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Abstract
Bilevel problems model instances with a hierarchical structure. Aiming at an efficient
solution of a constrained multiobjective problem according with some pre-defined
criterion, we reformulate this semivectorial bilevel optimization problem as a clas-
sic bilevel one. This reformulation intents to encompass all the objectives, so that the
properly efficient solution set is recovered by means of a convenient weighted-sum
scalarization approach. Inexact restoration strategies potentially take advantage of
the structure of the problem under consideration, being employed as an alternative to
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Pesquisa do Estado de São Paulo – FAPESP (grants 2013/05475-7 and 2013/07375-0) and Conselho
Nacional de Desenvolvimento Cientı́fico e Tecnológico – CNPq (grants 303013/2013-3 and
302915/2016-8).

� Sandra A. Santos
sandra@ime.unicamp.br

Roberto Andreani
andreani@ime.unicamp.br

Viviana A. Ramirez
viviana.ramirez@crub.uncoma.edu.ar

Leonardo D. Secchin
leonardo.secchin@ufes.br

1 Institute of Mathematics, University of Campinas, Rua Sergio Buarque de Holanda, 651,
Campinas, 13083-859, São Paulo, Brazil

2 Academic Regional Center of Bariloche, National University of Comahue, Quintral 1250,
San Carlos de Bariloche, Rio Negro, Argentina

3 Department of Applied Mathematics, Federal University of Espı́rito Santo, Rodovia BR 101,
Km 60, 29932-540, São Mateus, Espı́rito Santo, Brazil

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-018-0576-1&domain=pdf
http://orcid.org/0000-0002-6250-0137
mailto: sandra@ime.unicamp.br
mailto: andreani@ime.unicamp.br
mailto: viviana.ramirez@crub.uncoma.edu.ar
mailto: leonardo.secchin@ufes.br


Numer Algor

the Karush-Kuhn-Tucker reformulation of the bilevel problem. Genuine multiobjec-
tive problems possess inequality constraints in their modeling, and these constraints
generate theoretical and practical difficulties to our lower level problem. We han-
dle these difficulties by means of a perturbation strategy, providing the convergence
analysis, together with enlightening examples and illustrative numerical tests.

Keywords Bilevel optimization · Inexact restoration · Multiobjective optimization ·
KKT reformulation · Numerical experiments

Mathematics Subject Classification (2010) 90C29 · 65K05 · 49M37

1 Introduction

This work addresses a bilevel mathematical programming problem in which the lower
level problem is a multiobjective one, the so-called semivectorial bilevel optimization
problem (cf. [4, 5]). An example that models this situation is as follows: given a
certain decision, that one considers as acceptable, what is the closest and feasible
decision that takes into consideration other objectives, also of interest? The general
problem is formulated below

min F(x) such that x belongs to the set of efficient solutions of problem MOP (1)

where MOP is the following multiobjective problem

min {f1(x), . . . , fp(x)}
s.t. h(x) = 0

g(x) ≤ 0
x ∈ X.

(2)

We assume that X ⊂ R
n is compact, F : Rn → R, fi : Rn → R, i = 1, . . . , p,

h : Rn → R
m and g : Rn → R

q are twice continuously differentiable functions.
As (1)–(2) do not have the classic mathematical programming problem format,

we start by considering a weighted-sum scalarization problem associated with (2) as
follows. Given wi ≥ 0, i = 1, . . . , p, such that

∑p

i=1 wi = 1, let

min
x

∑p

i=1 wifi(x)

s.t. h(x) = 0
g(x) ≤ 0
x ∈ X.

(3)

Notice that the set of weak Pareto optimal solutions of problem (2) equals the
union of the set of optimal solutions problem (3) for w ∈ R

p such that
∑p

i=1 wi = 1
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and wi ≥ 0 for all i (see, e.g. [10]). Hence, the following problem can be used to
replace (1)–(2)

min
x,w

F (x)

s.t.
∑p

i=1 wi = 1
wi ≥ 0, i = 1, . . . , p

x ∈ argmin

⎧
⎪⎪⎨

⎪⎪⎩

min
∑p

i=1 wifi(x)

s.t. h(x) = 0
g(x) ≤ 0
x ∈ X.

⎫
⎪⎪⎬

⎪⎪⎭

(4)

For ensuring that all the objectives play some role in the optimization process, we
consider positive lower bounds εi , i = 1, . . . , p for the weights. In the literature, such
solutions are related to the concept of properly efficient solutions, a nomenclature
that dates back to Kuhn and Tucker [20] and Geoffrion [16] (see also [2, 6]).

This notion eliminates efficient points of anomalous type, in which a small gain
for one function provides a large loss for another. Moreover, for any fixed w > 0,
local solutions of (3) are locally properly efficient points of (2) [16, Corollaries 5
and 7]. Reciprocally, in case all the functions fi are convex and the feasible set of
problem (2) is convex, then any properly efficient point of (2), in Geoffrion’s sense,
is a global solution of (3) for some w > 0 [16, Theorem 2].

Such a discussion motivates the reformulation we are actually considering for
addressing problem (1)–(2), as follows

min
w,x

F (x)

s.t.
∑p

i=1 wi = 1
wi ≥ εi, i = 1, . . . , p

x ∈ argmin

⎧
⎪⎪⎨

⎪⎪⎩

min
∑p

i=1 wifi(x)

s.t. h(x) = 0
g(x) ≤ 0
x ∈ X.

⎫
⎪⎪⎬

⎪⎪⎭

(5)

A well-known strategy for addressing problem (5) is to replace its lower level
problem by the associate Karush-Kuhn-Tucker (KKT) conditions. This strategy, how-
ever, does not take into account the minimization structure inherent to the lower level
problem. Alternatively, we have adopted an Inexact Restoration (IR)-based strategy
in which the optimization problem is addressed in two phases, first pursuing feasibil-
ity and then optimality, keeping a certain control on the feasibility already achieved.
Consequently, our approach takes advantage of the intrinsic minimization structure
of the problem, particularly at the feasibility phase, so that better solutions might
be expected. Moreover, at the feasibility phase of the IR strategy, the user is free
to adopt the method of his choice, as long as the restored iterates fulfill some mild
assumptions [21, 22].

Concerning the resolution of the original bilevel problem (1)–(2) by its weighted
reformulation (5), when, for a given vector of weights, problem (3) is convex, it is
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well-known that the KKT conditions are sufficient for its optimality. Thus, we can
expect, in such a case, that an optimization algorithm applied to (3) always recover
properly efficient solutions of problem (2) (at least if a constraint qualification holds).
In the general case, only global solutions of the weighted problem (3) are guaranteed
to be properly efficient solutions of (2) [16]. Thus, optimization algorithms may fail
to get efficient solutions of (2) when they converge to a nonglobal stationary point of
the weighted problem. In this sense, we reinforce that IR strategies can benefit from
treating the lower level weighted problem directly, without reformulating it, because
in this case, algorithms have more chances to reach global solutions (for instance,
when they use second order information as sequential quadratic programming tech-
niques do). Nevertheless, except for convex problems, global optimal solutions are
not ensured. In the worst case, the IR strategy is likely to obtain local solutions [24],
and hence, properly local efficient solutions [17], whereas the KKT strategy does not
distinguish minimizers from maximizers.

One should also notice that, at the optimality phase of the IR strategy, the
KKT reformulation takes place as an auxiliary tool. The KKT reformulation of the
lower level problem within the bilevel context, on the other hand, is a basic tool
for addressing the problem, as it is the IR strategy. Along this perspective, it is
worth mentioning a software environment for solving bilevel problems using inexact
restoration, presented in [25].

The optimization over efficient sets has been previously analyzed, but mainly con-
sidering linear optimization, linear bilevel problems, and multicriteria optimization
with polyhedral feasible sets. Benson [3] has studied the problem of optimizing a lin-
ear function over the set of efficient solutions for a vector optimization problem. The
linear objective function measures the importance of, or discriminates, the efficient
alternatives that are available. He established necessary and sufficient conditions for
efficient and for arbitrary solutions of the underlying vector optimization problem
to be optimal solutions for the problem upon analysis. By taking advantage of the
equivalence between efficient points and optimal solutions of a linear programming
problem, Fülöp [12] pointed out that a pure linear bilevel problem might be addressed
instead. In the general nonlinear case, a similar equivalence is not expected. A related
and recent work is [8], in which the authors have addressed linearly equality con-
strained and bound constrained multiobjective instances in the lower level by means
of a flexible IR strategy.

