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Sequential optimality conditions have recently played an important role on the analysis of the global
convergence of optimization algorithms towards first-order stationary points, justifying their stopping
criteria. In this article, we introduce a sequential optimality condition that takes into account second-order
information and that allows us to improve the global convergence assumptions of several second-order
algorithms, which is our main goal. We also present a companion constraint qualification that is less
stringent than previous assumptions associated to the convergence of second-order methods, like the joint
condition Mangasarian–Fromovitz and weak constant rank. Our condition is also weaker than the constant
rank constraint qualification. This means that we can prove second-order global convergence of well–
established algorithms even when the set of Lagrange multipliers is unbounded, which was a limitation of
previous results based on Mangasarian–Fromovitz constraint qualification. We prove global convergence
of well-known variations of the augmented Lagrangian and regularized sequential quadratic programming
methods to second-order stationary points under this new weak constraint qualification.

Keywords: nonlinear programming; constraint qualifications; algorithmic convergence

1. Introduction

We are concerned with the general nonlinear optimization problem with equality and inequality
constraints:

minimize f (x), subject to x ∈ Ω , (1.1)

where Ω = {x ∈ Rn | h(x) = 0, g(x) ≤ 0} and f : Rn → R, h : Rn → Rm, g : Rn → Rp are twice
continuously differentiable functions.

© The authors 2017. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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A SECOND-ORDER SEQUENTIAL OPTIMALITY CONDITION 1903

Practical algorithms for solving (1.1) are iterative. Hence, their implementations include stopping
criteria to decide whether the current point is close to a solution or, at least, whether it verifies approx-
imately a necessary optimality condition. By a necessary optimality condition, we mean a computable
condition that must be verified by the minimizer of (1.1) and whose fulfillment indicates that the point
under consideration is an acceptable candidate for a solution of the problem.

The most usual algebraic optimality conditions for (1.1) are associated to the Karush–Kuhn–Tucker
(KKT) condition. In fact, many necessary optimality conditions can be stated as ‘if the description of
the constraints at a local minimizer conform to a constraint qualification (CQ1), then the KKT condition
holds’. In other words, many necessary optimality conditions are propositions of the form

KKT or not CQ1. (1.2)

Such conditions use only first-order information on the functions that describe the optimization problem
and are then called first-order necessary optimality conditions. A condition of this form will be stronger
the less stringent is the associated constraint qualification that is used.

The most used constraint qualification is the linear independence constraint qualification (LICQ). It
states that the gradients of the equality and active inequality constraints are linearly independent at the
point of interest. It is interesting due to its many good properties, like uniqueness of the multiplier (Fletcher,
1981; Nocedal & Wright, 2006). It is however very stringent and, hence, the associated optimality
condition is weak. There is a vast literature on constraint qualifications weaker than LICQ, see Petersen
(1973), Solodov (2010), Andreani et al. (2012a,b) and references therein. We mention two of them. The
Mangasarian–Fromovitz condition (MFCQ), defined in Mangasarian & Fromovitz (1967), says that the
gradients of the equality and active inequality constraints are positive linearly independent at the feasible
point of interest. The constant-rank constraint qualification (CRCQ), defined in Janin (1984), states that
there is a neighborhood around the point of interest where the rank of any subset of the gradients of the
equality and active inequality constraints does not change.

In practice, it is usually impossible to find a point that conforms exactly to the KKT condition even
if a strong CQ1 holds. Hence, an algorithm may stop when such conditions are satisfied approximately.
A sequential optimality condition makes a precise definition based on this practice. Let us consider the
most popular of these conditions, the Approximate KKT (AKKT) condition introduced in Andreani et al.
(2011). See also Qi & Wei (2000), Martinez & Svaiter (2003), Birgin & Martinez (2014).

Definition 1.1 The approximate Karush–Kuhn–Tucker (AKKT) optimality condition is said to hold at
a point x∗ ∈ Rn if there are sequences {xk} ⊂ Rn, {λk} ⊂ Rm, {μk} ⊂ R

p
+ and {εk} ⊂ R+, such that

xk → x∗, εk → 0+,

‖h(xk)‖ ≤ εk , ‖max{0, g(xk)}‖ ≤ εk , (1.3)

∥∥∥∇f (xk)+
m∑

i=1

λk
i∇hi(x

k)+
p∑

j=1

μk
j∇gj(x

k)

∥∥∥ ≤ εk (1.4)

and

μk
j = 0 if gj(x

k) < −εk . (1.5)

We note that the AKKT condition can be equivalently stated as x∗ ∈ Ω and ∇f (xk)+∑m
i=1 λk

i∇hi(xk)+∑
j|gj(x∗)=0 μk

j∇gj(xk)→ 0, with xk → x∗ and {λk} ⊂ Rm, {μk} ⊂ R
p
+.
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1904 R. ANDREANI ET AL.

The AKKT condition tries to capture a natural property of many optimization algorithms: they are
designed to generate a primal sequence together with approximating multipliers for which the KKT
residual goes to zero. In this case, one may expect that the cluster points of the primal sequence should
conform to the KKT conditions. Such convergence to KKT points holds naturally if the approximating
multipliers are bounded but it may fail otherwise. Therefore, the analysis of the global convergence of
such algorithms usually revolves around stringent constraints qualifications, like MFCQ, and special
algorithmic properties that allow us to bound, or indirectly control, the multiplier sequence. However, it
has been shown recently that such ad hoc analysis is not necessary. The generation of an AKKT sequence
together with a very mild constraint qualification is enough to ensure global convergence to KKT points
even if the multiplier sequence is unbounded. See Andreani et al. (2012a,b, 2016) for details.

The attractiveness of sequential optimality conditions such as AKKT is associated to three proper-
ties. First, they are genuine necessary optimality conditions, independently of the fulfillment of constraint
qualifications (Andreani et al., 2011; Birgin & Martinez, 2014). Second, they are strong, in the sense
that they imply the classical first-order optimality condition ‘KKT or not CQ1’ for weak constraint qual-
ifications (Andreani et al., 2012a,b, 2016). Third, there are many algorithms that generate sequences
whose limit points satisfy them. Particularly in the case of AKKT, many optimization algorithms (but
not all; see Andreani et al., 2014b), such as augmented Lagrangian methods, some sequential quadratic
programming (SQP) algorithms, interior point methods and inexact restoration methods generate primal–
dual sequences {xk , λk , μk} for which (1.4) and (1.5) are fulfilled (Andreani et al., 2012a). In this case
{xk} is called an AKKT sequence and we can say that these methods generate AKKT sequences. We
would like to emphasize that this discussion means that sequential optimality conditions, like AKKT,
are powerful tools in the global convergence analysis to first-order stationary points, under weak con-
straint qualifications, of optimization methods. In particular, a new CQ1 that is equivalent to stating that
whenever the point of interest is the limit of an AKKT sequence it is also a KKT point, was recently char-
acterized in Andreani et al. (2016). This result relaxed the convergence assumptions of many important
algorithms.

Using second-order information, one can formulate second-order optimality conditions. Such condi-
tions are usually much stronger than first-order conditions and hence are more desirable. Such conditions
have been extensively studied in the literature (see Fiacco & McCormick, 1968; Fletcher, 1981; Bonnans
et al., 1999; Bonnans & Shapiro, 2000; Nocedal & Wright, 2006), with important applications to mathe-
matical programming (Penot, 1998; Arutyunov & Pereira, 2006), composite optimization (Penot, 1994),
optimal control (Casas & Troltzsch, 2002; Bonnans et al., 2009), etc. In the development of algorithms,
most of the second-order necessary optimality conditions used are of the form ‘if a local minimizer
satisfies some constraint qualification (CQ2), then the WSOC condition holds’. That is,

WSOC or not CQ2, (1.6)

where WSOC stands for the weak second-order condition that states that the Hessian of the Lagrangian at
a KKT point is positive semidefinite on the subspace orthogonal to the gradients of active constraints, see
Definition 2.2. Our focus on necessary optimality conditions of the type ‘WSOC or not CQ2’ comes from
algorithmic considerations. To the best of our knowledge, there is no algorithm with global convergence
to a point that satisfies a second-order stationarity measure stronger than WSOC. In particular, there is
no algorithm that is guaranteed to converge to points where the Hessian of the Lagrangian is positive
semidefinite on the so-called critical cone, instead of on the smaller subspace considered in WSOC. There
is also strong evidence that even simple second-order methods will fail to find points conforming to more
stringent second-order conditions (Gould et al., 1998).
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A SECOND-ORDER SEQUENTIAL OPTIMALITY CONDITION 1905

Several algorithms for (1.1) that converge to second-order stationary points (i.e., points where WSOC
holds) have been proposed in the literature over the years. Andreani et al. (2010a) (see also Andreani
et al., 2007), used a second-order negative-curvature method for box-constrained minimization applied to
certain classes of functions that do not possess continuous second derivatives. Byrd et al. (1987) employ a
sequential quadratic programming (SQP) approach, where the second-order stationarity is obtained due to
the use of second-order correction steps. Coleman et al. (2002) also use an SQP approach with quadratic
penalty functions for equality constrained minimization. Conn et al. (1998) employ the logarithmic barrier
method for inequality constrained optimization with linear equality constraints. Dennis & Vicente (1997)
use affine scaling directions and the SQP approach for optimization with equality constraints and simple
bounds (see also Dennis et al., 1997. DiPillo et al. (2005) define a primal–dual model algorithm for
inequality constrained optimization problems where they take advantage of the equivalence between the
original constrained problem and the unconstrained minimization of an exact augmented Lagrangian
function. They use a curvilinear line search technique using information on the nonconvexity of the
augmented Lagrangian function. Facchinei & Lucidi (1998) use negative-curvature directions in the
context of inequality constrained problems. Recently, Gill, Kungurtsev and Robinson used a variant of
the SQP method, specifically, the regularized SQP defined in Gill & Robinson (2013) and Gill et al.
(2013). Their method is based on performing a flexible line search along a direction formed from the
solution of a strictly convex regularized quadratic programming subproblem and, when one exists, a
direction of negative curvature for the primal–dual augmented Lagrangian. Morguerza & Prieto (2003)
employ an interior-point algorithm for nonconvex problems and uses directions of negative curvature. The
convergence to second-order critical points of trust-region algorithms for convex constraints is studied in
detail in Conn et al. (2000).

Even with all this activity around second-order conditions and related algorithms, the authors are not
aware of any attempt to define a sequential second-order optimality condition that can play the same
unification role that AKKT and other sequential first-order conditions can play in the convergence theory
of (first-order) algorithms. This is the main purpose of this article.

