μk

i ) = c−(μk
i ) and c2(μk

i ) → c2(gi (x∗)), we get that

− μk
i

‖μk
i ‖

→ gi (x∗)
‖gi (x∗)‖ .

Now, let us prove the converse. Note that if λ2(gi (x∗)) = 0, then λ1(gi (x∗)) = 0
and we do not need to check λ1(μ

k
i ) and λ2(μ

k
i ). Consider the following cases:

(i) Assume that λ1(gi (x∗)) > 0 and λ2(gi (x∗)) > 0. Thus, i ∈ II (x∗) and then,
by AKKT for NSOCP, μk

i = 0. Hence, λ1(μ
k
i ) = λ2(μ

k
i ) = 0 and c1(μk

i ) →
c1(gi (x∗)) and c2(μk

i ) → c2(gi (x∗)) are trivially satisfied.
(ii) Assume that λ1(gi (x∗)) = 0 and λ2(gi (x∗)) > 0. Thus, i ∈ IB(x∗). By AKKT

for NSOCP, μk
i = 0 for all k or μk

i ∈ bd+(Kmi ) with − μk
i

‖μk
i ‖

→ gi (x∗)
‖gi (x∗)‖ .

(b1) If μk
i = 0 for all k, then λ1(μ

k
i ) = λ2(μ

k
i ) = 0, c1(μk

i ) → c1(gi (x∗)) and
c2(μk

i ) → c2(gi (x∗)) are trivially satisfied.

(b2) If μk
i ∈ bd+(Kmi ) with − μk

i

‖μk
i ‖

→ gi (x∗)
‖gi (x∗)‖ , we have that λ−(μk

i ) = [μk
i ]0 −

‖μk
i ‖ = 0 with λ+(μk

i ) = [μk
i ]0 + ‖μk

i ‖ > 0.
This limit implies that c+(μk

i ) → c−(gi (x∗)) and c−(μk
i ) → c+(gi (x∗)). Since

λ2(gi (xk)) = λ+(gi (xk)), we have that λ2(μ
k
i ) = λ−(μk

i ) which was shown to
be zero.

Note that the convergence (9) also holds for i ∈ II (x∗) or i ∈ I0(x∗) due to the
freedom allowed in choosing c±(z) when z = 0. This completes the proof. ��

To illustrate the optimality condition, we present two examples where we build an
AKKT sequence around a minimizer that does not satisfy the KKT conditions.

Example 4.1 (AKKT sequence at a non-KKT solution—linear problem). Consider the
following linear second-order cone problem from [2]:

Minimize
x∈R2

−x2,

subject to g(x) := (x1, x1, x2) ∈ K3,

at an optimal solution x∗ = 0.
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(i) x∗ is not a KKT point. Note that the only nonempty index set is I0(x∗). Let
μ = (μ0, μ1, μ2) ∈ K3, and we have

∇ f (x∗) − Jg(x∗)Tμ = 0 ⇔
(

0
−1

)
−
(
1
0

)
μ0 −

(
1
0

)
μ1 −

(
0
1

)
μ2 = 0.

This implies that μ2 = −1 and μ1 = −μ0. The fact that μ ∈ K3 gives the

contradiction μ0 ≥
√
1 + μ2

0. Therefore, x
∗ is not a KKT point.

(ii) x∗ is an AKKT point. Define {xk} as any sequence such that xk → x∗ and
μk := (

√
k2 + 1,−k,−1) ∈ K3 for all k. Then, it is easy to see that ∇ f (xk) −

Jg(xk)Tμk → 0.

Example 4.2 (AKKT sequence at a non-KKT solution). Consider the following
NSOCP problem:

Minimize
x∈R x,

subject to g1(x) = (−x, 0) ∈ K2, g2(x) = (0, x2) ∈ K2,

g3(x) = (1, x) ∈ K2, g4(x) = (1 + x, 1 + x) ∈ K2.

The point x∗ = 0 is the optimal solution of the above problem.