In preliminary numerical results involving multiobjective problems with inequal-
ity constraints, we have observed that algorithms applied to the lower level problem
might get trapped at undesired boundary points. Despite being legitimate KKT
points, and strong regular points of the MPEC reformulation, these points belong to
an active inequality constraint, with associate positive multiplier. Example 2 exhibits
a typical situation. As inequality constrained problems are usually present in gen-
eral multiobjective problems, and motivated by this potential inconvenient, we have
devised an IR strategy in which the inequality constraints of the lower level problem
are perturbed. The associated convergence analysis is provided, together with a set
of illustrative numerical results.

The text is organized as follows. In Section 2, we provide an overview of the
IR strategy employed in this work, with examples that highlight our contributions.
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The convergence analysis is provided in Section 3. Section 4 contains the numerical
results, and in Section 5, we present final remarks and future work. The test problems
are described in the Appendix.

Notation. The symbols ‖ · ‖, ‖ · ‖∞ and | · | denote, respectively, the Euclidean, the
supremum and an arbitrary norm. We also use the notation R

n+ = {x ∈ R
n | xi ≥ 0}.

2 Inexact restoration for bilevel programming

For the sake of simplicity, in this section, we deal with the problem as follows:

P: min
x

F (x)

s.t. x ∈ X ∗

where F : R
n → R and X ∗ is the set of efficient solutions of the lower level

multiobjective problem:

min {f1(x), . . . , fp(x)}
s.t. h(x) = 0

0 ≤ x ∈ X

with f1, . . . , fp : Rn → R and h : Rn → R
m. We assume that all functions are

twice continuously differentiable.
Given tolerances εi ∈ (0, 1), i = 1, . . . , p, we can state P as follows:

min
w,x

F (x)

s.t. w ∈ W

x ∈ argmin

⎧
⎨

⎩

min
x

∑p

i=1 wifi(x)

s.t. h(x) = 0
0 ≤ x ∈ X

⎫
⎬

⎭

(6)

where

W =
{

w ∈ R
p |

p∑

i=1

wi = 1, εi ≤ wi ≤ 1 − εi, i = 1, . . . , p

}

.

Note that W is a convex and compact set. Here, we have X ≡ R
n, so that x ∈ X

trivially holds. Nevertheless, such a pertinence is kept because, in the general case, a
bounding compact set X is required. We emphasize that the feasible set of the lower
level problem of (6) was described with nonlinear equalities and simple nonegative
variables for simplifying the presentation. Compared with the feasible set of prob-
lem (2), one might assume that slack variables were added to the nonlinear inequality
constraints, and all variables are nonnegative, so that the technicalities of dealing
with some free variables and the associated cumbersome notation are avoided.
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We define the following:

C(w, x, μ, γ ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∑p

i=1 wi∇xfi(x) + ∇xh(x)μ − γ

h(x)

γ1x1
...

γnxn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
2n+m (7)

as in [1], where (μ, γ ) ∈ � ⊂ R
m × R

n+. The KKT conditions for the lower level
problem, parametrized in w, are as follows:

C(w, x, μ, γ ) = 0, 0 ≤ x ∈ X, γ ≥ 0 (8)

(thus, � plays the role of the set of multipliers for this parametrized problem, which
in principle, can be taken as Rm × R

n+). We also define the following:

L(w, x, μ, γ, λ) = F(x) + C(w, x, μ, γ )T λ

for λ ∈ R
2n+m. We write shortly s = (w, x, μ, γ ) ∈ W × X × �, and the Jacobian

of C is given by the following:

C′(s) =

⎡

⎢
⎢
⎢
⎢
⎣

∇xf1 · · · ∇xfp

∑p

i=1 wi∇2
xxfi +∑m

i=1 μi∇2
xxhi ∇h −In

0 · · · 0 ∇hT 0 0

0 · · · 0 diag(γ ) 0 diag(x)

⎤

⎥
⎥
⎥
⎥
⎦

.

(9)
In the following, we adapt the inexact restoration method presented in [1] to our

purposes. The parameters η > 0, M > 0, θ−1 ∈ (0, 1), δmin > 0, τ1 > 0, τ2 > 0
are given, as well as initial approximations s0 ∈ W × X × �, λ0 ∈ R

2n+m, and a
sequence {ωk} such that

∑∞
k=0 ωk < ∞.

The steps for obtaining sk+1 = (wk+1, xk+1, μk+1, γ k+1) and λk+1 are as
follows.

An interesting issue in multiobjective optimization is the effect that constraints
may have on the efficient set of a problem. Contrary to what we can expect, the
efficient set of a constrained multiobjective problem

min{f1(x), . . . , fp(x)} s.t. x ∈ X

is not necessarily composed only by the efficient points of the unconstrained problem

min{f1(x), . . . , fp(x)}
that lies in the feasible region X. There may be additional efficient points at the
border of X. In fact, a border point such that all non-ascending paths for all objective
fi are infeasible is efficient (see Fig. 1). The next example illustrates an instance for
which the optimal solution of the bilevel problem (1) is located at the border of the
lower level feasible set. It is based on a problem of [27], where the authors have not
addressed this issue, missing efficient points from their analysis.
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Algorithm 1 Inexact restoration

1 Define θmin
k = min{1, θk−1, . . . , θ−1}, θ large

k = min{1, θmin
k +ωk} and θk,−1 = θ

large
k .

2 (Restoration phase) Find an approximate minimizer x and multipliers (μ, γ ) ∈ �

for the problem
min

x

∑p

i=1 wk
i fi(x)

s.t. h(x) = 0
0 ≤ x ∈ X,

and define zk = (wk, x, μ, γ ).
3 (Tangent direction) Compute

dk
tan = Pk[zk − η∇sL(zk, λk)] − zk

where Pk[·] is the orthogonal projection on

πk = {s ∈ W × X × � | C′(zk)(s − zk) = 0}.
Pk[zk − η∇sL(zk, λk)] is a solution of the problem

min
y∈W×X×�

1

2

∥
∥
∥y − [zk − η∇sL(zk, λk)]

∥
∥
∥

2

s.t. C′(zk)(y − zk) = 0

(this solution is unique if X and � are convex). If zk = sk and dk
tan = 0 stop and

return xk as a solution of P. Otherwise, set i ← 0, and choose δk,0 ≥ δmin.
4 (Minimization phase) If dk

tan = 0 take vk,i = zk . Otherwise, take t
k,i
break =

min{1, δk,i/‖dk
tan‖} and find vk,i ∈ πk such that, for some 0 < t ≤ t

k,i
break, we have

L(vk,i , λk) ≤ max{L(zk + tdk
tan, λ

k), L(zk, λk) − τ1δk,i , L(zk, λk) − τ2}
with γ ≥ 0 (γ of vk,i) and ‖vk,i − zk‖∞ ≤ δk,i .

5 If dk
tan = 0 define λk,i = λk . Otherwise, take λk,i ∈ R

2n+m such that |λk,i | ≤ M .
6 For all θ ∈ [0, 1] define

Predk,i(θ) = θ
[
L(sk, λk) − L(vk,i , λk) − C(zk)T (λk,i − λk)

]+
(1 − θ)

[‖C(sk)‖ − ‖C(zk)‖] .

Take θk,i as the maximum θ ∈ [0, θk,i−1] that satisfies

Predk,i (θ) ≥ 1

2

[
‖C(sk)‖ − ‖C(zk)‖

]
,

and define Predk,i = Predk,i (θk,i ).
7 Calculate

Aredk,i = θk,i

[
L(sk, λk) − L(vk,i , λk,i)

]
+ (1 − θk,i)

[
‖C(sk)‖ − ‖C(vk,i)‖

]
.

If
Aredk,i ≥ 0.1Predk,i

set
sk+1 = vk,i , λk+1 = λk,i , θk = θk,i , δk = δk,i ,

Aredk = Aredk,i , Predk = Predk,i

and finish the current kth iteration.
Otherwise, choose δk,i+1 ∈ [0.1δk,i , 0.9δk,i], set i ← i + 1 and go to step 4.
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Example 1 Let us consider the nonconvex constrained multiobjective problem F3
of [27] as follows:

min {(x̃1 − 2)2 + (x̃2 − 1)2 + 2, 9x̃1 − (x̃2 − 1)2}
s.t. x̃2

1 + x̃2
2 ≤ 225

x̃1 − 3x̃2 ≤ −10.

The search space adopted by the authors is the box [−20, 20]2. In order to turn all
variables into nonnegative, we make the transformation xi = x̃i + 20, i = 1, 2, and
define the problem

min F(x1, x2) = (x1 − 20)2 + (x2 − 20)2

s.t. x ∈ X ∗,
(10)

where X ∗ is the set of efficient solutions of

min {(x1 − 22)2 + (x2 − 21)2 + 2, 9x1 − (x2 − 21)2 − 180}
s.t. (x1 − 20)2 + (x2 − 20)2 ≤ 225

x1 − 3x2 ≤ −50
0 ≤ x1, x2 ≤ 40.