We will introduce a sequential second-order optimality condition that we call AKKT2. As with every
sequential optimality condition, it has the associated three main desirable properties. It is a genuine
necessary optimality condition (its fulfillment is independent of any constraint qualification). It is also
strong in the sense that it implies ‘WSOC or not CQ2’ for a new weak constraint qualification. This
new constraint qualification is strictly weaker than the typical condition associated to the convergence
of second-order algorithms, namely, the joint condition MFCQ and weak constant rank (WCR); see
Definition 3.7, which was introduced in Andreani et al. (2007) and is used in the analysis of convergence
of the second-order augmented Lagrangian method proposed in Andreani et al. (2010a) and also the
regularized SQP (Gill et al., 2013). It is also strictly weaker than the CRCQ condition (or its relaxed
version Minchenko & Stakhovski, 2011), which proves convergence to a second-order stationary point
even when Lagrange multipliers are unbounded. Finally, we will show that many optimization algorithms
with convergence to second-order points generate sequences whose limit points satisfy AKKT2. For
instance, we show that the second-order augmented Lagrangian (Andreani et al., 2010a), the regularized
SQP (Gill et al., 2013) and the trust-region method (El-Alem, 1996) generate AKKT2 sequences; see
Section 5. These results indicate that AKKT2 can be used as a unifying tool for global convergence
analysis of algorithms that converge to second-order stationary points. In particular, we also present the
companion CQ2 that fully characterizes the property that a convergent AKKT2 sequence will converge
to a point conforming to WSOC, extending the convergence result of algorithms that assumed more
stringent constraint qualifications.
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1906 R. ANDREANI ET AL.

We organize the rest of this article as follows. In Section 2, we survey some basic results and pre-
liminary considerations that will be useful to understand the main results of the article. In Section 3, we
introduce the new sequential second-order optimality condition and we prove that it is a genuine sequen-
tial optimality condition, that is, we prove that local minimizers necessarily satisfy it. We also show
that it is a strong optimality condition, in the sense that it implies ‘WSOC or not (MFCQ and WCR)’.
Finally, we present an algorithm that generates sequences whose limit points naturally satisfy this new
second-order condition. In Section 4, we refine the results of Section 3 by introducing a new weak con-
straint qualification associated to AKKT2 and we establish its relationship with other known constraint
qualifications such as CRCQ and MFCQ+WCR. In Section 5, we present other well-known algorithms
with convergence to second-order stationary points that produce sequences whose limit points satisfy our
second-order sequential condition. Finally, in Section 6 we give some conclusions and remarks.

2. Basic definitions and preliminary considerations

We denote by B the closed unit ball in Rn, and B(x, η) := x+ηB the closed ball centered at x with radius
η > 0; R+ is the set of positive scalars, a+ := max{0, a}, the positive part of a ∈ R. Set R− := −R+.
Here I denotes the identity matrix of appropriate dimension, ei denotes the ith column of I and e :=∑ ei.
We use 〈·, ·〉 to denote the Euclidean inner product on Rn, ‖ · ‖ the associated norm. Sym(n) denotes
the set of symmetric matrices. Sym+(n) stands for the set of order n symmetric positive-semidefinite
matrices. Given two symmetric matrices A, B in Sym(n), we write A � B (A � B) if A(v, v) ≥ B(v, v)
(A(v, v) > B(v, v)) for all v ∈ Rn, where A(v, v) := 〈v, Av〉 = vTAv. Finally, we define the set of indexes
I := {1, . . . , m} of equality constraints and A(x∗) = {i ∈ {1, . . . , p} | gi(x∗) = 0} of active inequality
constraints at x∗ ∈ Ω .

We state the following well-known lemma for latter reference.

Lemma 2.1 (Debreu, 1952; Bertsekas, 1982) Let P ∈ Sym(n) and vectors a1, . . . , ar ∈ Rn. Define the
subspace C = {d ∈ Rn : 〈aj, d〉 = 0 for j ∈ {1, . . . , r}}. Suppose that P(v, v) > 0 for all v ∈ C . Then,
there exist positive scalars {cj, j ∈ {1, . . . , r}} such that P +∑r

j=1 cjajaT
j � 0.

Given a set-valued mapping (multifunction) F : Rs ⇒ Rd , the sequential Painlevéa–Kuratowski
outer/upper limit of F(z) as z→ z∗ is denoted by

lim sup
z→z∗

F(z) := {w∗ ∈ Rd : ∃ (zk , wk)→ (z∗, w∗) with wk ∈ F(zk)}. (2.1)

We say that F is outer semicontinuous (osc) at z∗ if

lim sup
z→z∗

F(z) ⊂ F(z∗). (2.2)

Let L(x, λ, μ) be the Lagrangian function associated to (1.1):

L(x, λ, μ) = f (x)+
m∑

i=1

λihi(x)+
p∑

j=1

μjgj(x), (2.3)

where μj ≥ 0 for all j = 1, . . . , p. Under some CQs (see Baccari & Trad, 2005; Bazaraa et al., 2006;
Andreani et al., 2007, 2014a for details), one can prove that a local minimizer x∗ of (1.1) fulfills the
WSOC condition stated below.
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A SECOND-ORDER SEQUENTIAL OPTIMALITY CONDITION 1907

Definition 2.2 A feasible point x∗ ∈ Ω satisfies the (WSOC) if there exist Lagrange multipliers λ∗ ∈
Rm, μ∗ ∈ R

p
+, μ∗j = 0 for j /∈ A(x∗), such that

∇f (x∗)+
m∑

i=1

λ∗i∇hi(x
∗)+

∑
j∈A(x∗)

μ∗j∇gj(x
∗) = 0 (2.4)

and ⎛
⎝∇2f (x∗)+

m∑
i=1

λ∗i∇2hi(x
∗)+

∑
j∈A(x∗)

μ∗j∇2gj(x
∗)

⎞
⎠ (d, d) ≥ 0 for all d ∈ C W (x∗), (2.5)

where the weak critical cone C W (x∗) is defined as the subspace

C W (x∗) := {d ∈ Rn : 〈∇hi(x
∗), d〉 = 0, i ∈ I , 〈∇gj(x

∗), d〉 = 0, j ∈ A(x∗)}. (2.6)

That is, WSOC holds when the KKT condition holds and the Hessian of the Lagrangian L(·, λ∗, μ∗)
is positive semidefinite at x∗ over the weak critical cone C W (x∗), for some Lagrange multiplier (λ∗, μ∗).

When the weak critical cone is replaced by the usual (strong) critical cone

C S(x∗) :=
{

d ∈ Rn :
〈∇hi(x∗), d〉 = 0, i ∈ I , 〈∇gj(x∗), d〉 ≤ 0, j ∈ A(x∗)
〈∇f (x∗), d〉 ≤ 0

}
, (2.7)

we say that the strong second-order necessary optimality condition (SSOC) holds. The SSOC is a well-
studied condition (Fiacco & McCormick, 1968; Fletcher, 1981; Bertsekas, 1999; Bazaraa et al., 2006)
that holds under the classical LICQ. In fact, one can prove that a local minimizer of (1.1) fulfills SSOC
imposing a variety of other conditions. See Baccari & Trad (2005), Bazaraa et al. (2006), Andreani et al.
(2010b), Minchenko & Stakhovski (2011), Andreani et al. (2014a). We note that conditions in Andreani
et al. (2010b), Andreani et al. (2014a), Minchenko & Stakhovski (2011) yield WSOC or SSOC for every
Lagrange multiplier, which can be relevant in some applications.

However, it is well known that MFCQ by itself is not enough to ensure the validity of SSOC or
WSOC (Arutyunov, 1991; Anitescu, 2000). There are other second-order conditions that hold under
MFCQ (for instance, see Ben-Tal & Zowe, 1982, Remark 9.3 or Bonnans & Shapiro, 2000, Theorem
3.45), or without any CQ (see Arutyunov, 1998, Theorem 3.1; Bonnans & Shapiro, 2000, Theorem 3.50
or Ben-Tal & Zowe, 1982, Theorem 9.3). These conditions do not suit our framework since they require
the knowledge of the whole set of Lagrange multipliers in order to be verified, whereas in practice, only
an approximation to a single Lagrange multiplier is available.

Also from the computational point of view, even establishing if SSOC holds is, in general, an NP-hard
problem (Murty & Kabadi, 1987) and to our knowledge, no algorithm has been shown to converge to a
point at which SSOC holds. Gould et al. (1998) showed a simple box-constrained optimization problem
where the barrier method generates a sequence where SSOC fails to be attained at the limit, while the
sequence of barrier minimizers satisfies the second-order sufficient optimality condition.

From the above considerations, WSOC is the natural condition to be considered in the convergence
analysis of second-order algorithm and we focus on optimality conditions that imply it under weak
assumptions. The attentive reader may notice that we call an optimality condition strong when it implies
WSOC under a weak constraint qualification, which is not usual in classical second-order analysis.
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1908 R. ANDREANI ET AL.

3. A sequential second-order optimality condition

In this section, we will proceed to define a sequential second-order optimality condition, which will play
a key role in the convergence analysis of algorithms. By a sequential optimality condition, we mean a
condition with the following three properties: (i) it is a necessary optimality condition, independently of
any constraint qualification, (ii) it should be as strong as possible, in our case, it must imply (1.6) for
weak constraint qualifications and (iii) it must be possible to verify its validity in sequences generated
by algorithms.

Definition 3.1 We say that the feasible point x∗ ∈ Ω is an approximate second-order stationary point
for problem (1.1) if there are sequences {xk} ⊂ Rn, {λk} ⊂ Rm, {ηk} ⊂ Rm, {μk} ⊂ R

p
+, {θ k} ⊂ R

p
+,

{δk} ⊂ R+ with μk
j = 0 for j /∈ A(x∗), θ k

j = 0 for j /∈ A(x∗) such that xk → x∗, δk → 0,

lim
k→∞
∇f (xk)+

m∑
i=1

λk
i∇hi(x

k)+
∑

j∈A(x∗)
μk

j∇gj(x
k) = 0 (3.1)

and

∇2
x L(xk , λk , μk)+

m∑
i=1

ηk
i∇hi(x

k)∇hi(x
k)T +

∑
j∈A(x∗)

θ k
j ∇gj(x

k)∇gj(x
k)T + δkI (3.2)

is positive semidefinite for k ∈ N sufficiently large.

Since Definition 3.1 is a second-order version of the sequential optimality condition AKKT, we say
that a point that satisfies it is an AKKT2 point. The rest of this section is devoted to showing that AKKT2
meets the three main properties required by a sequential optimality condition.