(i) x∗ is not a KKT point. First, note that II (x∗) = {3}, IB(x∗) = {4} and I0(x∗) =
{1, 2}. Let μ1 = ([μ1]0, μ1), μ2 = ([μ2]0, μ2), μ3 = ([μ3]0, μ3) and μ4 =
([μ4]0, μ4). We have

∇ f (x∗) −
4∑

i=1

Jgi (x
∗)Tμi = 0 ⇒ 1 + [μ1]0 − μ3 − ([μ4]0 + μ4) = 0. (36)

Complementarity implies that μ3 = 0 and, from (30), μ4 = 0 or μ4 =
([μ4]0,−[μ4]0). In any case, we have [μ4]0 + μ4 = 0. Thus, by (36) we have
that [μ1]0 = −1, which makes μ1 /∈ K2. Therefore, x∗ is not a KKT point.

(ii) x∗ is an AKKT point. Define xk = 1

2k
,μk

1 =
(
1

k
,
1

k

)
,μk

2 = (k, k), μk
3 = (0, 0)

and μk
4 = (1,−1). Then,

∇ f (xk) −
4∑

i=1

Jgi (x
k)Tμk

i = 1 + 1

k
− 2

1

2k
k = 1

k
→ 0.

Since μk
3 = (0, 0) and μk

4 = (1,−1) ∈ bd+(K2) is such that − μk
4

‖μk
4‖

=

g4(x∗)
‖g4(x∗)‖ , complementarity is fulfilled and x∗ is an AKKT point.
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In the context of NLP, it is easy to note that CAKKT implies AKKT. Let us now
show that this implication is true in the context of NSOCP.

Theorem 4.2 Let x∗ satisfy CAKKT for (NSOCP). Then, x∗ satisfies AKKT for
(NSOCP).

Proof Let {xk} ⊂ R
n and {μk

i } ⊂ Kmi , i = 1, . . . , r , be given by Definition 3.4 such
that (33) holds and gi (xk)◦μk

i → 0, i = 1, . . . , r . In order to prove that AKKT holds,
it is enough to prove (34) and (35). By the definition of the Jordan product (2), for all
i = 1, . . . , r we have that

gi (x
k) ◦ μk

i := (〈gi (xk), μk
i 〉, [gi (xk)]0μk

i + [μk
i ]0gi (xk)

) → 0.

Hence, since 〈gi (xk), μk
i 〉 = [gi (xk)]0[μk

i ]0+gi (xk)
T
μk
i and [gi (xk)]0 → [gi (x∗)]0,

we have that

[gi (xk)]20[μk
i ]0 + [gi (xk)]0gi (xk)Tμk

i → 0.

Also, since [gi (xk)]0μk
i + [μk

i ]0gi (xk) → 0 and gi (xk) → gi (x∗), we obtain

[gi (xk)]0gi (xk)Tμk
i + [μk

i ]0‖gi (xk)‖2 → 0.

Thus,

[μk
i ]0
(
[gi (xk)]20 − ‖gi (xk)‖2

)
→ 0. (37)

This implies that μk
i → 0 for all i ∈ II (x∗) and hence (34) holds replacing μk

i by
zero, while (33) still holds by continuity. To prove (35), let i ∈ IB(x∗). If there is a
subsequence such that μk

i → 0, one can replace μk
i by zero and the result follows.

Otherwise, {[μk
i ]0} is bounded away from zero. Since {[gi (xk)]0} is also bounded

away from zero,

[gi (xk)]0μk
i + [μk

i ]0gi (xk) → 0 ⇒ μk
i

[μk
i ]0

+ gi (xk)

[gi (xk)]0 → 0.

It remains to prove that μk
i can be chosen in the nonzero boundary of Kmi . From (37),

we conclude that

[μk
i ]0
(
[gi (xk)]0 − ‖gi (xk)‖

)
→ 0, (38)

as [gi (xk)]0 + ‖gi (xk)‖ converges to some positive number. Since

[gi (xk)]0[μk
i ]0 − ‖gi (xk)‖‖μk

i ‖ ≤ [gi (xk)]0[μk
i ]0 + gi (xk)

T
μk
i → 0,
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using (38) and dividing by [gi (xk)]0, we conclude that lim sup
k→+∞

([μk
i ]0 − ‖μk

i ‖) ≤ 0.