(11)

In the interior of the feasible region, we analyze the slopes of the two objective func-
tions of (11) to conclude that the interval x1 = 17.5, 22.5 ≤ x2 ≤ 34.79 is efficient.
This interval corresponds to the intersection of the efficient set of the unconstrained
problem with the feasible region of (11), and the authors of [27] claim that it is the
entire efficient set of (11). However, there are other efficient points at the border of
feasible set. Geometrically, these points are those in which there is no feasible non-
ascending direction that decreases at least one objective function of (11) (see Fig. 1).
With a simple geometric argument, it is easy to see that x = (19, 23) is the opti-
mal solution of (10), for which F(x) = 10 and the associated vector of weights
w = (23/37, 14/37).

It is worth mentioning that, in our computational tests, the IR strategy was able
to reach the optimal solution x located at the border of the feasible set, whereas the
KKT reformulation does not converge (see the results of instance P1.1 in Section 4).

2.1 A perturbed inexact restoration strategy

We start this section with an example showing that Algorithm 1 can converge to
an undesirable feasible point of the multiobjective problem. The key to the failure
lies in the fact that, for certain weights, the restoration phase can return a (first-
order) solution that is undesirable for the upper level problem. Despite the fact that
the weighted-sum scalarized version of the lower level problem is a strictly convex
quadratic problem, the convexity does not avoid this potential undesired situation.

Example 2 Consider the bidimensional problem

min F(x1, x2) = x2
1 + x2

2
s.t. (x1, x2) ∈ X ∗, (12)
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17.5

22.5

34.79

feasible set

x

xI

f2 level sets

f1 level sets
non-ascending directions

x1

x2

Fig. 1 Geometry of example 1. The arrows at the level sets of the objective functions indicate the corre-
sponding decreasing directions. The vertical continuous line is the set of efficient points in which the level
sets of f1 and f2 have the same slope. The continuous lines at the border of the feasible set represent the
efficient points such that all non-ascending directions for both objectives are infeasible. In particular, xI

and x are efficient points of each one of these two types, respectively

where X ∗ is the set of efficient solutions of the lower level multiobjective problem

min {f1(x), . . . , fp(x)}
s.t. (2/5)x1 + x2 ≤ 2

5x1 − x2 ≤ 10
x1, x2 ≥ 0,

(13)

and, for 1 ≤ i ≤ p,

fi(x1, x2) = (x1 − ai)
2 + (x2 − bi)

2,

ai = 1 + 2 cos θi,

bi = 1 + 2 sin θi,

θi = 2π

p
(i − 1).

We can take X as a bounding box that strictly contains the compact feasible region
of (13), and thus we will omit it. We consider the case p = 3, for which a =
(3, 0, 0)T and b = (1, 1 + √

3, 1 − √
3)T . It is possible to show that the efficient

solutions of the unconstrained multiobjective problem such that all objective func-
tions have the form ‖x − c‖2 is the convex hull of the centers cs. Then, the set of
efficient solutions X ∗ of (13) (i.e., the feasible region of (12)) is the intersection of
the convex hull of (ai, bi), i = 1, 2, 3, with the region delimited by the constraints
of the lower level problem (13) (see Fig. 2). Hence, the origin is the unique global
optimal solution of (12).
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− 1 1 2 3

− 1

1

2

3

x

(a2 b2)

(a3, b3)

(a1 b1)

F level sets

(2 5)x1 + x2 = 2

η F(x)

x1

x2

Fig. 2 Geometry of example 2. The feasible set X ∗ of (12) is the intersection of the convex hull of
(ai , bi ), i = 1, 2, 3, with the region delimited by the constraints of the lower level problem. The lower
level KKT point x is an undesired solution for problem (12)

Adding slack variables, we write the weighted-sum scalarized version of prob-
lem (12) as follows:

min F(x1, x2) = x2
1 + x2

2

s.t.
∑3

i=1 wi = 1

wi ≥ εi = ε, i = 1, 2, 3

x ∈ argmin

⎧
⎪⎪⎨

⎪⎪⎩

min
∑3

i=1 wifi(x1, x2)

s.t. (2/5)x1 + x2 + x3 = 2
5x1 − x2 + x4 = 10
xi ≥ 0, i = 1, . . . , 4.

⎫
⎪⎪⎬

⎪⎪⎭
.

(14)

We have that x = (20/29, 50/29, 0, 240/29)T is a KKT point of the lower level
problem for certain feasible weights w for problem (14). In fact, the KKT conditions
of the lower level problem are as follows:

3∑

i=1

2wi

⎡

⎢
⎢
⎣

x1 − ai

x2 − bi

0
0

⎤

⎥
⎥
⎦+ μ1

⎡

⎢
⎢
⎣

2/5
1
1
0

⎤

⎥
⎥
⎦+ μ2

⎡

⎢
⎢
⎣

5
−1
0
1

⎤

⎥
⎥
⎦−

⎡

⎢
⎢
⎣

γ1
γ2
γ3
γ4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0
0
0
0

⎤

⎥
⎥
⎦ , (15)

(2/5)x1 + x2 + x3 = 2, (16)

5x1 − x2 + x4 = 10, (17)

γixi = 0, i = 1, . . . , 4, (18)

x ≥ 0, μ ∈ R
2, γ ∈ R

4+. (19)
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At x, (16)–(17) hold, γ1 = γ2 = γ4 = 0 by (18), and μ1 = γ3 ≥ 0, μ2 = γ4 = 0
by (15) and (19). Furthermore, if w1 �= 20/87, the expression (15) implies
γ3 = μ1 > 0, since μ2 = γ1 = 0 and

3∑

i=1

wi(x1 − ai) = (w1 + w2 + w3)︸ ︷︷ ︸
1

x1 − w1a1 − w2a2︸ ︷︷ ︸
0

− w3a3︸ ︷︷ ︸
0

= x1 − w1a1 �= 0.

Thus, by expression (15), x is a KKT point of the lower level problem for all feasible
w such that

{
15w1 − 2

√
3w2 + 2

√
3w3 = 2

w1 �= 20/87.
(20)

Evidently, the system (20) has feasible solutions for all ε < 20/87 ≈ 0.23.
Now, take w ∈ R

3, feasible for (14) and satisfying (20). We will show that
the inexact restoration method can converge to x, an undesirable solution for prob-
lem (12) (see Fig. 2). In fact, since x is a KKT point of the lower level problem with
w = w, there are multipliers (μ, γ ) satisfying (15)–(19). As we have already men-
tioned, γ 3 > 0. We denote z = (w, x, μ, γ ). Starting Algorithm 1 with s0 = z and
λ0 = 0, we can assume that step 2 returns z0 = z. Step 3 gives

γ 3(x3 − x3) + x3(γ3 − γ 3) = 0 ⇒ γ 3x3 = 0,

that implies x3 = 0, since γ 3 > 0. Thus, the x-space of π0 is contained in the line
(2/5)x1 + x2 = 2 (indeed, it is exactly this line, see Fig. 2). It is easy to verify that
∇xF (x) is orthogonal to the line (2/5)x1 + x2 = 2, and hence

d0
tan = P0[z − η∇sL(z, λ0)] − z = P0[z − η∇sF (x)] − z = 0.

Therefore, Algorithm 1 stops declaring x as a solution of problem (12).

In example 2, the x-space of π0 at x is a border line of the lower level feasible
region, which is orthogonal to ∇xF (x), resulting in a premature convergence. If we
“balance” complementarity by requiring that γixi = ξ > 0, the current point x

will be in the interior of the lower level feasible region. In particular, we avoid that
Algorithm 1 converges to x in such an example. Evidently, during the algorithm,
ξ must vanish in order to recover the original KKT system. We call this strategy
perturbed inexact restoration, clearly inspired by interior-point methods.

More specifically, at iteration k ≥ 1, we make, for all i, γ k
i xk

i = ξk where

ξk = min
{
ξ̃ k , ξmax , ξdec · ξk−1

}
, (21)

ξ̃ k = 1

k2

(
γ k−1 · xk−1

n

)

, (22)

being ξmax > 0 the maximum allowed perturbation and ξdec ∈ (0, 1) a parameter to
ensure that the perturbation decreases between consecutive iterations. We also define
ξ0 = ξmax. The expression (22), motivated by convergence results in [11], has shown
better numerical performance for our tests than the update ξ̃ k = γ k−1 · xk−1/n,
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usually employed in interior-point methods. The restoration phase of Algorithm 1
turns into the resolution of

Cξ (w, x, μ, γ )=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∑p

i=1 wi∇xfi(x) + ∇xh(x)μ − γ

h(x)

γ1x1 − ξ
...