3.1 AKKT2 is a necessary optimality condition

In order to prove that AKKT2 is a necessary optimality condition, we will use the next lemmas.

Lemma 3.2 (Andreani et al., 2010a, 2007) Let f̄ : Rn → R, ḡj : Rn → R for j ∈ {1, . . . , p} be functions
with continuous second-order derivatives in a neighborhood of a point x̄. Let us define

F̄(x) := f̄ (x)+ 1

2

p∑
j=1

max{0, ḡj(x)}2

for all x in an open neighborhood of x̄. Suppose that x̄ is a local minimizer of F̄. Then the symmetric
matrix defined as

H(x) := ∇2 f̄ (x)+
p∑

j=1

max{0, ḡj(x)}∇2ḡj(x)+
∑

j:ḡ(x̄)≥0

∇ḡj(x)∇ḡj(x)
T

is positive semidefinite at x̄.
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A SECOND-ORDER SEQUENTIAL OPTIMALITY CONDITION 1909

The following lemma is an adaptation of the exterior penalty method (Fiacco & McCormick, 1968).
See also Bertsekas (1999), Andreani et al. (2011).

Lemma 3.3 Let C be a closed subset of Rn, and {ρk} a positive sequence that tends to infinity. Assume
that for all k ∈ N, xk is a global minimizer of the mathematical programming problem

minimize f (x)+ ρk

(
m∑

i=1

hi(x)
2 +

p∑
j=1

max{0, gj(x)}2
)

subject to x ∈ C .

Then every limit point of {xk} is a global solution of

minimize f (x) subject to h(x) = 0, g(x) ≤ 0, x ∈ C . (3.3)

Now, we will show that AKKT2 is a necessary optimality condition. The idea is to get second-order
information using penalization techniques. This result can be obtained from others in the literature (see
Remark 3.1) and its proof is included here for the sake of completeness.

Theorem 3.4 If x∗ is a local minimizer of (1.1), then x∗ satisfies the AKKT2 condition.

Proof. Since x∗ is a local minimizer of (1.1) there is an ε > 0 such f (x∗) ≤ f (x) for all feasible x such
that ‖x − x∗‖ ≤ ε. So x∗ is the unique solution of

minimize f (x)+ 1

4
‖x − x∗‖4 subject to h(x) = 0, g(x) ≤ 0, x ∈ B(x∗, ε). (3.4)

Let {ρk} be a sequence of positive scalars with ρk →∞. Consider the penalty method for (3.4):

minimize f (x)+ 1

4
‖x − x∗‖4 + 1

2
ρk

{
m∑

i=1

hi(x)
2 +

p∑
j=1

max{0, gj(x)}2
}

subject to x ∈ B(x∗, ε). (3.5)

Let xk be a global solution of this subproblem (3.5), which is well defined by the compactness of B(x∗, ε)
and continuity of the functions. Furthermore, by Lemma 3.3, the sequence {xk} converges to x∗ and
xk ∈ Int B(x∗, ε) for k large enough. Then, using Fermat’s rule, the gradient of the objective function of
(3.5) must vanish at xk for sufficiently large k:

∇f (xk)+
m∑

i=1

ρkhi(x
k)∇hj(x

k)+
p∑

j=1

ρk max{0, gj(x
k)}∇gj(x

k)+ ‖xk − x∗‖2(xk − x∗) = 0. (3.6)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/37/4/1902/2929533 by U
niversidade Estadual de C

am
pinas user on 23 M

ay 2019



1910 R. ANDREANI ET AL.

By Lemma 3.2 with F̄(x) = f (x)+ 1
2ρk

∑m
i=1 hi(x)2 + 1

4‖x − x∗‖4, ḡj = √ρkgj(x) for j ∈ {1, . . . , p} and
x̄ = xk , we can state that

∇2f (xk)+
m∑

i=1

ρkhi(x
k)∇2hj(x

k)+
p∑

j=1

ρk max{0, gj(x
k)}∇2gj(x

k)

+
m∑

i=1

ρk∇hi(x
k)∇hj(x

k)T +
∑

j:gj(xk )≥0

ρk∇gj(x
k)∇gj(x

k)T

+ 2(xk − x∗)(xk − x∗)T + ‖xk − x∗‖2I � 0. (3.7)

Define λk
i := ρkhi(xk), ηk

i := ρk for i ∈ {1, . . . , m}, μk
j := ρk max{0, gj(xk)} for j ∈ {1, . . . , p}, θ k

j = ρk if
gj(xk) ≥ 0 and θ k

j = 0, otherwise. Finally define δk := 3‖xk − x∗‖2. Clearly, δk → 0 as k goes to infinity,
μk

j = 0 for j /∈ A(x∗) and θ k
j = 0 for j /∈ A(x∗). Now with these choices and from (3.6) and (3.7), we

have that (3.1) and (3.2) are satisfied, which proves that AKKT2 holds. �

Remark 3.5 The notion of AKKT2 has been implicitly stated in the optimization literature; in particular,
we do not claim that the result from Theorem 3.4 is new. The idea of obtaining second-order information
from penalization techniques is well known. See, for instance, Fiacco & McCormick (1968), Auslender
(1979), Arutyunov (1998), Arutyunov (2000), Bertsekas (1999). In particular, the result above can be
derived from the Stage I of the proof of Theorem 4.1 in Arutyunov (2000). The contribution of this paper
is to introduce these ideas in the context of sequential optimality conditions, which allows us to improve
the global convergence assumptions of several well-known algorithms.

3.2 Strength of the AKKT2 condition

The AKKT2 condition is a strong second-order optimality condition in the sense that it implies (1.6) for
weak constraint qualifications. In this subsection, we will prove that the joint condition MFCQ and WCR
serves as corresponding to CQ2; see Proposition 3.9. In the next section we will show that the relaxed
constant rank constraint qualification (RCRCQ), a weaker version of the CRCQ, also serves as CQ2
(see Proposition 4.12) and as a consequence the RCRCQ can be used in the global convergence analysis
of algorithms. In order to prove that AKKT2 implies ‘WSOC or not (MFCQ and WCR)’, we recall the
definition of the WCR condition introduced by Andreani et al. (2007).

Definition 3.6 Let x∗ ∈ Ω be a feasible point. We say that the WCR condition holds if there is a
neighborhood V of x∗ such that the rank of {∇hi(x),∇gj(x) : i ∈ I , j ∈ A(x∗)} remains constant for all
x ∈ V .

The WCR condition is a weaker property, weaker than CRCQ defined as follows.

Definition 3.7 Let x∗ ∈ Ω be a feasible point. We say that the CRCQ holds if there is a neighborhood
V of x∗ such that for every I1 ⊂ I and J1 ⊂ A(x∗), the rank of {∇hi(x),∇gj(x) : i ∈ I1, j ∈ J1} remains
constant for all x ∈ V .

The key property of the WCR condition is the following.
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A SECOND-ORDER SEQUENTIAL OPTIMALITY CONDITION 1911

Lemma 3.8 (Andreani et al., 2007) Assume that WCR holds at a feasible point x∗ ∈ Ω . Then, for every
d ∈ C W (x∗) and for every sequence {xk} ⊂ Rn with xk → x∗, there exists a sequence {dk} ⊂ Rn with
dk → d such that for k sufficiently large, 〈∇hi(xk), dk〉 = 0 for i ∈ {1, . . . , m} and 〈∇gj(xk), dk〉 = 0 for
j ∈ A(x∗).

The next proposition shows that the AKKT2 condition is a strong necessary optimality condition.

Proposition 3.9 Let x∗ ∈ Ω be such that AKKT2 holds. If the joint condition MFCQ and WCR holds
at x∗, then WSOC is satisfied at x∗.

Proof. From the definition of AKKT2, there exist sequences {xk}, {μk}, {δk}, {θ k}with μk
j = 0 and θ k

j = 0
for j /∈ A(x∗) such that xk → x∗, δk → 0 and

(a) εk := ∇f (xk)+∑m
i=1 λk

i∇hi(xk)+∑j∈A(x∗) μ
k
j∇gj(xk)→ 0;

(b) ∇2
x L(xk , λk , μk)+∑ ηk

i∇hi(xk)∇hi(xk)T +∑ θ k
j ∇gj(xk)∇gj(xk)T � −δkI.

By MFCQ, the sequence {(λk , μk)} is bounded; otherwise, dividing εk by ‖(λk , μk)‖ and taking the limit
in a suitable subsequence we get a contradiction. Now, since {(λk , μk)} is bounded, it admits a convergent
subsequence; by simplicity we will assume that μk → μ∗ and λk → λ∗, so μ∗j = 0 for j /∈ A(x∗). Taking
the limit in item (a), we have that x∗ satisfies the KKT condition with multipliers μ∗ and λ∗.

Now we will prove that WSOC holds in x∗ with these multipliers. Take any d in C W (x∗); by Lemma
3.8, there is a sequence dk with dk → d such that 〈∇hi(xk), dk〉 = 0, for i ∈ {1, . . . , m} and 〈∇gj(xk), dk〉 =
0 for j ∈ A(x∗). Thus, evaluating the quadratic form of item (b) at dk we obtain that

∇2
x L(xk , λk , μk)(dk , dk) ≥ −δk‖dk‖2. (3.8)

Taking the limit in (3.8), we get

⎛
⎝∇2f (x∗)+

m∑
i=1

λ∗i∇2hi(x
∗)+

∑
j∈A(x∗)

μ∗j∇2gj(x
∗)

⎞
⎠ (d∗, d∗) ≥ 0, (3.9)

as we wanted to prove. �

Clearly, from (3.1), the AKKT condition is implied by the AKKT2 condition; in fact, AKKT2 is
actually stronger than the AKKT condition as the following example shows.

Example 3.10 (AKKT2 is stronger than AKKT) Consider f (x1, x2) = −x1 − x2, g(x1, x2) = x2
1x2

2 − 1
and x∗ = (1, 1).