Sinceμk
i ∈ Kmi , thus, [μk

i ]0−‖μk
i ‖ ≥ 0, we have that λ−(μk

i ) = [μk
i ]0−‖μk

i ‖ → 0.
Hence, by replacing λ−(μk

i ) by zero in the spectral decomposition ofμk
i , the limit (33)

is still valid and AKKT holds. ��

Note that similarly to the case of NLP, in the definition of AKKT for NSCP,
the complementarity (8) can be replaced by the looser one λi (σ

k) → 0 whenever
λi (G(x∗)) > 0, for all i = 1, . . . , r . In this case, in the equivalence of Theorem 4.1,
the condition that μk

i ∈ bd+(Kmi ) would be replaced by its approximate version

[μk
i ]0 − ‖μk

i ‖ → 0. These conditions are in fact equivalent as when λi (σ
k) → 0,

one may replace these eigenvalues by zero in the spectral decomposition of σ k while
keeping the other limits. This definition is more natural in the context of CAKKT,
since the dual CAKKT sequence is such that the eigenvalues only converge to zero
and are not necessarily equal to zero. Also, this allows simpler proofs that algorithms
generate AKKT sequences without replacing the multipliers. However, the definition
in the current form is inspired by the augmented Lagrangian method, which generates
dual sequences with this particular format. We keep the definition in the current form
to be consistent with previous definitions in other contexts.

5 An Algorithm that Satisfies the NewOptimality Conditions

The interest in NSOCPs comes from the variety of problems that can be formulated
with them (see, e.g., [1, 23, 42]), in particular, in the linear case. Several algorithms
for the nonlinear case have been proposed in the literature [3, 30, 37, 40, 41, 48]. In
this section, we will analyze an augmented Lagrangian algorithm, proposed in [41],
which extends the usual augmented Lagrangian algorithm for NLP to NSOCP, where
we will show better global convergence results.

5.1 Augmented LagrangianMethod

In this subsection, we will prove that the augmented Lagrangian method for NSOCP,
proposed by Liu and Zhang [41], generates sequences that satisfy AKKT for NSOCP
without any constraint qualification, whereas in [41] the authors rely on the nonde-
generacy condition in order to prove that the KKT conditions hold. The augmented
Lagrangian function used is the Powell–Hestenes–Rockafellar (PHR) function defined
as follows:

Lρ(x, μ1, . . . , μr ) := f (x) + 1

2ρ

r∑

i=1

(
‖[μi − ρgi (x)]+‖2 − ‖μi‖2

)
,
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where ρ > 0 is the penalty parameter. The gradient with respect to x of the above
augmented Lagrangian function is given by

∇x Lρ(x, μ1, . . . , μr ) = ∇ f (x) −
r∑

i=1

Jgi (x)
T [μi − ρgi (x)]+.

The formal statement of the algorithm is as follows:

Algorithm 5.1 Augmented Lagrangian Algorithm for NSOCP

Let τ ∈ (0, 1), γ > 1, ρ1 > 0 and μ0 ∈ K . Take a sequence of tolerances {εk } ⊂ R+ such that εk → 0.
Define μ̂1 ∈ K . Choose an arbitrary starting point x0 ∈ R

n . Initialize k := 1 and ‖v0‖ := +∞.

Step 1: Find an approximate minimizer xk of Lρk (x, μ̂
k
1, . . . , μ̂

k
r ). That is, find xk satisfying

‖∇x Lρk (x
k , μ̂k

1, . . . , μ̂
k
r )‖ ≤ εk .

Step 2: Define vk = (vk1 , . . . , vkr ) with

vki :=
[

μ̂k
i

ρk
− gi (x

k )

]

+
− μ̂k

i
ρk

, for all i .

If ‖vk‖ ≤ τ‖vk−1‖, define ρk+1 := ρk , otherwise define ρk+1 := γρk .

Step 3: Compute

μk
i := [μ̂k

i − ρk gi (x
k )]+, for all i

and define μ̂k+1 ∈ K such that {μ̂k } is bounded.
Step 4: Set k := k + 1, and go to Step 1.