γnxn − ξ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=0, 0≤x ∈ X, γ ≥0

(23)
with ξ = ξk and w = wk (actually, (μ, λ) ∈ �). We note that C′

ξk = C′, and hence
the optimization problem in step 3 of Algorithm 1 remains the same, whereas steps 4
to 7 are adapted in an obvious way.

A solution of (23) can be recovered if the optimal functional value of the problem

min
x,μ,γ

∥
∥∑p

i=1 wi∇xfi(x) + ∇xh(x)μ − γ
∥
∥2

s.t. h(x) = 0
xiγi = ξ, i = 1, . . . , n

0 ≤ x ∈ X, (μ, γ ) ∈ �

(24)

is zero. If we cannot obtain such a solution, we proceed with a stationary point of this
problem.

The perturbed strategy avoids convergence to an undesirable point in the example.
However, when the perturbation ξ is positive we do not have a feasible point (or at
least, a lower level KKT point). The next example shows that if we simply adopt
the same stopping criteria “zk = sk and dk

tan = 0” of Algorithm 1 to our perturbed
inexact restoration strategy, it may stop with a positive perturbation.

Example 3 Given a fixed α > 0, let us consider the problem

min F(x) = 1
2x2 − √

αx

s.t. w1 + w2 = 1
w1, w2 ≥ ε

x ∈ argmin

{
min w1

(
1
2x2

)
+ w2

(
1
2x2

)

s.t. x ≥ 0.

}

.

System (23) takes the form

Cξ (w, x, γ ) =
[

(w1 + w2)x − γ

γ x − ξ

]

= 0, 0 ≤ x, γ ≥ 0

(we may suppose that the compact set X is large enough to omit it), which yields
x = γ = √

ξ . As Cξ (w,
√

ξ,
√

ξ) = 0, and we can assume that this point is the
one obtained by the restoration phase (i.e., z0 = (1/2, 1/2,

√
α,

√
α)). Thus, if we

initialize the method with ξ0 = α, x0 = γ 0 = √
α, w0

1 = w0
2 = 1/2 (i.e., s0 = z0)

and λ0 = 0, then ∇sL(z0, λ0) = (0, 0, x0 − √
α, 0) = 0,

C′
ξ (w, x, γ ) =

[
w1x w2x w1 + w2 −1

0 0 γ x

]
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(see expression (9)), and the problem of step 3 in the first outer iteration takes the
form

min
w1,w2,x,γ

1
2

∥
∥
∥(w1, w2, x, γ ) −

(
1
2 , 1

2 ,
√

α,
√

α
)∥
∥
∥

2

2

s.t.

[
1
2

√
α 1

2

√
α 1 −1

0 0
√

α
√

α

]
⎡

⎢
⎢
⎣

w1 − 1/2
w2 − 1/2
x − √

α

γ − √
α

⎤

⎥
⎥
⎦ = 0

w1 + w2 = 1
εi ≤ wi ≤ 1 − εi, i = 1, 2.

The unique solution is the point z0 = (
1/2, 1/2,

√
α,

√
α
)
, exactly the initial point

s0. Therefore, z0 = s0 and d0
tan = 0, which implies a premature convergence to the

nonfeasible point s0 if no new conditions are imposed.

In order to guarantee a correct convergence of our perturbed inexact restoration
algorithm, we reduce the perturbation ξ whenever there is lack of progress (zk = sk

and dk
tan = 0) with a positive ξ . In this case, we go back to the restoration phase with

a smaller ξ . This ensures that the original KKT system will be recovered as desired.
We summarize the new step 3 below.

3’ (Tangent direction) Compute

dk
tan = Pk[zk − η∇sL(zk, λk)] − zk

where Pk[·] is the orthogonal projection on

πk = {s ∈ W × X × � | C ′
ξk (z

k)(s − zk) = 0}.
If zk �= sk or dk

tan �= 0, do i ← 0, choose δk,0 ≥ δmin.
If zk = sk , dk

tan = 0 and ξk > 0, do

ξk+1 = ξdec · ξk, sk+1 = sk, λk+1 = λk, θk = θk−1,

finish the current iteration k and go to step 2.
If zk = sk , dk

tan = 0 and ξk = 0, stop and return xk as a solution of problem P.

There might be other ways to overcome an undesirable premature convergence,
but certainly this choice is valid. Also, we did not observe this occurrence in our
numerical tests, so possibly these cases are rare. Furthermore, a few modifications
in the original inexact restoration method are made, and the already established
convergence results are easily adapted to our perturbed version, as we discuss next.

3 Convergence results for the IR strategies

In this section, we stated convergence results for the plain and the perturbed inexact
restoration strategies presented in the previous section. In [1], convergence results
for an inexact restoration method applied to bilevel programming were established.
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The authors considered the method with Lagrangian projection, i.e., with tangent
direction as follows:

dk
tan = Pk[zk − η∇sL(zk, λk)] − zk .

However, in standard nonlinear optimization, the convergence to points that satisfy
the so-called Approximate Gradient Projection (AGP) [23], a sequential optimality
condition, has been proved only with the tangent direction that uses the objective
function [22], i.e. directions defined by the following:

dk
tan,F = Pk[zk − η∇sF (zk)] − zk .

In fact, a point x∗ that conforms to the AGP necessary optimality condition drives to
zero the tangent direction defined by means of the objective function. In this sense,
the AGP condition is closely linked to inexact restoration that uses dk

tan,F. The use
of the Lagrangian in the tangent directions was proposed in [21] and aims to avoid
Marato’s effect.

We have as follows:

dk
tan,F = Pk[zk − η∇sL(zk, 0)] − zk,

and the inexact restoration method with dk
tan,F is exactly the Algorithm 1 setting

λk = 0. Of course, in this case, step 5 can be eliminated. In the next sections, we will
analyze the following variants of the inexact restoration strategy:

– IRL: Inexact restoration with dk
tan (Algorithm 1).

– IRξ
L: Perturbed inexact restoration with dk

tan.
– IRF: Inexact restoration with dk

tan,F. This variant corresponds to Algorithm 1

setting λk = 0 for all k.
– IRξ

F: Perturbed inexact restoration with dk
tan,F.

3.1 General assumptions

We make assumptions on the weighted bilevel problem (6) in order to guarantee
convergence for all inexact restoration variants, following [1] and previous results for
standard nonlinear programming [21, 22]. For non-perturbed variants, assumptions
are easily adapted making ξ = 0. The hypothesis are as follows:

A1. The sets X and � are compact and convex.
A2. There exists L1 > 0 such that, for all (w, x), (w, x) ∈ W×X, (μ, γ ), (μ, γ ) ∈

� and ξ ∈ [0, ξmax],
|C′

ξ (w, x, μ, γ ) − C′
ξ (w, x, μ, γ )| ≤ L1|(w, x, μ, γ ) − (w, x, μ, γ )|.

A3. There exists L2 > 0 such that, for all x, x ∈ X,

|∇F(x) − ∇F(x)| ≤ L2|x − x|.
A4. There exists r ∈ [0, 1), independently of k, such that the point zk =

(wk, x, μ, γ ) obtained at the restoration phase satisfies

|Cξk (zk)| ≤ r|Cξk (sk)|
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where sk = (wk, xk, μk, γ k) is the current iterate. Moreover, if Cξk (sk) = 0
then zk = sk .

The first three assumptions (A1 to A3) correspond exactly to those made in [21].
As C′

ξ = C′ for all ξ ≥ 0 (see expressions (7) and (9)), assumption A2 is independent
of the perturbation. We observe that a way to guarantee A2 is imposing, together with
A1, the Lipschitz continuity of the functions ∇2fi and ∇2hi . This is the assumption
adopted in [1].

3.2 Well-definiteness

Theorem 1 Under assumptions A1, A2, A3, and A4, all inexact restoration algo-
rithms are well defined.

Proof In the IRξ
L variant, if Cξk (sk) �= 0 or (Cξk (sk) = 0 and dk

tan �= 0) the proof
follows Theorem 4.1 of [21]. If Cξk (sk) = 0 and dk

tan = 0, the current iteration
finishes either with ξk > 0, going back to the restoration phase, or with ξk = 0, and
the algorithm stops.

The other algorithms are also well defined, since they correspond to IRξ
L setting

λk = 0 and/or ξk = 0.

3.3 Convergence to feasible points

If the IRξ
L method stops at iteration k, then Cξk (sk) = 0 with ξk = 0, i.e., sk is

a feasible point of the KKT reformulation of the bilevel problem (6). The case of
possibly infinite number of iterations are treated in the next theorem, which is an
obvious adaptation of Theorems 3.4 and 3.5 of [22].