First, let us show that the sequential optimality condition AKKT holds at x∗ = (1, 1). In fact, since
∇f (x1, x2) = (−1,−1) and ∇g(x1, x2) = 2x1x2(x2, x1), the KKT condition holds at x∗. Second, let us
show that AKKT2 fails. Suppose that (3.1) and (3.2) hold. Now, choose dk as (xk

1,−xk
2) where {(xk

1, xk
2)}

is the sequence given by the definition of AKKT2. Since
〈∇g(xk

1, xk
2), dk

〉 = 0 for all k ∈ N we get from
(3.2) that

μk∇2g(xk
1, xk

2)(d
k , dk)+ δk‖dk‖2 ≥ 0, (3.10)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/37/4/1902/2929533 by U
niversidade Estadual de C

am
pinas user on 23 M

ay 2019



1912 R. ANDREANI ET AL.

for some μk ≥ 0 and some positive scalar δk → 0. Substituting ∇2g(xk
1, xk

2)(d
k , dk) = −4(xk

1xk
2)

2 into
(3.10), we have that for all k ∈ N, −4μk(xk

1xk
2)

2 + δk‖dk‖2 ≥ 0. But this is impossible because by (3.1),
∇f (x1, x2) + μk∇g(x1, x2) → 0 implies −1 + 2μkxk

1(x
k
2)

2 → 0 and as a consequence 2μk(xk
1xk

2)
2 → 1

and −4μk(xk
1xk

2)
2 + δk‖dk‖2 →−2.

3.3 An algorithm that generates AKKT2 sequences

In this subsection, we will show that the Augmented Lagrangian algorithm proposed by Andreani et al.
(2010a) (see also Andreani et al., 2007) generates an AKKT2 sequence. In Section 5, we will show that
this is also the case for the regularized SQP method of Gill et al. (2013) and for the trust-region method
of Dennis & Vicente (1997).

Let us recall the augmented Lagrangian method from Andreani et al. (2010a) for problem (1.1), which
is equivalent to that proposed in Andreani et al. (2007), but without box constraints.

Consider the following augmented Lagrangian function:

Lρ(x, λ, μ) := f (x)+ ρ

2

(
m∑

i=1

[
hi(x)+ λi

ρ

]2

+
p∑

j=1

[
max

{
0, gj(x)+ μj

ρ

}]2
)

(3.11)

for all x ∈ Rn, ρ > 0 and λ ∈ Rm, μ ∈ R
p
+. The function Lρ has continuous first derivatives with respect

to x, but second derivatives are not defined at points satisfying gj(x) + μj/ρ = 0. For this reason, an
operator ∇̄2 is defined in Andreani et al. (2007) that coincides with the second derivative operator ∇2 at
twice-differentiable points, and

∇̄2

(
max

{
0, gi(x)+ μi

ρ

})2

:= ∇2

(
gi(x)+ μi

ρ

)2

if gi(x)+ μi

ρ
= 0. (3.12)

Now we will proceed to analyse Algorithm 1 below.

Algorithm 1 (Andreani et al., 2007, Algorithm 4.1)
Let λmin < λmax, μmax > 0, γ > 1, ρ1 > 0, τ ∈ (0, 1). Let εk be a sequence of positive scalars such that
lim εk = 0. Let λ1

i ∈ [λmin, λmax], i ∈ {1, . . . , m} and μ1
j ∈ [0, μmax], j ∈ {1, . . . , p}. Let x0 ∈ Rn be an

arbitrary initial point. Define V 0 = max{0, g(x0)}. Initialize with k = 1.
1. Find an approximate minimizer xk of Lρk (x, λk , μk). The conditions for xk are

‖∇Lρk (x
k , λk , μk)‖ ≤ εk and ∇̄2Lρk (x

k , λk , μk) � −εkI. (3.13)

2. Define V k
j := max{gj(xk),−μk

j /ρk} for j ∈ {1, . . . , p}.
If we have max{‖h(xk)‖∞, ‖V k‖∞} ≤ τ max{‖h(xk−1)‖∞, ‖V k−1‖∞} set ρk+1 = ρk , otherwise put
ρk+1 = γρk .

3. Compute λk+1
i := proj[λmin,λmax](λ

k
i + ρkhi(xk)) ∈ [λmin, λmax] for all i ∈ {1, . . . , m} and μk+1

j :=
proj[0,μmax]max{0, μk

j + ρkgj(xk)} ∈ [0, μmax], j ∈ {1, . . . , p}. Set k← k + 1 and go to step 1.
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A SECOND-ORDER SEQUENTIAL OPTIMALITY CONDITION 1913

From (3.13), we have that any limit point of {xk} fulfills the AKKT2 condition. To see this we will
take a closer look at Andreani et al. (2007, Theorem 4.1) that proves global convergence of the algorithm.
Let x∗ be any limit point of {xk}. For k sufficiently large, the expression (3.13) is equivalent to

‖∇L(xk , λ̂k , μ̂k)‖ ≤ εk , (3.14)

and

∇2L(xk , λ̂k , μ̂k)+ ρk

m∑
i=1

∇hi(x)∇hi(x)
T + ρk

∑
j∈A(x∗)

∇gj(x)∇gj(x)
T � −εkI, (3.15)

where λ̂k
i := λk

i + ρkhi(xk) for every i ∈ {1, . . . , m} and μ̂k
j := max{0, μk

j + ρkgj(xk)} for every j ∈
{1, . . . , p}. Moreover, Andreani et al. (2007, Theorem 4.1) shows that for k large enough, μ̂k

j = 0 for
every j /∈ A(x∗). We see from (3.14) and (3.15) that the AKKT2 condition holds at x∗. Thus, we have
shown that the augmented Lagrangian method generates AKKT2 sequences.

We end this subsection showing that a result similar to Proposition 3.9, replacing WSOC by SSOC,
does not hold, even under LICQ. More specifically, we will show that Algorithm 1 can generate a
sequence that converges to a point that does not satisfy SSOC, even if the criterion (3.13) for solving
each subproblem is strengthened.

Let us choose x0 = 0, λ0 = 0 and ρ0 > 1. For the next iteration, the algorithm will accept the
point x1 = 0 as an approximate solution of the subproblem independently of the precision ε, whenever

|∇xLρ0(x
1, λ0)| = |2x1(ρ0 − 1)| ≤ ε and ∇2

xxLρ0(x
1, λ0) = 2(ρ0 − 1) > 0 > −ε. Furthermore, x1 = 0 is

a global minimizer of the quadratic model q1(x) := ∇xLρ0(x
1, λ0)(x − x1)T + 1

2∇
2

xxLρ0(x
1, λ0)(x − x1)2.

Following the usual multiplier update rule, we have that λ1 := λ0 + ρ1 min{x1, 0} = 0. Continuing the
process, we obtain a sequence of iterates xk = 0, λk = 0, ρk > 1, for all k ≥ 1, where each xk is a global
minimizer of the corresponding quadratic model. We can see that the limit x∗ = 0 does not satisfy SSOC
for the original problem, while it still satisfies WSOC.

4. Second-order global convergence under weak constraint qualifications

The global convergence to second-order stationary points of the augmented Lagrangian method (Andreani
et al., 2007) and regularized SQP method (Gill et al., 2013) is based on the joint assumption of MFCQ and
WCR conditions. As we will see in the next section, both methods generate AKKT2 sequences. Hence,
a natural question is whether Proposition 3.9 can be proved using weaker constraint qualifications, since
this would improve the global convergence theory of every algorithm that generates AKKT2 sequences.
In this section, we will answer this question affirmatively.

Define for each x ∈ Rn the cone

C W (x, x∗) := {d ∈ Rn: 〈∇hi(x), d〉 = 0, i ∈ I; 〈∇gj(x), d〉 = 0, j ∈ A(x∗)}. (4.1)

The set C W (x, x∗) can be considered as a perturbation of the weak critical cone C W (x∗) around
the feasible point x∗ ∈ Ω . Clearly, C W (x, x∗) is a subspace and C W (x∗, x∗) coincides with the weak
critical cone C W (x∗). Using a variational language, we can re-state Lemma 3.8 as a WCR condition
implies the inner semicontinuity (isc) of the set-valued mapping x ⇒ C W (x, x∗) at x = x∗, that is,
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1914 R. ANDREANI ET AL.

C W (x∗, x∗) ⊂ lim infx→x∗ C W (x, x∗); in fact, the inner semicontinuity of C W (x, x∗) at x∗ turns out be
equivalent to the WCR condition (Ramos, 2016).

Now we will proceed to define the main object of this section. For x ∈ Rn, denote by KW
2 (x) the

following set:

⋃
(λ,μ)∈Rm×R

p
+ ,

μj=0 for j/∈A(x∗)

{
(
∑m

i=1 λi∇hi(x)+∑j∈A(x∗) μj∇gj(x), H), such that
H �∑m

i=1 λi∇2hi(x)+∑j∈A(x∗) μj∇2gj(x) on C W (x, x∗)

}
. (4.2)

The set KW
2 (x) is a convex cone included in Rn × Sym(n) and it allows us to write the WSOC in a more

compact form, namely,

(−∇f (x∗),−∇2f (x∗)) ∈ KW
2 (x∗). (4.3)

The next definition is our new constraint qualification associated to the AKKT2 condition.

Definition 4.1 We say that x∗ ∈ Ω satisfies the second-order cone-continuity property CCP2 if the
set-valued mapping (multifunction) x �→ KW

2 (x), defined in (4.2), is outer semicontinuous at x∗, that is,

lim sup
x→x∗

KW
2 (x) ⊂ KW

2 (x∗). (4.4)

The CCP2 condition is the weakest condition that can be used to generalize Proposition 3.9, as the
next theorem shows.

Theorem 4.2 Let x∗ ∈ Ω . The conditions below are equivalent:

• CCP2 holds at x∗;
• for every objective function f : Rn → R of problem (1.1) such that AKKT2 holds at x∗, WSOC holds

at x∗.

Proof. First, suppose CCP2 holds at x∗ and there is a function f such that the AKKT2 is satisfied. From
the definition of AKKT2, there exist sequences {xk}, {λk}, {μk}, {ηk}, {θ k}, {δk}, with μk ≥ 0, μk

j = 0 for
j /∈ A(x∗) and θ k ≥ 0, θ k

j = 0 for j /∈ A(x∗) such that xk → x∗, δk → 0 and

(a) εk := ∇f (xk)+∑m
i=1 λk

i∇hi(xk)+∑j∈A(x∗) μ
k
j∇gj(xk)→ 0;

(b) ∇2
x L(xk , λk , μk)+∑ ηk

i∇hi(xk)∇hi(xk)T +∑ θ k
j ∇gj(xk)∇gj(xk)T � −δkI.