Now, we proceed to prove our results. We start by showing that the algorithm tends
to find feasible points, in the following sense:

Theorem 5.1 Let x∗ ∈ R
n be a limit point of a sequence {xk} generated by Algo-

rithm 5.1. Then, x∗ is a stationary point for the following problem

Minimize P(x) := ‖[−gi (x)]+‖2. (39)

Proof Let us consider the following two cases:

(i) Assume that {ρk} is bounded. Then, there exists k0 such that for k ≥ k0 we have
ρk = ρk0 . Thus, from Step 3 of Algorithm 5.1, for all i , vki → 0. In a subsequence
where {μ̂k

i } converges to some μ̂i ∈ Kmi , we have

lim
k→∞ μk

i = lim
k→∞

[
μ̂k
i − ρk0gi (x

k)
]

+ = [
μ̂i − ρk0gi (x

∗)
]
+ = lim

k→∞ μ̂k
i = μ̂i .
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Now, if μ̂i − ρk0gi (x
∗) = λ1c1 + λ2c2 is a spectral decomposition of μ̂i −

ρk0gi (x
∗), we can write:

μ̂i = [μ̂i − ρk0gi (x
∗)]+ = max{0, λ1}c1 + max{0, λ2}c2.

This gives the following spectral decomposition

gi (x
∗) = (1/ρk0) ((max{0, λ1} − λ1)c1 + (max{0, λ2} − λ2)c2) ,

where the eigenvalues are max{0, λ1}−λ1 ≥ 0 andmax{0, λ2}−λ2 ≥ 0.Hence,
gi (x∗) ∈ Kmi , which means that P(x∗) = 0. Therefore, x∗ is a global minimizer
of (39).

(ii) Assume that {ρk} is unbounded. Let us define δk := ∇ f (xk)−∑r
i=1 Jgi (x

k)Tμk
i

where μk
i := [μ̂k

i − ρkgi (xk)]+. By Step 1 of Algorithm 5.1, we have that
‖δk‖ ≤ εk . Thus,

δk

ρk
= ∇ f (xk)

ρk
−

r∑

i=1

Jgi (x
k)T

[
μ̂k
i

ρk
− gi (x

k)

]

+
→ 0.

Since μ̂k
i is bounded and all involved functions are continuous, we have that

∇P(x∗) = 2
∑r

i=1 Jgi (x
∗)T

[−gi (x∗)
]
+ = 0. Therefore, x∗ is a stationary

point of (39).

��
Theorem 5.2 Assume that x∗ ∈ R

n is a feasible limit point of a sequence {xk} gener-
ated by Algorithm 5.1. Then, x∗ is an AKKT point.

Proof Assumewithout loss of generality that xk → x∗. From Step 1 of Algorithm 5.1,
we have that

∥∥
∥∥∥
∇ f (xk) −

r∑

i=1

Jgi (x
k)T [μ̂k

i − ρgi (x
k)]+

∥∥
∥∥∥

≤ εk ⇒

lim
k→∞ ∇ f (xk) −

r∑

i=1

Jgi (x
k)Tμk

i = 0,

where μk
i = [μ̂k

i − ρgi (xk)]+. Now, we will prove that (34) and (35) hold. Similarly
to Theorem 5.1, we have two cases to analyze: The sequence {ρk} is bounded or
unbounded.

(i) If the sequence {ρk} is bounded, then for some k0 and all k ≥ k0, we have
ρk = ρk0 . Taking the spectral decomposition for μk

i as follows

μk
i = [μ̂k

i − ρk0gi (x
k)]+ = max{0, λk1}ck1 + max{0, λk2}ck2,
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where cki → ci , λki → λi , i = 1, 2, we can choose them such that, similarly to
item (i) of Theorem 5.1,

gi (x
∗) = 1

ρk0
((max{0, λ1} − λ1)c1 + (max{0, λ2} − λ2)c2) . (40)

which gives the eigenvalues

λ1(gi (x
∗)) = max{0, λ1} − λ1

ρk0
> 0 and

λ2(gi (x
∗)) = max{0, λ2} − λ2

ρk0
> 0.