Theorem 2 Suppose that assumptions A1, A2, A3, and A4 are valid. If the IRξ
L

algorithm generates an infinite sequence, then

lim
k→∞Aredk = 0 and lim

k→∞|Cξk (sk)| = 0.

The same occurs when ξk = 0 and/or λk = 0 for all k, that is, analogous results are
valid for each variant of the inexact restoration algorithm.

Observe that a feasible limit point is obtained in the perturbed variants by Theorem
2, ξk → 0 and assumption A1.

3.4 Convergence to optimality

As we have already mentioned, the classical inexact restoration method for standard
nonlinear programming converges to AGP points [22] when the tangent directions
are defined by the upper level objective function. In our case, the AGP condition is
related to the vector dtan,F(s) defined by

dtan,F(s) = Pπ [s − η∇sF (s)] − s
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for any s = (w, x, μ, γ ) ∈ W × X × � (the domain of F is extended to the s-space
in a natural way). Clearly, concepts based on AGP will be closely related to the IRF

and IRξ
F variants. First, let us consider the KKT reformulation of the weighted-sum

reformulation (6) of the bilevel problem P,

min
w,x,μ,γ

F (x)

s.t. C(w, x, μ, γ ) = 0, x ≥ 0
(w, x, μ, γ ) ∈ W × X × �.

(25)

Theorem 2 ensures that all inexact restoration strategies converge to a feasible point
of (25). We then define two optimality conditions for the bilevel programming based
on the AGP condition as follows [1]:

– Weak AGP. A feasible point s∗ of problem (25) satisfies the weak AGP condi-
tion of problem (6) if there exists a sequence {sk} converging to s∗ such that
dtan,F(sk) → 0.

– Strong AGP. A point s∗ = (w∗, x∗, μ∗, γ ∗) satisfies the strong AGP condition of
problem (6) if it conforms to the weak AGP condition, C(s∗) = 0 and (w∗, x∗)
is feasible for (6).

Weak AGP consists exactly in the classical AGP condition for problem (25). Strong
AGP requires additionally that the primal vector (w∗, x∗) is a global optimal solu-
tion of the lower level problem of the original weighted bilevel problem (6). As the
AGP condition is a legitimate necessary optimality condition [23] for standard non-
linear programming, weak and strong AGP are necessary optimality conditions for
the bilevel problem (6).

A usual sufficient assumption to obtain convergence results for inexact restoration
methods, incorporating the pertubation in a natural way, is the following [1, 21, 22]:

A5. There exists β > 0, independently of k, such that

‖sk − zk‖ ≤ β|Cξk (s
k)|.

The next theorem is valid for all inexact restoration strategies, and it is analo-
gous to Theorem 4.3 of [1]. We only state the result for the IRξ

L variant, since it
encompasses the other ones.

Theorem 3 Suppose that assumptions A1, A2, A3, A4, and A5 hold. If {sk} is an
infinite sequence generated by IRξ

L and {zk} is the sequence defined at the restoration
phase, then

1.
∣
∣Cξk (sk)

∣
∣ → 0.

2. There exists a limit point s∗ of {sk}.
3. Every limit point of {sk} is a feasible point of the KKT reformulation (25).
4. If, for all w, a global solution of the lower level problem is found then any limit

point (w∗, x∗) is feasible for the weighted bilevel problem (6).
5. If s∗ is a limit point of {sk}, there exists an infinite set K ⊂ N such that

lim
k∈K

sk = lim
k∈K

zk = s∗, C(s∗) = 0 and lim
k∈K

dk
tan = 0.
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Proof The first two items follow from Theorem 2 and the assumption A1. Conse-
quentely, the third and fourth items are valid. The fifth item follows from assumption
A5, from the first item and from arguments similar to those of Theorem 5.2
of [21].

Item 5 of Theorem 3 implies the fulfillment of AGP-type necessary optimality
conditions in the IRF and IRξ

F variants. We summarize this in the next result.

Corollary 1 Suppose that assumptions A1, A2, A3, A4, and A5 hold. If {sk} is an
infinite sequence generated by the IRF or the IRξ

F method, then

1. Every limit point s∗ is a weak AGP point.
2. If, for all w, a global solution of the lower level problem is found then any limit

point s∗ is a strong AGP point.

3.5 Sufficient conditions for the assumptions

Compactness of X is a natural way to ensure the well-definiteness of optimiza-
tion algorithms in the literature. In this sense, assumption A1 is a slightly stringent
condition. Assumptions A2 and A3 are natural in the context of inexact restoration
methods [21, 22] (and hence, we assume assumptions A1 to A3 from now on). How-
ever, assumptions A4 and A5 are related to sequences generated by the IR algorithms.
Thus, it is interesting to establish sufficient conditions that ensure their validity and
that do not depend on the progress of the methods. To verify A4, it is convenient that
the lower level KKT perturbed system (23) has a solution. Particularly in the case of
ξ = 0, it is equivalent to require that the lower level has a first-order stationary point.
Following [1], we consider the next hypotheses throughout this subsection:

A6. For each ξ ∈ [0, ξmax], every solution s = (w, x, μ, γ ) of (23) is such that the
gradients of the active lower level constraints

∇hi(x), i = 1, . . . , m, and − ej , forjsuch thatxj = 0,

where ej is the j th canonical vector of Rn, are linearly independent.
A7. For each ξ ∈ [0, ξmax], every solution s = (w, x, μ, γ ) of (23) is such that the

matrix

H(w, x, μ) =
p∑

i=1

wi∇2
xxfi(x) +

m∑

i=1

μi∇2
xxhi(x)

is positive definite in the set

Z(x, γ ) = {d ∈ R
n | ∇h(x)T d = 0, dj = 0for alljsuch thatγj = 0}.

A8. For ξ = 0, every solution s = (w, x, μ, γ ) of (23) satisfies xi + γi > 0 for all
i (note that this is trivially satisfied if ξ > 0).

When ξ = 0, assumption A6 implies the well-known Linear Independence Con-
straint Qualification (LICQ) at every solution of the lower level problem. Thus, �

may be naturally assumed a compact set, as in assumption A1. Assumption A8
resembles the usual strict complementarity of nonlinear programming.
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We proceed analogously to the discussion made in [1]. Let us consider the matrix

D′(ξ, w, x, μ, γ ) =
⎡

⎣
H(w, x, μ) ∇h(x) −In

∇h(x)T 0 0
diag(γ ) 0 diag(x)

⎤

⎦ .

We observe that D′ is a submatrix of C′ (or C′
ξ , see expression (9)), and does not

depend on ξ .

Lemma 1 Let ξ ≥ 0. The matrix D′(ξ, w, x, μ, γ ) is non-singular for any solution
(w, x, μ, γ ) of (23).

Proof For ξ = 0, this is exactly Lemma 4.4 of [1]. For ξ > 0, the proof is the same
since D′ is constant with respect to ξ .

Let D(ξ, w, x, μ, γ ) = Cξ (w, x, μ, γ ) be defined on [0, ξmax]×W ×X ×�. As
D(ξ, w, x, μ, γ ) is continuous with respect to (ξ, x, μ, γ ), it is possible to choose,
for each w ∈ W , a solution uξ (w) = (xξ (w), μξ (w), γξ (w)) of (23) such that the
function v(ξ,w) = uξ (w) is continuous on [0, ξmax] × W . From now on, let the
function v(ξ,w) be fixed. By Lemma 1, we can define a function ϒ over the set
[0, ξmax] × W by

ϒ(ξ, w) = [
D′(ξ, w, v(ξ, w))

]−1 . (26)

Let V (v(ξ, w), α) = {v ∈ [0, ξmax] × X × � | ‖v − v(ξ,w)‖ ≤ α}.

Lemma 2 There exist α > 0 and β > 0 such that, for all (ξ, w) ∈ [0, ξmax] × W , it
holds |ϒ(ξ, w)| ≤ β, and ϒ coincides with the local inverse operator of D′(ξ, w, ·)
for all v ∈ V (v(ξ,w), α).

Proof As D′(ξ, w, v) is continuous on (w, v) and v(ξ,w) on (ξ, w), ϒ(ξ, w) is
continuous with respect to (ξ, w) ∈ [0, ξmax]×W . As this set is compact, there exists
β > 0 such that |ϒ(ξ, w)| ≤ β for all (ξ, w) ∈ [0, ξmax] × W . Thus, the first claim
was proved. The second statement can be obtained in the same way as in Lemma 4.5
of [1], by choosing x = (ξ, w) in its proof.