From items (a) and (b), we see that (−∇f (xk) + εk ,−∇2f (xk) − δkI) ∈ KW
2 (xk). Now using the

continuity of ∇f (x) and ∇2f (x) jointly with the outer semicontinuity of KW
2 (x) at x∗, we obtain that

(−∇f (x∗),−∇2f (x∗)) ∈ KW
2 (x∗) and as a consequence WSOC holds. Now let us prove the other impli-

cation. Let (w, W) be an element of lim sup KW
2 (x) when x→ x∗. We will show that (w, W) is in KW

2 (x∗).
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A SECOND-ORDER SEQUENTIAL OPTIMALITY CONDITION 1915

By definition of the outer limit, we have that there are sequences {xk}, {λk
i }, {μk

j }with μk
j = 0 for j /∈ A(x∗)

and {Hk} ⊂ Sym(n) such that xk → x∗,⎛
⎝ m∑

i=1

λk
i∇hi(x

k)+
∑

j∈A(x∗)
μk

j gj(x
k), Hk

⎞
⎠→ (w, W)

and

Hk �
m∑

i=1

λk
i∇2hi(x

k)+
∑

j∈A(x∗)
μk

j∇2gj(x
k) over the set C W (xk , x∗).

Define the following function:

f (x) := −〈w, x − x∗〉 − 1

2
W(x − x∗, x − x∗).

We will show that AKKT2 holds at x∗ with f (x) as the objective function. Clearly, we have that ∇f (x) =
−w−W(x− x∗) and ∇2f (x) = −W . To prove (3.1), it is enough to see that limk→∞ ∇xL(xk , λk , μk) = 0,
but this is trivial, since that limit is equal to

lim
k→∞

⎛
⎝ m∑

i=1

λk
i∇hi(x

k)+
∑

j∈A(x∗)
μk

j gj(x
k)− w

⎞
⎠− lim

k→∞
W(xk − x∗) = 0.

To prove that (3.2) holds we will use Lemma 2.1 with

Pk :=
m∑

i=1

λk
i∇2hi(x

k)+
∑

j∈A(x∗)
μk

j∇2gj(x
k)− Hk + 1

k
I, (4.5)

and ai are the columns of the matrix [∇hi(xk), i ∈ I;∇gj(xk), j ∈ A(x∗)]. By Lemma 2.1, there are positive
sequences {θ k} and {ηk} such that

Sk := Pk +
m∑

i=1

ηk
i∇hi(x

k)∇hi(x
k)T +

∑
j∈A(x∗)

θ k
j ∇gj(x

k)∇gj(x
k)T � 0. (4.6)

Put θ k
j = 0 for j /∈ A(x∗). Using (4.5), (4.6) and ∇2f (x) = −W , we get

∇2
x L(xk , λk , μk)+

m∑
i=1

ηk
i∇hi(x

k)∇hi(x
k)T +

∑
j∈A(x∗)

θ k
j ∇gj(x

k)∇gj(x
k)T (4.7)

is equal to−W+Hk+Sk− 1
k I. Now, we will proceed to find a lower bound for this matrix. By Rayleigh’s

principle we have

−W + Hk � −|λ1(W − Hk)|I,
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1916 R. ANDREANI ET AL.

where λ1(W − Hk) denotes the smallest eigenvalue of W − Hk . By (4.6), Sk � 0, so we have that

−W + Hk + Sk − 1

k
I � −|λ1(W − Hk)|I+ Sk − 1

k
I � −|λ1(W − Hk)|I− 1

k
I = −δkI, (4.8)

where δk := |λ1(W −Hk)| + 1/k. Since Hk → W as k tends to infinity, δk tends to zero. From (4.8) and
(4.7), we see that condition (3.2) holds, therefore x∗ is an AKKT2 point. Then by hypothesis, WSOC
holds, and by (4.3), (w, W) = (−∇f (x∗),−∇2f (x∗)) belongs to KW

2 (x∗) as we wanted to prove. �

Since AKKT2 is a necessary optimality condition, by Theorem 4.2, we have the following corollary.

Corollary 4.3 If x∗ is a local minimizer of (1.1) such that CCP2 holds, then WSOC holds.

Remark 4.4 Some CQ2’s are easily verifiable (for example, LICQ) and others are verifiable with different
degrees of difficulty. CCP2 is not easily verifiable. This is not one of our objectives in the analysis of
constraint qualifications. We are mainly interested in the weakness of constraint qualifications since,
when a CQ2 is weak, the condition ‘WSOC or not-CQ2’ is strong and so the corresponding sequential
optimality condition is strong. Clearly, stopping an algorithm with the fulfillment of a strong optimality
condition increases our chances of obtaining minimizers.

By Proposition 3.9 and Theorem 4.2 we have the following corollary.

Corollary 4.5 The joint condition MFCQ and WCR implies CCP2.

CCP2 is strictly weaker than the joint condition MFCQ and WCR as the next example shows.

Example 4.6 (CCP2 does not imply MFCQ and WCR) Consider in R the vector x∗ = 0 and the inequality
constraints defined by the functions g1(x) = x and g2(x) = −x. Then, CCP2 holds at x∗ but MFCQ does
not (as a consequence MFCQ+WCR fails).

Let us compute the cone KW
2 (x) for every x ∈ R. From direct calculations, ∇g1(x) = 1,∇2g1(x) =

0,∇g2(x) = −1 and ∇2g2(x) = 0. Thus, we have C W (x, x∗) = {0}. From this, every H ∈ Sym(1) = R

satisfies

H � μ1∇2g1(x)+ μ2∇2g2(x) = 0 on C W (x, x∗) = {0} for any μ1, μ2 ≥ 0.

Then, we get KW
2 (x) = R× R, x ∈ R, and subsequently KW

2 is osc on R.
Another constraint qualification that yields WSOC is the following one introduced by Baccari & Trad

(2005): the Baccari–Trad condition holds at x∗ ∈ Ω if MFCQ holds and the rank of the active constraints
is at most one less than the number of active constraints.1 Although the Baccari–Trad condition, as CCP2,
guarantees the fulfillment of WSOC at a local minimizer, these conditions are not equivalent.

1 The original Baccari–Trad condition has an extra assumption, called GSCS; see Baccari & Trad (2005, Definition 7.4).
However, in this work they were trying to assert the validity of SSOC, instead of its weaker version WSOC. To derive WSOC using
Baccari and Trad’s results one does not need this extra assumption. Just use Baccari & Trad (2005, Lemma 7.2 and Theorem 4.1)
with the weak critical cone as the first-order cone.
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A SECOND-ORDER SEQUENTIAL OPTIMALITY CONDITION 1917

Example 4.7 (Baccari–Trad condition does not imply CCP2) Consider in R2 the vector x∗ = (0, 0) and
the inequality constraints defined by the functions g1(x1, x2) = −x2 and g2(x1, x2) = x2

1 − x2. Then, the
Baccari–Trad condition holds at x∗ but CCP2 fails.

Clearly, the Baccari–Trad condition holds at x∗. To see that CCP2 fails, it is enough to compute the
cones C W (x, x∗) around x∗. By direct calculations, C W (x∗, x∗) = R×{0} and C W (x, x∗) = {(0, 0)}, x1 �=
x∗1 , so KW

2 (x) = R+ × R− × Sym(2) for every x such that x1 �= x∗1 but, KW
2 (x∗) is a proper subset of

{0} × R− × Sym(2). Then, CCP2 fails.
To see that CCP2 does not imply the Baccari–Trad condition, it is enough to see that the MFCQ+WCR

condition implies CCP2 while not implying the Baccari–Trad condition, see Andreani et al. (2007,
counterexample 5.2).

The independence of CCP2 and the Baccari–Trad condition has interesting implications. Due to
Theorem 4.2, the Baccari–Trad condition is not enough to guarantee that a limit point of an AKKT2
sequence satisfies WSOC. See the next example.

Example 4.8 (AKKT2 under the Baccari–Trad condition does not imply WSOC) Consider the
optimization problem.

minimize f (x1, x2) = −2x2
1 subject to g1(x1, x2) = −x2 ≤ 0, g2(x1, x2) = x2

1 − x2 ≤ 0. (4.9)

By Example 4.7, the Baccari–Trad condition holds at x∗ = (0, 0). To show that x∗ is an AKKT2
point, choose xk

1 := 1/k, xk
2 := xk

1, μk
1 := 0, μk

2 := 0, θ k
2 := 2(xk

1)
−2, θ k

1 := 2θ k
2 and δk := 0. With these

multipliers, we have ∇f (xk)+ μk
1∇g1(xk)+ μk

2∇g2(xk)→ (0, 0) and

∇2L(xk , μk)+ θ k
1∇g1(x

k)∇g1(x
k)T + θ k

2∇g2(x
k)∇g2(x

k)T =
(

4 −2θ k
2 xk

2

−2θ k
2 xk

2 3θ k
2

)
,

where the last matrix is positive semidefinite. Also, by direct calculation we have that WSOC fails and
x∗ = (0, 0) is not an optimal solution. So, in this example, we have a point x∗ = (0, 0) that is not an optimal
solution and neither satisfies WSOC, but can be achieved by an AKKT2 sequence (perhaps, generated
by an augmented Lagrangian method or a regularized SQP method) and as a consequence accepted as a
candidate solution. This cannot happen if instead of the Baccari–Trad condition, we consider any other
constraint qualification that implies CCP2.

Another constraint qualification weaker than LICQ is the constant-rank constraint qualification
(CRCQ); cf. Janin (1984). Let us recall the definition of CRCQ. We say that a feasible point x∗ ∈ Ω

verifies CRCQ if there exists a neighborhood of x∗ in which the rank of any subset of the gradients of
equality and active inequality constraints does not change in a neighborhood. In Andreani et al. (2010b),
it was proved that under CRCQ, a local minimizer conforms to SSOC for every Lagrange multiplier.
A relaxed version of the CRCQ has been defined in Minchenko & Stakhovski (2011), called relaxed
CRCQ (RCRCQ), which also enjoys the same second-order property (Andreani et al., 2010b, 2012b).
In RCRCQ, fewer subsets should conform to the constant rank property, namely, subsets that include
gradients of every equality constraint. We will prove that RCRCQ is strictly stronger than CCP2. Let us
consider the following lemmas. The first is a result from the classical constant rank theorem from analysis
(cf. Spivak, 1965, Theorem 2.13).
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Lemma 4.9 Assume that the gradients {∇hi(y),∇gj(y) : i ∈ I , j ∈J } have locally constant rank for y
in a neighborhood of some x ∈ Rn. Then for each d ∈ Rn such that

〈∇hi(x), d〉 = 0 for i ∈ I and 〈∇gj(x), d〉 = 0 for j ∈J , (4.10)

there exists some curve t→ φ(t), t ∈ (−T , T), T > 0 twice differentiable such that φ(0) = x, φ′(0) = d
and for every i ∈ I and j ∈J we have hi(φ(t)) = hi(x) and gj(φ(t)) = gj(x) for all t ∈ (−T , T).