Now, let us consider that i ∈ II (x∗). Thus, max{0, λ1} > λ1 and max{0, λ2} >

λ2, which imply λ1 < 0, λ2 < 0 and λk1 < 0, λk2 < 0 for all k large enough.
Moreover, λ1(μ

k
i ) = max{0, λk1} = 0 and λ2(μ

k
i ) = max{0, λk2} = 0 for all

k large enough. Thus, μk
i = 0 for all sufficiently large k. Let us consider that

i ∈ IB(x∗). Considering (32) and (40), we can assume without loss of generality
that the eigenvalues of gi (x∗) are such that

λ1(gi (x
∗)) = λ−(gi (x

∗)) = 0 and λ2(gi (x
∗)) = λ+(gi (x

∗)) > 0.

With an argument similar to the previous case, λ2(gi (x∗)) = max{0, λ2} − λ2

ρk0
>

0 implies λ2(μ
k
i ) = max{0, λk2} = 0 for all k large enough. Thus, we have two

possibilities. If for an infinite subset of indexes we have

λ2(μ
k
i ) = λ+(μk

i ) := [μk
i ]0 + ‖μk

i ‖ = 0 and

λ1(μ
k
i ) = λ−(μk

i ) := [μk
i ]0 − ‖μk

i ‖ = 0,

then we can define a subsequence such that μk
i = 0 for all k. Otherwise, for k

large enough, we have

λ2(μ
k
i ) = λ−(μk

i ) := [μk
i ]0 − ‖μk

i ‖ = 0 and

λ1(μ
k
i ) = λ+(μk

i ) := [μk
i ]0 + ‖μk

i ‖ > 0, (41)

which implies that μk
i ∈ bd+(Kmi ). In addition, we have

c1 = c−(gi (x
∗)) :=

(
1

2
,− gi (x∗)

2‖gi (x∗)‖

)

and

c2 = c+(gi (x
∗)) :=

(
1

2
,

gi (x∗)
2‖gi (x∗)‖

)

.
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Moreover, we get by (41) that our decomposition of μk
i is such that

ck1 = c+(μk
i ) :=

(
1

2
,

μk
i

2‖μk
i ‖

)

and ck2 = c−(μk
i ) :=

(
1

2
,− μk

i

2‖μk
i ‖

)

.

Thus, since cki → ci for i = 1, 2, we have − μk
i

‖μk
i ‖

→ gi (x∗)
‖gi (x∗)‖ .

(ii) Let us consider that {ρk} is unbounded. Since the sequence {μ̂k
i } is bounded, we

have that
μ̂k
i

ρk
− gi (x

k) → −gi (x
∗). Let us take spectral decompositions

μ̂k
i

ρk
− gi (x

k) = λk1c
k
1 + λk2c

k
2 (42)

and

μ̂k
i

ρk
− gi (x

k) → −gi (x
∗) = λ1c1 + λ2c2, (43)

with ck1 → c1, ck2 → c2, λk1 → λ1 and λk2 → λ2. In addition, we can get a
spectral decomposition for μk

i using (42) given by

μk
i = [μ̂k

i − ρkgi (x
k)]+ = ρk max{0, λk1}ck1 + ρk max{0, λk2}ck2. (44)

Then, if i ∈ II (x∗) we have that λ1 < 0 and λ2 < 0 since these are eigenvalues
of −gi (x∗). Thus, λk1 < 0 and λk2 < 0 for all sufficiently large k, which implies
that λ1(μ

k
i ) = ρk max{0, λk1} = 0 and λ2(μ

k
i ) = ρk max{0, λk2} = 0; hence,

μk
i = 0 for all k large enough.

Now, if i ∈ IB(x∗), we can choose without loss of generality −λ1 =
λ1(gi (x∗)) = λ−(gi (x∗)) = 0 and −λ2 = λ2(gi (x∗)) = λ+(gi (x∗)) > 0. Thus,
λk2 < 0 for all sufficiently large k, implying that λ2(μ

k
i ) = ρk max{0, λk2} = 0.