It is worth noticing that the radius α, cf. the second claim of Lemma 2, does not
depend on ξ . This independence allows us to obtain local and global error bounds on
the function D, analogous to Lemmas 4.6 and 4.7 of [1], respectively.

Finally, we state that A4 and A5 hold under assumptions A6 to A8 of this subsec-
tion. The next theorem summarizes this fact, and it can be proved by straightforward
adaptations on Theorem 4.8 of [1].

Theorem 4 Let ξ ∈ [0, ξmax] and r ∈ [0, 1). Let (w, uξ ) ∈ W × X × � be such that
Cξ (w, uξ ) �= 0. If the assumptions A6–A8 hold, there exist β > 0, independent of w

and ξ , and uξ = (x, μ, γ ) ∈ X × � such that

|Cξ (w, uξ )| ≤ r|Cξ (w, uξ )|
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and
‖(w, uξ ) − (w, uξ )‖ ≤ β|Cξ (w, uξ )|.

Proof The statement follows from the proof of Theorem 4.8 of [1], changing x to
(ξ, w) and C(x, ·) to D(ξ, w, ·) = Cξ (w, ·).

4 Numerical experiments

First of all, we describe details of our implementation of Algorithm 1, namely the
strategy IRL. The same observations are valid for the other variants.

– We use the stabilized sequential quadratic programming (SSQP) method imple-
mented in the package WORHP [7] to solve the problem of step 2 (includ-
ing (24)) and to compute the projection in step 3. WORHP is a robust and
efficient software library, especially designed for large problems.

– Theoretical convergence results require assumption A5 whenever sk is not a
lower level stationary point. In [1], the authors proposed to monitor the growth
of the quotient ‖zk − sk‖/‖C(sk)‖, comparing it to the quotient of the previous
iteration (note that the theory does not require any relationship between itera-
tions). Instead, we simply verify if this quotient exceeds 108. If this is the case,
we stop the algorithm declaring failure. In our experiments this situation never
happened, and we will not make further comments along this line.

– We consider that the condition dk
tan = 0 in step 4 was satisfied if ‖dk

tan‖∞ ≤ εopt
for a given tolerance to optimality εopt > 0. If this condition does not hold, we

should compute vk,i ∈ πk such that, for some 0 < t ≤ t
k,i
break,

L(vk,i , λk) ≤ max{L(zk + tdk
tan, λ

k), L(zk, λk) − τ1δk,i , L(zk, λk) − τ2}
with γ ≥ 0 and ‖vk,i − zk‖∞ ≤ δk,i . Initially, we calculate

L∗ = max{L(zk + t
k,i
breakd

k
tan, λ

k), L(zk, λk) − τ1δk,i , L(zk, λk) − τ2}
and we consider the optimization problem

min
v=(w,x,μ,γ )

L(v, λk)

s.t. C′(zk)(v − zk) = 0, x ≥ 0
v ∈ W × X × �

‖v − zk‖∞ ≤ δk,i .

A stationary point v∗ of this problem is potentially a good point for step 4. We
then solve it by the SSQP method of the WORHP package, initialized at zk as
proposed in [1]. If the SSQP method fails, or if the “optimal” value L(v∗, λk)

found is not sufficiently small (i.e., L(v∗, λk) > L∗), then we reduce the neigh-
borhood size δk,i by the factor 0.8. This reduction anticipates the one that will be
done in step 7. So, we recalculate t

k,i
break and test if L(vk,i + t

k,i
breakd

k
tan, λ

k) ≤ L∗
(this represents a step along the descent direction dk

tan). We make these reductions
until δk,i ≥ δmin for a given parameter δmin > 0. In case δk,i < δmin we stop,
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declaring failure. It should be mentioned that if the SSQP strategy fails, we never
reapply it in the same iteration of the inexact restoration method because there
is no reason to expect that this strategy can reach a good point with a smaller
neighborhood radius.

– In step 5, it is important that λk,i is a good estimative for a solution of
∇vL(vk,i , λ) = 0 (or equivalently, a good approximation for a solution of the
linear system C′(vk,i)λ = −∇vF (x)). If the SSQP method has success in step
4, we take λk,i as the computed multipliers. Otherwise, i.e., if vk,i was obtained
by backtracking along direction dk

tan, we try to find a least squares solution of the
overdetermined linear system

C′(vk,i)λ = −∇vF (x)

by the orthogonal factorization method implemented in the MA49 of HSL [18].
In case of failure, we set λk,i as the last λk,i computed throughout the process. In
all cases, we project λk,i onto the box [−M, M]2n+m, and thus ‖λk,i‖∞ ≤ M .

– Finally, we make double-precision floating point corrections for the sums∑p

i=1 wi of sk , zk , vk,i (to 1) and dk
tan (to 0). These corrections aim to avoid

numerical errors.

We compared the IR strategy (with and without perturbation) with the classical
KKT reformulation (25). The resulting problem is a special case of Mathematical
Problem with Complementarity Constraints (MPCC), in which the SSQP strategy is
suitable [13–15]. Thus, we solve it by the WORHP package. Additionally, we have
considered the homotopic strategy for solving MPCCs, developed by Scholtes in
[26]. Roughly speaking, this strategy solves a sequence of MPCCs with perturbed
complementarity. In our case, it consists in minimizing the upper level objective func-
tion F over a system similar to (23), in which γixi ≤ ξ rather than γixi = ξ , for
ξ ↓ 0. Scholtes proposed a simple update rule for the perturbation, namely, take
ξ0 = 1 and successively ξk = ξk−1/10 as long as ξk ≥ 10−16. It is worth notic-
ing that, although we might have employed our updating rule (21), (22), we observed
numerically that Scholtes’ rule performs sightly better for his method. We refer to
Scholtes’ algorithm as KKTξ .

The WORHP package permits several configurations; among them we highlight:

– The globalization strategy is a line search with an augmented Lagrangian merit
function. This is standard in WORHP.

– Quadratic subproblems are solved by an interior-point method.
– The BFGS updates for Hessian approximations are employed. This is standard

in WORHP.
– Symmetric linear systems are solved by the multifrontal strategy MA97 of

HSL [18].

We have addressed 13 test problems. Some of them were built using existing tech-
niques or multiobjective instances in the literature, and some are completely new.
Details are in the Appendix. Varying the starting point x0, the initial weights w0 and
the dimensions p and n, we define 69 different instances, that are summarized in
Tables 1 and 2.
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Table 1 Instances of problems 1 to 8