The next lemma is a variation of Caratheódory’s lemma.

Lemma 4.10 (Andreani et al., 2012b, Lemma 1) Suppose that v =∑i∈I αipi+∑j∈J βjqj with pi, qj ∈ Rn

for every i ∈ I , j ∈J , {pi}i∈I are linearly independent and αi, βj are nonzero for every i ∈ I , j ∈J .
Then there is a subset J

′ ⊂J and scalars α̂i, β̂j for all i ∈ I , j ∈J
′

such that

• v =∑i∈I α̂ipi +∑j∈J′ β̂jqj;

• for every j ∈J
′

we have βjβ̂j > 0;

• {pi, qj}i∈I ,j∈J′ is a linearly independent set.

A useful characterization of RCRCQ is given below.

Theorem 4.11 (Andreani et al., 2012b, Theorem 1) Let I ⊂ {1, . . . m} be an index set such that {∇hi(x) :
i ∈ I} is a linear basis for span{∇hi(x) : i ∈ {1, . . . , m}}. A feasible point x ∈ Ω satisfies RCRCQ if, and
only if, there is a neighborhood V of x such that

(a) {∇hi(y) : i ∈ {1, . . . , m}} has the same rank for every y ∈ V ;

(b) for every J ⊂ A(x), if the set {∇hi(x),∇gj(x) : i ∈ I , j ∈ J} is linearly dependent, then
{∇hi(y),∇gj(y) : i ∈ I , j ∈ J} is linearly dependent for every y ∈ V .

We are ready to prove the following.

Proposition 4.12 RCRCQ implies CCP2.

Proof. Let (w, W) be an element of lim sup KW
2 (x) when x → x∗. By definition of outer limit, we have

that there are sequences {xk}, {λk
i }, {μk

j } with μk
j = 0 for j /∈ A(x∗) and {Hk} such that xk → x∗,

wk :=
m∑

i=1

λk
i∇hi(x

k)+
∑

j∈A(x∗)
μk

j∇gj(x
k)→ w and Hk → W , (4.11)

where Hk �∑m
i=1 λk

i∇2hi(xk)+∑j∈A(x∗) μ
k
j∇2gj(xk) over C W (xk , x∗).

Take an index subset I ⊂ {1, . . . , m} such that the gradients {∇hi(x∗) : i ∈ I } form a linear basis for
the subspace generated by {∇hi(x∗) : i ∈ {1, . . . , m}}. From continuity {∇hi(xk) : i ∈ I } is linearly
independent for k large enough. By Theorem 4.11 item (a), we have that {∇hi(xk) : i ∈ I } is a linear
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A SECOND-ORDER SEQUENTIAL OPTIMALITY CONDITION 1919

basis for the subspace generated by {∇hi(xk) : i ∈ {1, . . . , m}}, for k sufficiently large. Then, there is a
sequence {λ̄k

i : i ∈ I } ⊂ R such that
∑m

i=1 λk
i∇hi(xk) =∑i∈I λ̄k

i∇hi(xk). So, we may write

wk =
∑
i∈I

λ̄k
i∇hi(x

k)+
∑

j∈A(x∗)
μk

j∇gj(x
k). (4.12)

Applying Lemma 4.10 to the expression above, we find a subset Jk ⊂ A(x∗) and multipliers λ̂k
i ∈ R, i ∈

I and μ̂k
j ∈ R+, j ∈Jk for k large enough such that

wk =
∑
i∈I

λ̂k
i∇hi(x

k)+
∑

j∈Jk

μ̂k
j∇gj(x

k), (4.13)

and {∇hi(xk),∇gj(xk) : i ∈ I , j ∈ Jk} is a linearly independent set. Since A(x∗) is a finite index
set, we may take J := Jk for an appropriate subsequence. By RCRCQ (Theorem 4.11, item (b),
we have that {∇hi(x∗),∇gj(x∗) : i ∈ I , j ∈ J } is a linearly independent set and as a consequence
{λ̂k

i , μ̂k
j : i ∈ I , j ∈ J }k∈N form a bounded sequence, so we can assume, without loss of generality,

that λ̂k
i → λi and μ̂k

j → μj. Taking the limit in (4.13) we get w =∑i∈I λi∇hi(x∗)+∑j∈J μj∇gj(x∗).

Define λ̂k
i = 0 for i /∈ I and μ̂k

j = 0 for j /∈ J for every k ∈ N; also define λi = 0 for i /∈ I

and μj = 0 for j /∈ J . Now we will prove that for every d ∈ C W (x∗) the following inequality holds:
H(d, d) ≤∑m

i=1 λi∇2hi(x∗)(d, d)+∑j∈A(x∗) μj∇2gj(x∗)(d, d).

Define for every k ∈ N, Λk
i := λk

i − λ̂k
i , Υ k

j := μk
j − μ̂k

j . From (4.13) and (4.11) we obtain

m∑
i=1

Λk
i∇hi(x

k)+
∑

j∈A(x∗)
Υ k

j ∇gj(x
k) = 0 for k ∈ N large enough. (4.14)

Take d ∈ C W (x∗). Since RCRCQ implies the WCR condition, we have that there is a sequence dk → d
such that dk ∈ C W (xk , x∗), given by Lemma 3.8. Thus

Hk(dk , dk) ≤
m∑

i=1

λk
i∇2hi(x

k)(dk , dk)+
∑

j∈A(x∗)
μk

j∇2gj(x
k)(dk , dk) (4.15)

≤
m∑

i=1

λ̂k
i∇2hi(x

k)(dk , dk)+
∑

j∈A(x∗)
μ̂k

j∇2gj(x
k)(dk , dk)+Ξ k , (4.16)

where

Ξ k :=
m∑

i=1

Λk
i∇2hi(x

k)(dk , dk)+
∑

j∈A(x∗)
Υ k

j ∇2gj(x
k)(dk , dk). (4.17)

By RCRCQ, we have that for k sufficiently large, xk has a neighborhood where the rank of
{∇hi(xk),∇gj(xk) : i ∈ {1, . . . , m}, j ∈ A(x∗)} is locally constant, so by Lemma 4.9, there is an arc
t → φk(t) for t ∈ (−Tk , Tk), Tk > 0 with φk(0) = xk , φ′k(0) = dk such that hi(φk(t)) = hi(xk) for
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1920 R. ANDREANI ET AL.

every i ∈ {1, . . . , m} and gj(φk(t)) = gj(xk) for every j ∈ A(x∗). Defining vk = φ′′k (0) and differentiating
hi(φk(t)) = hi(xk), i ∈ {1, . . . , m} and gj(φk(t)) = gj(xk), j ∈ A(x∗) twice at t = 0, we obtain

〈∇hi(x
k), vk〉 + ∇2hi(x

k)(dk , dk) = 0 for i ∈ {1, . . . , m}, (4.18)

〈∇gj(x
k), vk〉 + ∇2gj(x

k)(dk , dk) = 0 for j ∈ A(x∗). (4.19)

So, substituting the expressions (4.18) and (4.19) into (4.17) we get

Ξ k = −
m∑

i=1

Λk
i 〈∇hi(x

k), vk〉 −
∑

j∈A(x∗)
Υ k

j 〈∇gj(x
k), vk〉 (4.20)

= −
〈

m∑
i=1

Λk
i∇hi(x

k)+
∑

j∈A(x∗)
Υ k

j ∇gj(x
k), vk

〉
= 0, (4.21)

where in the last equality we have used (4.14). Now, since Ξ k = 0 for every k sufficiently large, we have
that (4.16) becomes

Hk(dk , dk) ≤
m∑

i=1

λ̂k
i∇2hi(x

k)(dk , dk)+
∑

j∈A(x∗)
μ̂k

j∇2gj(x
k)(dk , dk). (4.22)

Taking the limit in (4.22), the assertion is proved. �

Example 4.13 (RCRCQ is strictly stronger than CCP2)

In R2, consider x∗ = (0, 0) and the following equality and inequality constraints:

h1(x1, x2) = x1;

g1(x1, x2) = −x2
1 + x2;

g2(x1, x2) = −x2
1 + x3

2.

We have ∇h1(x1, x2) = (1, 0), ∇g2(x1, x2) = (−2x1, 1) and ∇g3(x1, x2) = (−2x1, 3x2
2). From this,

RCRCQ fails at x∗ = (0, 0). Now, since C W (x, x∗) = {0}, we get KW
2 (x) = R×R+ × Sym(2). Clearly,

KW
2 (x) is osc on R2.

Remark 4.14 We have just proved that CCP2 is a constraint qualification that yields WSOC at a local
minimizer, that is weaker than the joint condition MFCQ+WCR and weaker than RCRCQ; furthermore,
this condition is the minimal one to guarantee that every AKKT2 point fulfills WSOC, as proved in
Theorem 4.2. This improves second-order global convergence results of algorithms that generate AKKT2
sequences in the sense that only CCP2 could be assumed. Even the weaker result under RCRCQ was not
previously known. From the results presented above, it is possible to guarantee the global convergence
to second-order stationary points for every algorithm that generates AKKT2 sequences, even when the
set of Lagrange multipliers at the limit point is unbounded. This comes from the fact that the MFCQ
assumption can be dropped.
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A SECOND-ORDER SEQUENTIAL OPTIMALITY CONDITION 1921

Now, suppose that we want a condition that guarantees that every limit point of any AKKT2 sequence
fulfills not only WSOC but also the strong second-order condition, SSOC, even though, to the best of
our knowledge, no algorithm has been shown to converge to a point where the SSOC holds. With this
in mind we shall define the next constraint qualification in the spirit of Theorem 4.2, replacing WSOC
with SSOC. Our goal is to understand why algorithms are not expected to converge to a point fulfilling
SSOC.

Definition 4.15 We say that the strong CCP2 (SCCP2) holds at x∗ ∈ Ω if

lim sup
x→x∗

KW
2 (x) ⊂ KS

2 (x∗),

where KS
2 (x∗) is the cone associated to the critical cone C S(x∗, μ), that is, the cone

⋃
(λ,μ)∈Rm×R

p
+ ,

μj=0 for j/∈A(x∗)

{
(
∑m

i=1 λi∇hi(x∗)+∑j∈A(x∗) μj∇gj(x∗), H) such that
H �∑m

i=1 λi∇2hi(x∗)+∑j∈A(x∗) μj∇2gj(x∗) on C S(x∗, μ)

}
, (4.23)

where C S(x∗, μ) is the (strong) critical cone given by

C S(x∗, μ) :=
{

d ∈ Rn :
〈∇hi(x∗), d〉 = 0, i ∈ I , 〈∇gj(x∗), d〉 = 0, if μj > 0
〈∇gj(x∗), d〉 ≤ 0, if μ∗j = 0, j ∈ A(x∗)

}
. (4.24)

We note that the critical cone C S(x∗, μ) is well defined for every μ ≥ 0, and when μ is a Lagrange
multiplier (i.e., (2.4) holds for some λ) the critical cone coincides with the one defined in (2.7).