The proof now follows analogously to the case where {ρk} is bounded and
i ∈ IB(x∗).

��
Now, we proceed to prove that the algorithm actually generates CAKKT sequences.

For this, the following assumption on the smoothness of the function g(·) is needed.
See [16].

Assumption 1 Let x∗ be a feasible limit point of a sequence {xk} generated by Algo-
rithm 5.1. The following generalized Lojasiewicz inequality holds: There is δ > 0 and
a function ψ : B(x∗, δ) → R, where B(x∗, δ) is the closed ball centered at x∗ with
radius δ > 0, such that ψ(x) → 0 when x → x∗ and, for all x ∈ B(x∗, δ),

P(x) ≤ ψ(x)‖∇P(x)‖,
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where P(x) := ‖[−g(x)]+‖2.
The following lemma is an extension to second-order cones of Weyl’s Lemma [36]

for symmetric matrices.

Lemma 5.1 Let z, y ∈ Kmi . Then, the following inequalities hold:

λ−(z) + λ−(y) ≤ λ−(z + y) ≤ λ−(z) + λ+(y) ≤ λ+(z + y) ≤ λ+(z) + λ+(y).

Proof It is a trivial computation from the expression of the eigenvalues. ��
Theorem 5.3 Let us suppose that x∗ ∈ R

n is a feasible limit point of a sequence {xk}
generated by Algorithm 5.1 such that Assumption 1 holds. Then, x∗ is a CAKKT point.

Proof Similarly to Theorem 5.2, let us assume that a feasible x∗ ∈ R
n is a limit point

of {xk} generated byAlgorithm 5.1. Taking a subsequence if necessary, we can assume
that xk → x∗. From Step 1, we have that

lim
k→∞ ∇ f (xk) −

r∑

i=1

Jgi (x
k)Tμk

i = 0,

where μk
i = [μ̂k

i − ρkgi (xk)]+. Now, it remains to prove that gi (xk) ◦ μk
i →

0 for all i = 1, . . . , r . In the sequel, we will analyze the case where {ρk} is bounded.
Let us take a decomposition for μk

i as in the case (i) of Theorem 5.1. Thus, for
k ≥ k0 we have ρk = ρk0 ,

μ̂i = [μ̂i − ρk0gi (x
∗)]+ = max{0, λ1}c1 + max{0, λ2}c2

and

μ̂i − ρk0gi (x
∗) = λ1c1 + λ2c2 ⇒

gi (x
∗) = (1/ρk0) ((max{0, λ1} − λ1)c1 + (max{0, λ2} − λ2)c2) .

Hence, using the fact that c1 ◦ c2 = 0, c21 = c1, and c22 = c2, we obtain

gi (x
k) ◦ μk

i → gi (x
∗) ◦ μ̂i = 1

ρk0
(max{0, λ1}(max{0, λ1} − λ1)c1+

max{0, λ2}(max{0, λ2} − λ2)c2) = 0.

Now, let us consider the case where the sequence {ρk} is unbounded. If i ∈ II (x∗),
we have by Theorem 5.2 that μk

i = 0 for all k, and then, gi (xk) ◦ μk
i = 0 for all

k. Otherwise, since {∇x Lρk (x
k, μ̂k

1, . . . , μ̂
k
r )} is bounded by Step 1 of the algorithm

and
μ̂k
i

ρk
→ 0, there is M > 0 such that ρk‖∇P(xk)‖ ≤ M . Moreover, we have by

Assumption 1 that

ρk P(xk) ≤ ψ(xk)‖ρk∇P(xk)‖ ≤ ψ(xk)M .
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Taking the limit in k, we get

ρk

(
[λ1(−gi (x

k))]2+ + [λ2(−gi (x
k))]2+

)
= ρk‖[−gi (x

k)]+‖2 → 0. (45)

Now, let us consider decompositions similar to (42), (43) and (44) in the proof of

Theorem 5.2. That is, gi (xk) = −(λk1c
k
1 + λk2c

k
2) + μ̂k

i

ρk
, −gi (x∗) = λ1c1 + λ2c2 and

μk
i = [μ̂k

i − ρkgi (x
k)]+ = ρk[λk1]+ck1 + ρk[λk2]+ck2,

where ck1 → c1, ck2 → c2, λk1 → λ1 and λk2 → λ2. Here, we use the notation
[t]+ := max{0, t} for a real number t . Thus,

gi (x
k) ◦ μk

i = −ρk(λ
k
1[λk1]+ck1 + λk2[λk2]+ck2) + μ̂k

i

ρk
◦ μk

i .