Instance p n x0 w0 F ∗

P1.1 2 2 (10, 10) (0.5, 0.5) 1.00e+01

P2.1 2 2 (10, 10) (0.5, 0.5) 9.50e−01

P3.1 2 2 (−2, 20) (0.8, 0.2) 0.00e+00

P3.2 2 2 (−10, 10) (0.4, 0.6) 0.00e+00

P4.1 2 2 (−10, 10) (0.5, 0.5) 0.00e+00

P4.2 2 2 (−10, 10) (0.4, 0.6) 0.00e+00

P5.1 2 2 (−10, 10) (0.5, 0.5) 5.01e−01

P5.2 2 2 (40, 100) (0.1, 0.9) 5.01e−01

P6.1 2 2 (−10, 10) (0.5, 0.5) 0.00e+00

P6.2 2 2 (10, 20) (0.73, 0.27) 0.00e+00

P6.3 2 2 (10, 20) (0.23, 0.77) 0.00e+00

P7.1 3 2 (10, 10) (0.2, 0.3, 0.5) 0.00e+00

P7.2 3 2 (0.68, 1.72) (0.2497, 0.6272, 0.1231) 0.00e+00

P7.3 3 2 (0.68, 1.72) (0.3, 0.6, 0.1) 0.00e+00

P7.4 6 2 (−10,−10) w0
i = 1/6 0.00e+00

P7.5 100 2 (9/10, 9/10) w0
i = 1/100 0.00e+00

P7.6 200 2 (10, 1) w0
i = 1/200 0.00e+00

P8.1 2 2 (20, 10) (0.9, 0.1) 0.00e+00

P8.2 2 2 (10, 40) (0.45, 0.55) 0.00e+00

P8.3 2 2 (10−4, 10) (0.8, 0.2) 0.00e+00

P8.4 2 6 x0
2i = 20, x0

2i+1 = 10 (0.9, 0.1) 0.00e+00

P8.5 2 6 x0
2i = 10, x0

2i+1 = 40 (0.45, 0.55) 0.00e+00

P8.6 2 6 x0
2i = 10−4, x0

2i+1 = 10 (0.82, 0.18) 0.00e+00

P8.7 2 20 x0
2i = 20, x0

2i+1 = 10 (0.9, 0.1) 0.00e+00

P8.8 2 20 x0
2i = 10, x0

2i+1 = 40 (0.45, 0.55) 0.00e+00

P8.9 2 20 x0
2i = 10−4, x0

2i+1 = 10 (0.82, 0.18) 0.00e+00

P8.10 2 30 x0
2i = 20, x0

2i+1 = 10 (0.9, 0.1) 0.00e+00

P8.11 2 30 x0
2i = 10, x0

2i+1 = 40 (0.45, 0.55) 0.00e+00

The experiments were run in a computer equipped with Intel(R) Core(TM) i7-
6600U 2.60Ghz processor, 8Gb RAM, and GNU/Linux Ubuntu 64 bits operational
system. The main part of the code was written in Fortran 90 language and compiled
with gfortran 4.8 version. Another small part was written in C language, especially
the AMPL interface, which is able to model multiobjective problems. For the inexact
restoration strategies, we set the tolerance for optimality εopt = 10−4 (step 3 of
Algorithm 1) and the parameters η = 0.1, θ−1 = 0.5, r = 0.5, εi = 10−4 ∀i,
M = 1016, δmin = εopt/2, τ1 = 10−2, τ2 = 10−3, ωk = 1/k2, λ0 = 0. For
all subproblems (steps 2, 3, and 4), we set the optimality tolerance of the SSQP
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Table 2 Instances of problems 9 to 13

Instance p n x0 w0 F ∗

P9.1 2 2 x0
2i = 20, x0

2i+1 = 10 (0.9, 0.1) 0.00e+00

P9.2 2 2 x0
2i = 10, x0

2i+1 = 40 (0.45, 0.55) 0.00e+00

P9.3 2 2 (10−4, 10) (0.82, 0.18) 0.00e+00

P9.4 2 6 x0
2i = 20, x0

2i+1 = 10 (0.9, 0.1) 0.00e+00

P9.5 2 6 x0
2i = 10, x0

2i+1 = 40 (0.45, 0.55) 0.00e+00

P9.6 2 6 x0
2i = 10−4, x0

2i+1 = 10 (0.82, 0.18) 0.00e+00

P9.7 2 20 x0
2i = 20, x0

2i+1 = 10 (0.9, 0.1) 0.00e+00

P9.8 2 20 x0
2i = 10, x0

2i+1 = 40 (0.45, 0.55) 0.00e+00

P9.9 2 20 x0
2i = 10−4, x0

2i+1 = 10 (0.82, 0.18) 0.00e+00

P9.10 2 30 x0
2i = 20, x0

2i+1 = 10 (0.9, 0.1) 0.00e+00

P9.11 2 30 x0
2i = 10, x0

2i+1 = 40 (0.45, 0.55) 0.00e+00

P10.1 2 2 (20, 10) (0.9, 0.1) 2.12e−03

P10.2 2 2 (10, 40) (0.45, 0.55) 2.12e−03

P10.3 2 2 (10−4, 10) (0.82, 0.18) 2.12e−03

P10.4 2 6 x0
2i = 20, x0

2i+1 = 10 (0.9, 0.1) 2.12e−03

P10.5 2 6 x0
2i = 10, x0

2i+1 = 40 (0.45, 0.55) 2.12e−03

P10.6 2 6 x0
2i = 10−4, x0

2i+1 = 10 (0.82, 0.18) 2.12e−03

P10.7 2 20 x0
2i = 20, x0

2i+1 = 10 (0.9, 0.1) 2.12e−03

P10.8 2 20 x0
2i = 10, x0

2i+1 = 40 (0.45, 0.55) 2.12e−03

P10.9 2 20 x0
2i = 10−4, x0

2i+1 = 10 (0.82, 0.18) 2.12e−03

P10.10 2 30 x0
2i = 20, x0

2i+1 = 10 (0.9, 0.1) 2.12e−03

P10.11 2 30 x0
2i = 10, x0

2i+1 = 40 (0.45, 0.55) 2.12e−03

P11.1 2 2 (20, 10) (0.9, 0.1) 0.00e+00

P11.2 2 2 (10, 40) (0.45, 0.55) 0.00e+00

P11.3 2 2 (10−4, 10) (0.82, 0.18) 0.00e+00

P11.4 2 6 x0
2i = 20, x0

2i+1 = 10 (0.9, 0.1) 0.00e+00

P11.5 2 6 x0
2i = 10, x0

2i+1 = 40 (0.45, 0.55) 0.00e+00

P11.6 2 6 x0
2i = 10−4, x0

2i+1 = 10 (0.82, 0.18) 0.00e+00

P11.7 2 20 x0
2i = 20, x0

2i+1 = 10 (0.9, 0.1) 0.00e+00

P11.8 2 20 x0
2i = 10, x0

2i+1 = 40 (0.45, 0.55) 0.00e+00

P11.9 2 20 x0
2i = 10−4, x0

2i+1 = 10 (0.82, 0.18) 0.00e+00

P11.10 2 30 x0
2i = 20, x0

2i+1 = 10 (0.9, 0.1) 0.00e+00

P11.11 2 30 x0
2i = 10, x0

2i+1 = 40 (0.45, 0.55) 0.00e+00

P12.1 2 2 (10, 10) (0.75, 0.25) 0.00e+00

P12.2 2 2 (− 10,− 10) (0.35, 0.65) 0.00e+00

P12.3 2 2 (0.5, 0.5) (0.5, 0.5) 0.00e+00

P12.4 6 6 x0
i = 1/2 w0

i = 1/6 0.00e+00

P13.1 2 2 (0.7, 0.7) (0.5, 0.5) 0.00e+00

P13.2 2 2 (10, 10) (0.75, 0.25) 0.00e+00

P13.3 2 2 (10, 10) (0.25, 0.75) 0.00e+00

P13.4 6 6 x0
i = 7/10 w0

i = 1/6 0.00e+00
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method equal to εSQP = 10−6. We do not perturb the complementarity for more than

ξmax = 10−2 in IRξ
F and IRξ

L algorithms, while the forced decrease factor ξdec is set
to 0.8 (see expression (21)). We initialize step 3 with δk,0 = 10 (according with [1])
and in step 7 we make δk,i+1 = δk,i/2.

We have compared the inexact restoration strategies with the KKT reformulation.
Tables 3 and 4 show the results. Columns with “F ” contain the final functional value
obtained by the method. Bold values represent the best value of F , while italic val-
ues indicate that the method reached the optimal value. We decide that two methods