So, in this case, the multiplier is redundant and we write C S(x∗) instead of C S(x∗, μ). It is worth
noting that under the strict complementarity slackness condition (i.e., μ satisfies (2.4) and μj > 0 for all
j ∈ A(x∗)), both cones C S(x∗) and C W (x∗) coincide and SSOC is equivalent to WSOC.

We observe that SSOC holds at x∗ for problem (1.1) if and only if the pair (−∇f (x∗),−∇2f (x∗))
belongs to KS

2 (x∗). We also note that KS
2 (x∗) is a subset of KW

2 (x∗), due to C W (x∗) ⊂ C S(x∗, μ) for every
μ ≥ 0 and as a consequence the SCCP2 condition is stronger than CCP2.
Following the same reasoning as Theorem 4.2 we obtain the following theorem.

Theorem 4.16 Let x∗ ∈ Ω . Then, the conditions below are equivalent:

• SCCP2 holds at x∗;
• for every objective function f : Rn → R of problem (1.1) such that AKKT2 holds at x∗, the condition

SSOC holds at x∗.

The next example shows that SCCP2 is so strong that even in well-behaved problems where LICQ
holds, it may fail.

Example 4.17 (SCCP2 fails even for simple box constraints) Consider in Rn (n ≥ 0) the simple box
constraint Ω = {x ∈ Rn : x ≥ 0}. Then, SCCP2 fails at x∗ = 0 and CCP2 holds.
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LICQ

MFCQ+CRCQ

CRCQ

RCRCQ

MFCQ+WCR

CCP2

Strong CCP2

Fig. 1. Relationship of CQs associated with second-order global convergence of algorithms.

Clearly the set Ω is defined by the inequality constraints gj(x) = −xj for j = {1, . . . , n}. Now we
will calculate the weak cone KW

2 (x). Thus, we have to calculate the cone C W given by (4.1); in fact,
C W (x, x∗) := {d ∈ Rn : 〈∇gi(x), d〉 = 0 for all i ∈ A(x∗) = {1, . . . , n}}. Since x∗ = 0, the set of
active indexes A(x∗) is {1, . . . , n}. Using the fact that for all x ∈ Rn, ∇gi(x) = −ei and ∇2gi(x) = 0
independently of i, we have that C W (x, x∗) = {0}, and as a consequence the weak cone

KW
2 (x) =

⎧⎨
⎩
⎛
⎝ ∑

j∈A(x∗)
−μjej, H

⎞
⎠ : H � 0 on C W (x, x∗) = {0}, μj ≥ 0

⎫⎬
⎭

is equal to Rn
− × Sym(n) independently of x. Thus KW

2 is osc at x∗ and CCP2 holds. Furthermore,
since lim supx→x∗ KW

2 (x) = Rm
− × Sym(n), to prove that SCCP2 does not hold it is sufficient to find a

vector μ̂ ∈ Rn
+ and a symmetric matrix H such that H(w, w) := wTHw > 0 for some w ∈ C S(x∗, μ̂),

because in this case, the pair (−μ̂, H) ∈ KW
2 (x) = Rm

− ×Sym(n) but (−μ̂, H) does not belong to KS
2 (x∗).

Choose μ̂ := e − e1 and H := e1eT
1 . From the definition of the strong critical cone C S(x∗, μ̂), we have

that e1 ∈ C S(x∗, μ̂) and from the definition of the matrix H, H(e1, e1) = ‖〈e1, e1〉‖2 > 0. Thus the pair
(−μ̂, H) belongs to lim supx→x∗ KW

2 (x) = Rn
−×Sym(n) but it does not belong to the critical cone KS

2 (x∗).
Despite the strength of SCCP2, the next example shows that SCCP2 may hold for problems where

LICQ fails.

Example 4.18 (SCCP2 does not imply LICQ) Consider in R, the point x∗ = 0 and the inequality
constraints given by g1(x) = − exp(x)+ 1 and g2(x) = x. Then, SCCP2 holds at x∗ = 0 and LICQ fails.

First, we note that x∗ = 0 is a feasible point with A(x∗) = {1, 2}. From the definition of g1 and g2 we
have ∇g1(x) = − exp(x), ∇2g1(x) = − exp(x), ∇g2(x) = 1 and ∇2g2(x) = 0. Thus, C W (x, x∗) = {0}
and C S(x∗, μ) = {0} for all μ ∈ R2

+, so KW (x) = R × Sym(1) = KS(x∗) for all x ∈ R, which implies
the SCCP2 holds. On the other hand, clearly, LICQ fails.

In Fig. 1, we show the relationships among the constraint qualifications discussed in this article.

5. Algorithms that generate AKKT2 points

In this section, we show several algorithms in the literature that generate sequences whose limit points
satisfy the sequential second-order optimality condition AKKT2. Besides the augmented Lagrangian
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A SECOND-ORDER SEQUENTIAL OPTIMALITY CONDITION 1923

algorithm of Andreani et al. (2010a), we will show that the regularized SQP of Gill et al. (2013) and the
trust region method of Dennis & Vicente (1997) generate AKKT2 sequences.

For each of the aforementioned algorithms, we will use the same notation as the original paper, in
order to facilitate the verification.

5.1 Regularized sequential quadratic programming with second-order global convergence

Sequential quadratic programming (SQP) methods are a popular class of methods for nonlinear con-
strained optimization, particularly effective for solving problems arising, for example, from mixed-integer
nonlinear programming and PDE-constrained optimization. Due to some theoretical and numerical dif-
ficulties associated with ill-posed or degenerate nonlinear optimization problems, two types of SQP
methods were designed: regularized and stabilized SQP; see Izmailov & Solodov (2012); Gill & Robin-
son (2013). Gill et al. (2013) extended the regularized SQP method of Gill & Robinson (2013) to allow
convergence to points satisfying the WSOC condition under the constraint qualification MFCQ+WCR.
See also Kungurtsev (2013) and Gill et al. (2017).

Let us show that the method proposed by Gill et al. (2013) generates sequences that satisfy the
sequential second-order optimality condition AKKT2. The problem analysed is

minimize f (x) subject to c(x) = 0, x ≥ 0, (5.1)

where c : Rn → Rm and f : Rn → R are twice continuously differentiable functions. To simplify
the analysis in this subsection, we will use the same notation as Gill et al. (2013). Let H(x, λ) :=
∇2f (x) −∑ λi∇2ci(x), J(x)T be the matrix whose rows are the gradients of ci(x) for all i = 1, . . . , m.
Note that if we define h(x) = c(x) and g(x) = −x, the symmetric matrix H(x, λ) coincides with the
Hessian of the Lagrangian L(x, λ, μ) = f (x) +∑ λihi(x) +∑μjgj(x). Define the residual r(x, λ) :=
‖(c(x), min(x,∇f (x) − J(x)λ))‖. For a feasible point x∗, the perturbed weak critical cone

∼
C (x) =

{d : J(x)Td = 0, dj = 0 for j ∈ A(x∗)}. Given positive scalar γ and εa ∈ (0, 1), the ε-active set is
defined as Aε(x, λ, μ) = {i : xi ≤ ε, with ε = min(εa, max(μ, r(x, λ)γ ))}. The ε-free set is defined
as Fε(x, λ, μ) := {1, . . . , n}�Aε(x, λ, μ). The proposed algorithm in Gill et al. (2013) is based on the
first-order primal–dual SQP method of Gill & Robinson (2013). The line-search direction is augmented
by a direction of negative curvature that facilitates convergence to points that satisfy the second-order
necessary conditions for optimality and it is based on the properties of the primal–dual augmented
Lagrangian function

M(x, λ; λE , μ) = f (x)− c(x)TλE + 1

2μ
‖c(x)‖2 + ν

2μ
‖c(x)+ μ(λ− λE)‖2,

where ν is a non-negative scalar, μ is a positive penalty parameter and λE is an estimate of a Lagrangian
multiplier. The matrix B(x, λ; μ) denotes the approximation of∇2M given by Gill et al. (2013), expression
(2.1). The matrix B̂(x, λ; μ) is a positive-definite matrix equal to B(x, λ; μ) when B(x, λ; μ) is sufficiently
positive definite, otherwise it takes a specific form (see Gill et al., 2013, expression (2.3)) that depends
on a matrix Ĥ(x, λ) such that Ĥ(x, λ) + μ−1J(x)J(x)T is positive definite; cf. Gill & Robinson (2013),
Theorem 4.5.

For the remainder of the discussion, it is assumed that ν is a fixed positive scalar parameter. The
algorithm generates a sequence {vk} where vk = (xk , λk) is the kth estimate of a primal–dual solution of
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problem (5.1). Each iterate can be classified as V-, O-, M- or F-iterates (see Gill et al., 2013, Algorithm 3),
where the union of index sets of V-, O- and M-iterates is always infinite (Gill et al., 2013, Theorem
3.2). Numerical experiments indicate that M-iterates occur infrequently relative to the total number of
iterations. We give a summary of (Gill et al., 2013, Algorithm 3) in Algorithm 2.

Algorithm 2 (Gill et al., 2013, Algorithm summary)
The computation associated with the kth iteration may be arranged into five main steps.

1. Given (xk , λk) and the regularization parameter μR
k−1 from the previous iteration, define

Fε(xk , λk , μR
k−1) and B(xk , λk; μR

k−1). Compute the positive-definite matrix B̂(xk , λk; μR
k−1) together

with a non-negative scalar ε
(1)

k and vector sk such that if ε
(1)

k > 0, then (−ε
(1)

k , sk) approximates the
most negative eigenpair of B(xk , λk; μR

k−1) (see Gill et al., 2013, Section 2.1).

2. Use ε
(1)

k and r(xk , λk) to define values of λE
k and μR

k for the kth iteration (see Gill et al., 2013, Section
2.2).

3. Define a descent direction dk = (pk , qk) by solving a convex bound-constrained subproblem with
Hessian B(xk , λk; μR

k−1) and gradient ∇M(xk , λk; μR
k ). The primal part of dk satisfies xk + pk ≥ 0

(see Gill et al., 2013, Section 2.3).