Note that

μ̂k
i

ρk
◦ μk

i = μ̂k
i ◦ μk

i

ρk
= μ̂k

i ◦
[

μ̂k
i

ρk
− gi (x

k)

]

+
.

Since {μ̂k
i } is bounded and

μk
i

ρk
→ 0, we obtain that

μ̂k
i

ρk
◦μk

i → 0. It remains to prove

that ρk(λk1[λk1]+ck1 + λk2[λk2]+ck2) → 0 and for this it is enough to prove that

λ±

(
μ̂k
i

ρk
− gi (x

k)

)[
λ±(μ̂k

i − ρkgi (x
k))
]

+ → 0.

From Lemma 5.1, we have

λ−(μ̂k
i ) + ρkλ−(−gi (x

k)) ≤ λ−(μ̂k
i − ρkgi (x

k)) ≤ λ+(μ̂k
i ) + ρkλ−(−gi (x

k)).

(46)

Now, observe that λ−(−gi (x∗)) ≤ 0, because we are considering cases i ∈ IB(x∗) or
i ∈ I0(x∗), and λ−(−gi (x∗)) = −λ+(gi (x∗)). Note that if λ−(−gi (x∗)) < 0, since
λ−(−gi (xk)) → λ−(−gi (x∗)), the sequence {μ̂k

i } is bounded and ρk → +∞, we
have that λ−(μ̂k

i − ρkgi (xk)) < 0 for k large enough. Hence,

λ−

(
μ̂k
i

ρk
− gi (x

k)

)[
λ−(μ̂k

i − ρkgi (x
k))
]

+ → 0. (47)
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If λ−(−gi (x∗)) = 0 but λ−(−gi (xk)) ≤ 0 for an infinite subset of indices, we have
for this subsequence, using (46), that

0 ≤ [λ−(μ̂k
i − ρkgi (x

k))]+ = max{0, λ−(μ̂k
i − ρkgi (x

k))}
≤ max{0, λ+(μ̂k

i ) + ρkλ−(−gi (x
k)))}

≤ max{0, λ+(μ̂k
i )} + max{0, ρkλ−(−gi (x

k)))},
= max{0, λ+(μ̂k

i )}.

Then, {[λ−(μ̂k
i − ρkgi (xk))]+} is bounded. Since λ−

(
μ̂k
i

ρk
− gi (xk)

)
→ 0, we have

that (47) also holds. If λ−(−gi (x∗)) = 0 but λ−(−gi (xk)) > 0 for all k large enough,

we can multiply (46) by λ−

(
μ̂k
i

ρk
− gi (x

k)

)

> 0 to arrive at

λ−(μ̂k
i )λ−

(
μ̂k
i

ρk
− gi (x

k)

)

+ ρkλ−(−gi (x
k))λ−

(
μ̂k
i

ρk
− gi (x

k)

)

≤ λ−(μ̂k
i − ρkgi (x

k))λ−

(
μ̂k
i

ρk
− gi (x

k)

)

and

λ−(μ̂k
i − ρkgi (x

k))λ−

(
μ̂k
i

ρk
− gi (x

k)

)

≤ λ+(μ̂k
i )λ−

(
μ̂k
i

ρk
− gi (x

k)

)

+ ρkλ−(−gi (x
k))λ−

(
μ̂k
i

ρk
− gi (x

k)

)

.

Note that λ−(μ̂k
i )λ−

(
μ̂k
i

ρk
− gi (x

k)

)

→ 0 and λ+(μ̂k
i )λ−

(
μ̂k
i

ρk
− gi (x

k)

)

→ 0,

once again because {μ̂k
i } is bounded and λ−(−gi (xk)) → λ−(−gi (x∗)) = 0. Then,

weneed to show thatρkλ−(−gi (xk))λ−

(
μ̂k
i

ρk
− gi (x

k)

)

→ 0.To see this, it is enough

to multiply (46) by λ−(−gi (xk)). In fact, by doing this, we get

0 < ρkλ−(−gi (x
k))λ−

(
μ̂k
i

ρk
− gi (x

k)

)

≤ λ+(μ̂k
i )λ−(−gi (x

x )) + ρkλ−(−gi (x
k))2.

Using again the fact that {μ̂k
i } is bounded and λ−(−gi (xk)) → 0, as well as

ρkλ−(−gi (xk))2 → 0 (by (45)), we conclude that the above left-hand side term
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converges to zero. Therefore, (47) also holds in this case. The proof that

λ+

(
μ̂k
i

ρk
− gi (x

k)

)[
λ+(μ̂k

i − ρkgi (x
k))
]

+ → 0

is done analogously. We conclude that gi (xk) ◦ μk
i → 0 for all i = 1, . . . , r . ��

To finish the paper and illustrate our results, we check whether Algorithm 5.1 in
fact generate AKKT or CAKKT sequences in a practical implementation. To see this,
we implemented the algorithm in MATLAB R2023a, under Ubuntu 20.04. We chose
three different problems from the literature:

– P1: Example 3.6 of [37], a nonconvex NSOCP with n = m = 3.
– P2(n,m): Experiment 1 of [40], a convex NSOCP with arbitrary n and m.
– P3(n,m): Experiment 2 of [40], a nonconvex NSOCP with arbitrary n = m.

For simplicity, we consider a unique second-order cone constraint for the random
problems P2 and P3. The subproblems were solved with fminunc function, with a
trust region algorithm. We also took the subproblem’s tolerance as ε0 = 10−5, and
εk+1 = εk/k, the tolerance for stopping the algorithm as 10−5, and all other parameters
were chosen similarly to ALGENCAN (see [19]).

The results of the experiments are shown in Table 1. In particular, we analyze the
results for problem P1, 6 instances for problem P2 with n = m and m = 2n and
3 instances for problem P3. Table 1 shows the norm of the gradient of the Lagrangian
that appears in both AKKT and CAKKT conditions, as well as the norm of the corre-
sponding complementarity condition, of the last 3 iterations.

First we observe that whenever the algorithm stops with optimality, it can solve
all the considered problems in few iterations. The nonconvex problem P3 with the
largest dimension (n = m = 100), for instance, took 32 outer iterations and 193 inner
iterations. Moreover, in all cases, we clearly observe decrease of the complementar-
ity measures and the gradient of the Lagrangian. Therefore, we can conclude that
Algorithm 5.1 in fact can generate AKKT and CAKKT sequences numerically.

6 Conclusions

In this paper, we extended the optimality conditions AKKT and CAKKT to the con-
text of symmetric cone programming. These optimality conditions were shown to
be strictly stronger than Fritz-John’s condition. When specializing to second-order
cones, an explicit characterization of AKKT is presented, which takes into account
the particular form of the KKT conditions in this context, not relying on a spectral
decomposition. The definition of CAKKT is very natural in the context of symmetric
cones, as it does not rely on a spectral decomposition and uses the Jordan product
to measure complementarity. In the context of second-order cones, we have shown
that CAKKT is stronger than AKKT, while we also show that a previous attempt of
avoiding eigenvalues by using the inner product turns out to give a condition weaker
than CAKKT and independent of AKKT.
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For second-order cones, we showed that an augmentedLagrangian algorithmgener-
ates AKKT sequences, while under an additional smoothness assumption it generates
CAKKT sequences. This gives a global convergence result not relying on Robinson’s
constraint qualification. There are several ways in which we expect to continue our
research on this topic. For instance, one shall prove that this algorithm generates
AKKT and CAKKT sequences for general symmetric cones; also, it would be inter-
esting to understand the relationship of CAKKT and AKKT for general symmetric
cones. Other classes of algorithms, such as interior point methods, can probably also
generate CAKKT sequences. These possibilities will be subject of further research.
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