4. Compute a direction of negative curvature sk = (uk , wk) by rescaling the direction sk . The primal
part of sk satisfies xk + pk + uk ≥ 0 (see Gill et al., 2013, Section 2.3).

5. Perform a flexible line search along the vector �vk = sk + dk = (pk + uk , qk + wk) (see Gill et al.,
2013, Section 2.4). Update the line-search penalty parameter.

They used the following standard assumptions: (i) the sequence of matrices {Ĥ(xk , λk)}k∈N is
bounded by a positive constant and the sequence of lowest eigenvalue of Ĥ(xk , λk) + (1/μR

k )J(xk)

J(xk)T is bounded below by a positive constant and (ii) the sequence {xk} is contained in a compact
set.

To show that the method generates AKKT2 sequences let us take a closer look at (Gill et al., 2013,
proof of Theorem 3.4). Let {vk = (xk , λk)} be the sequence generated by Algorithm 3 of Gill et al. (2013)
and suppose that the algorithm generates infinitely many V- or O-iterates. Let {(xk , λk)} be a sequence
such that every iterate is a V- or O-iterate and x∗ be a limit point of {xk}. So we have, from Algorithm 3 of
Gill et al. (2013), since the quantities φmax

V and φmax
O are positive bounds that are reduced by half during

the solution process (see Gill et al. (2013), (2.10)–(2.11)), that

max
(
‖c(xk)‖, ‖min(xk ,∇f (xk)− J(xk)λk)‖, ε(1)

k

)
→ 0. (5.2)

From (5.2), we have that x∗ is feasible and from ‖min(xk ,∇f (xk)− J(xk)λk)‖ → 0 we deduce that (3.1)
from the definition of AKKT2 holds. Now, we will prove that (3.2) also holds. From the expressions Gill
et al. (2013), (3.25) and Gill et al. (2013), (2.6) we deduce that

(
H(xk , λk)+ 1

μR
k−1

JkJT
k

)
(v, v) ≥ −1

θ
ε

(1)

k ‖v‖2
2 for all v ∈ ∼C (xk),
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for some scalar θ independent of xk and λk . By (5.2), ε
(1)

k → 0. Now using Lemma 2.1 with

P = H(xk , λk)+ 1
μR

k−1
JkJT

k + ( 1
θ
ε

(1)

k + 1
k )I and C as

∼
C (xk), we can conclude that

H(xk , λk)+ 1

μR
k−1

JkJT
k +

(
1

θ
ε

(1)

k +
1

k

)
I+

∑
j∈A(x∗)

θ k
j ∇gj∇gT

j � 0,

for some non-negative scalars {θ k
j : j ∈ A(x∗)}, or equivalently,

∇2
x L(xk , λk , μk)+ 1

μR
k−1

m∑
i=1

∇hi(x
k)∇hT

i (xk)+
∑

j∈A(x∗)
θ k

j ∇gj∇gT
j � −δkI,

where δk := ( 1
θ
ε

(1)

k + 1
k ). Since δk → 0, we get that x∗ is an AKKT2 point.

5.2 Trust-region methods with second-order global convergence

Now we will proceed to show that the following trust-region-based algorithm generates AKKT2
sequences. The algorithm is the one proposed by Dennis & Vicente (1997), which is an extension of
the work of Dennis et al. (1997). They only consider equality constraints

minimize f (x) subject to C(x) = 0.

We use the same notation as Dennis & Vicente (1997). Let C : Rn → Rm (m < n), C = (c1, . . . , cm)T be
a twice-differentiable function. Each iterate of the method is denoted by xk . Let Wk be a matrix such that
its columns form a basis of Ker∇C(xk)T. Let Hk be an approximation to ∇2�(xk , μk), Ĥk = WT

k HkWk

and ĝk = WT
k ∇qk(sn

k), qk a quadratic model of �(x, μ) = f (x) + 〈λ, h(x)〉 at (xk , λk) and sn
k is called

the quasi-normal component of the sk step of the method. See Dennis & Vicente (1997), Section 2. The
general trust-region algorithm is given by Algorithm 3.

Let Ω̂ be an open set of Rn. Suppose that for all the iterations, xk and xk + sk are in Ω̂ . Let us consider
the following general assumptions.

H.1 Functions f , C are twice continuously differentiable in Ω̂ .

H.2 The gradient matrix ∇C(x) has full column rank for all x ∈ Ω̂ .

H.3 Functions f ,∇f ,∇2f , C,∇C,∇2ci, i= 1, . . . , m are bounded in Ω̂ . The matrix defined by
(∇C(x)T∇C(x))−1 is bounded below by a positive constant over Ω̂ .

H.4 Sequences {Wk}, {Hk} and {λk} are bounded.

H.5 The Hessian approximation Hk is exact, that is, Hk = ∇2
xx�k , and ∇2f and ∇2ci, i = 1, . . . , m are

Lipschitz continuous in Ω̂ .

Now, we will prove that the method generates AKKT2 sequences when the Lagrange multipliers are
updated in a consistent way (Dennis & Vicente, 1997, (4.7)). First, we will prove that (3.2) from the
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Algorithm 3 (Dennis & Vicente, 1997, ALGORITHM 2.1 general trust-region algorithm)

1. Choose x0, δ0, λ0, H0 and W0. Set ρ−1 ≥ 1. Choose α1, η1, δmin, δmax, ρ̄ and r such that 0 < α1, η1 <

1, 0 < δmin ≤ δmax, ρ̄ > 0 and r ∈ (0, 1).

2. For k = 0, 1, 2, . . . do

(a) If ‖WT
k ∇�(xk , λk)‖+ ‖C(xk)‖+ γk = 0 where γk is given by (Dennis & Vicente, 1997, (2.10)),

stop the algorithm and use xk as solution.

(b) Set sn
k = st

k = 0.
If C(xk) �= 0 then compute sn

k satisfying (Dennis & Vicente, 1997, (2.1),(2.2),(2.3)) and ‖sn
k‖ ≤

rδk .
If ‖WT

k ∇�(xk , λk)‖ + γk �= 0 then compute s̄t
k satisfying (Dennis & Vicente, 1997, (2.6)).

Set sk = sn
k + st

k = sn
k +Wks̄t

k .

(c) Compute λk+1 satisfying (Dennis & Vicente, 1997, (2.8)).

(d) Compute pred(sk , ρk−1). See (Dennis & Vicente, 1997, Algorithm 2.1 (general trust-region
algorithm). Item 2.4).

(e) If ared(sk , ρk)/pred(sk , ρk) < η1, set δk+1 = α1‖sk‖ and reject sk . Otherwise accept sk and
choose δk+1 such that max{δmin, δk} ≤ δk+1 ≤ δmax.

(f) If sk was rejected set xk+1 = xk and λk+1 = λk . Otherwise xk+1 = xk + sk and λk+1 = λk +�λk ,
with ‖�λk‖ ≤ κ3δk .

definition of AKKT2 holds for {λk} satisfying only Dennis & Vicente (1997), (2.8). From the Karush–
Kuhn–Tucker conditions there exists a γk ≥ 0 (Dennis & Vicente, 1997, (2.10)), such that

Ĥk + γkWT
k Wk is positive semidefinite,

(Ĥk + γkWT
k Wk)s̄k = −ḡk ,

γk(δ̄k − ‖Wks̄k‖) = 0. (5.3)

Furthermore, since Ĥk + γkWT
k Wk = WT

k (Hk + γkI)Wk is positive semidefinite and Wk is a matrix whose
columns form a basis of Ker∇C(xk)T, we have by Lemma 2.1 that there are ηk

i ≥ 0, i = 1, . . . , m such
that

Hk +
m∑

i=1

ηk
i∇ci(x

k)∇ci(x
k)T +

(
γk + 1

k

)
I � 0. (5.4)

By Dennis & Vicente (1997), Theorem 3.10, lim inf(‖WT
k ∇�(xk , λk)‖+‖C(xk)‖+γk) = 0. Now, assume

that x∗ is a limit point of {xk}. Taking an adequate subsequence we may assume that xk → x∗ for some
x∗ ∈ Rn,

γk → 0, ‖C(xk)‖ → 0 and ‖WT
k ∇x�(x

k , λk)‖ → 0. (5.5)
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From γk → 0 and (5.4), (3.2) holds. To prove that (3.1) is fulfilled we choose the Lagrange multipliers
λk as (Dennis & Vicente, 1997, Lemma 4.2), that is , λk = −(∇C(xk)T∇C(xk))−1∇CT

k ∇f (xk). Now, for
each k, we decompose ∇x�(xk , λk) as

∇x�(x
k , λk) = Wkuk + ∇C(xk)vk , (5.6)

where Wkuk is in Ker(∇C(xk)T) and∇C(xk)vk belongs to Ker(∇C(xk)T)⊥ = Im(∇C(xk)) for some uk , vk .
Multipliying the expression (5.6) by (uk)TWT

k and using lim ‖WT
k ∇x�(xk , λk)‖ = 0, we have that Wkuk →

0. Now, we proceed to multiply (5.6) by∇C(xk)T and use the existence of the inverse (∇C(xk)T∇C(xk))−1

to get vk = (∇C(x)T∇C(x))−1∇CT
k ∇f (xk) + λk = 0. So, from (5.6), we get ∇x�(xk , λk) = Wkuk → 0

and (3.1) holds. Finally, from ‖C(xk)‖ → 0 we get that x∗ is feasible. Thus, x∗ is an AKKT2 point as we
wanted to show.

Other trust-region-based algorithms, such as Dennis et al. (1997); El-Alem (1996), also generate
AKKT2 sequences.

6. Final remarks

Over the years, several algorithms with convergence to second-order stationary points have been proposed
in the literature. Their global convergence is guaranteed by using strong constraint qualification, as LICQ
or MFCQ+WCR, which imply boundedness of the set of Lagrange multipliers. Guided by the necessity
of explaining some observed aspects of these methods, we took a closer look into their stopping criteria
and the associated sequential second-order optimality condition AKKT2. We were able to prove second-
order global convergence of such algorithms under CCP2, a constraint qualification that is weaker than
both MFCQ+WCR and RCRCQ. In particular, it does not imply boundedness of the set of Lagrange
multipliers. This framework also gives a tool to prove second-order global convergence results of other
second-order algorithms under CCP2. In this sense, we believe that AKKT2 can play a unifying role in the
global convergence analysis of second-order algorithms in the same way that AKKT does for first-order
methods.
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