Table 3 Numerical results of problems 1 to 8

IRF IRξ
F IRL IRξ

L KKT KKTξ

Inst. F ; It F ; It F ; It F ; It F /status F /status

P1.1 1.00e+01 ; 7 1.00e+01 ; 8 1.03e+01 ; 5 1.44e+01 ; 8 infeas 2.25e+02

P2.1 1.10e+00 ; 2 1.08e+00 ; 5 1.10e+00 ; 2 1.08e+00 ; 5 infeas 9.03e−01

P3.1 7.95e−10 ; 5 2.19e−15 ; 5 1.06e−14 ; 4 2.12e−15 ; 5 4.82e−30 7.44e−16

P3.2 1.92e−12 ; 2 2.99e−08 ; 5 1.92e−12 ; 2 2.99e−08 ; 5 3.15e−14 1.68e−21

P4.1 2.00e+00 ; 3 1.12e−18 ; 6 2.00e+00 ; 3 1.44e−20 ; 7 2.00e+00 2.00e+00

P4.2 2.00e+00 ; 2 2.50e−24 ; 6 2.00e+00 ; 2 2.40e−01 ; 6 2.00e+00 2.00e+00

P5.1 2.00e+00 ; 2 5.01e−01 ; 5 2.00e+00 ; 2 5.01e−01 ; 5 1.44e+00 1.44e+00

P5.2 5.01e−01 ; 3 5.01e−01 ; 5 5.01e−01 ; 3 5.01e−01 ; 5 1.44e+00 1.44e+00

P6.1 3.32e−06 ; 3 3.27e−06 ; 5 3.32e−06 ; 3 4.92e−01 ; 5 7.07e+02 infeas

P6.2 3.28e−06 ; 4 3.28e−06 ; 6 3.28e−06 ; 4 2.12e+00 ; 5 max it infeas

P6.3 3.25e−06 ; 3 3.26e−06 ; 6 3.25e−06 ; 3 3.26e−06 ; 6 infeas infeas

P7.1 9.00e−08 ; 2 9.03e−08 ; 5 9.00e−08 ; 2 9.03e−08 ; 5 4.00e+00 4.00e+00

P7.2 3.45e+00 ; 2 8.97e−08 ; 5 3.45e+00 ; 2 1.10e−07 ; 5 4.00e+00 4.00e+00

P7.3 3.45e+00 ; 2 8.97e−08 ; 5 3.45e+00 ; 2 1.52e−06 ; 5 4.00e+00 error

P7.4 3.55e−12 ; 2 1.19e−19 ; 5 3.55e−12 ; 2 1.66e−24 ; 5 4.00e+00 4.00e+00

P7.5 1.21e−09 ; 3 1.16e−19 ; 5 1.21e−09 ; 3 1.66e−24 ; 5 infeas infeas

P7.6 1.08e−09 ; 3 1.34e−19 ; 5 1.08e−09 ; 3 1.70e−24 ; 5 infeas infeas

P8.1 1.00e+00 ; 2 1.32e−20 ; 6 1.00e+00 ; 2 1.78e−20 ; 6 8.92e−15 9.26e−09

P8.2 2.76e−21 ; 2 3.72e−09 ; 5 2.76e−21 ; 2 3.72e−09 ; 5 infeas 5.99e−22

P8.3 1.00e+00 ; 2 9.41e−19 ; 5 1.00e+00 ; 2 9.40e−19 ; 5 3.07e−11 4.97e−10

P8.4 1.00e+00 ; 2 7.44e−09 ; 4 1.00e+00 ; 2 8.28e−09 ; 4 5.17e−08 1.06e−08

P8.5 1.68e−16 ; 2 6.57e−09 ; 5 1.68e−16 ; 2 6.57e−09 ; 5 infeas 1.19e−10

P8.6 1.00e+00 ; 2 1.49e−19 ; 5 1.00e+00 ; 2 1.46e−19 ; 5 5.66e−09 2.00e−07

P8.7 1.00e+00 ; 2 1.41e−20 ; 5 1.00e+00 ; 2 2.92e−18 ; 5 infeas 7.79e−08

P8.8 8.96e−19 ; 2 6.45e−08 ; 5 8.96e−19 ; 2 6.45e−08 ; 5 infeas 5.91e−07

P8.9 1.00e+00 ; 2 2.21e−20 ; 5 1.00e+00 ; 2 3.45e−16 ; 5 2.96e−13 4.49e−01

P8.10 1.00e+00 ; 2 2.41e−20 ; 5 1.00e+00 ; 2 7.10e−18 ; 5 infeas 9.41e−09

P8.11 2.02e−20 ; 2 4.82e−08 ; 5 2.02e−20 ; 2 4.82e−08 ; 5 1.26e−09 1.64e−07
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Table 4 Numerical results of problems 9 to 13

IRF IRξ
F IRL IRξ

L KKT KKTξ

Inst. F ; It F ; It F ; It F ; It F / Status F / Status

P9.1 1.00e+00 ; 2 1.11e−21 ; 6 1.00e+00 ; 2 1.10e−21 ; 6 2.16e−15 3.62e−11

P9.2 1.24e−21 ; 2 1.00e+00 ; 5 1.24e−21 ; 2 3.46e−23 ; 5 2.02e−10 5.00e−11

P9.3 1.00e+00 ; 2 1.00e+00 ; 5 1.00e+00 ; 2 1.00e+00 ; 5 7.61e−24 2.73e−22

P9.4 1.00e+00 ; 2 1.00e+00 ; 5 1.00e+00 ; 2 1.00e+00 ; 5 2.17e−12 2.70e−09

P9.5 6.35e−22 ; 2 1.00e+00 ; 6 6.35e−22 ; 2 1.00e+00 ; 6 6.53e−08 3.87e−11

P9.6 1.00e+00 ; 2 5.10e−09 ; 4 1.00e+00 ; 2 5.10e−09 ; 4 infeas 5.89e−10

P9.7 1.00e+00 ; 2 1.00e+00 ; 5 1.00e+00 ; 2 1.00e+00 ; 5 1.76e−09 3.28e−09

P9.8 1.00e+00 ; 2 1.00e+00 ; 5 1.00e+00 ; 2 1.00e+00 ; 5 1.79e−07 3.64e−08

P9.9 1.00e+00 ; 2 1.10e−08 ; 4 1.00e+00 ; 2 1.10e−08 ; 4 infeas 5.00e−08

P9.10 1.00e+00 ; 2 1.00e+00 ; 5 1.00e+00 ; 2 1.00e+00 ; 5 9.80e−08 4.26e−07

P9.11 1.00e+00 ; 2 1.00e+00 ; 6 1.00e+00 ; 2 1.00e+00 ; 6 2.03e−08 2.30e−09

P10.1 1.00e+00 ; 2 1.00e+00 ; 5 1.00e+00 ; 2 1.00e+00 ; 5 2.39e−03 5.62e−02

P10.2 6.17e−02 ; 2 1.00e+00 ; 6 6.17e−02 ; 2 1.00e+00 ; 6 2.29e−03 2.00e−02

P10.3 1.00e+00 ; 2 1.00e+00 ; 4 1.00e+00 ; 2 1.00e+00 ; 4 2.39e−03 1.11e−01

P10.4 1.00e+00 ; 2 2.56e−03 ; 5 1.00e+00 ; 2 2.56e−03 ; 5 2.02e−03 2.17e−03

P10.5 6.17e−02 ; 2 9.65e−01 ; 5 6.17e−02 ; 2 9.65e−01 ; 5 2.29e−03 2.17e−03

P10.6 1.00e+00 ; 2 2.40e−03 ; 4 1.00e+00 ; 2 2.40e−03 ; 4 2.39e−03 2.17e−03

P10.7 1.00e+00 ; 2 1.00e+00 ; 5 1.00e+00 ; 2 9.65e−01 ; 5 infeas 2.17e−03

P10.8 9.65e−01 ; 3 2.29e−03 ; 5 9.65e−01 ; 3 2.29e−03 ; 5 2.09e−02 2.17e−03

P10.9 1.00e+00 ; 2 1.00e+00 ; 5 1.00e+00 ; 2 9.65e−01 ; 6 6.81e−01 2.17e−03

P10.10 1.00e+00 ; 2 1.00e+00 ; 4 1.00e+00 ; 2 1.00e+00 ; 5 2.02e−03 2.17e−03

P10.11 7.02e−01 ; 3 9.65e−01 ; 5 7.02e−01 ; 3 9.65e−01 ; 5 2.29e−03 2.17e−03

P11.1 1.99e+00 ; 2 5.82e−24 ; 5 1.99e+00 ; 2 1.00e+00 ; 5 infeas 2.50e+01

P11.2 4.95e+00 ; 2 2.47e+01 ; 5 4.95e+00 ; 2 2.47e+01 ; 5 infeas 2.50e+01

P11.3 9.89e+00 ; 2 1.58e+01 ; 5 9.89e+00 ; 2 1.58e+01 ; 5 infeas 2.50e+01

P11.4 5.11e+01 ; 2 1.06e+01 ; 8 5.11e+01 ; 2 8.90e+00 ; 6 1.14e+02 2.50e+01

P11.5 5.11e+01 ; 2 1.24e+02 ; 6 5.11e+01 ; 2 1.24e+02 ; 6 1.05e+02 2.50e+01

P11.6 5.11e+01 ; 2 3.93e+01 ; 6 5.11e+01 ; 2 2.05e+00 ; 5 infeas 2.50e+01

P11.7 4.28e+02 ; 2 3.11e+02 ; 6 4.28e+02 ; 2 1.95e+00 ; 6 3.66e+02 2.50e+01

P11.8 4.70e+02 ; 2 4.60e+02 ; 5 4.70e+02 ; 2 1.94e+02 ; 6 3.98e+02 2.50e+01

P11.9 2.50e+02 ; 2 1.04e+02 ; 6 2.50e+02 ; 2 2.14e+00 ; 6 infeas 2.50e+01

P11.10 7.17e+02 ; 2 7.07e+02 ; 7 7.17e+02 ; 2 4.31e+02 ; 6 7.10e+02 2.50e+01

P11.11 7.17e+02 ; 2 error 7.17e+02 ; 2 4.38e+02 ; 124 6.89e+02 2.50e+01

P12.1 1.80e−19 ; 3 4.80e−09 ; 5 1.80e−19 ; 3 4.80e−09 ; 5 2.07e−11 0.00e+00

P12.2 1.00e+00 ; 2 1.13e−08 ; 5 1.00e+00 ; 2 1.13e−08 ; 5 1.05e−01 9.02e−19

P12.3 1.00e+00 ; 2 7.77e−09 ; 5 1.00e+00 ; 2 7.77e−09 ; 5 5.65e−11 1.93e−08

P12.4 3.24e−07 ; 6 1.00e+00 ; 6 3.00e+00 ; 4 1.00e+00 ; 7 3.07e−08 1.63e−08

P13.1 2.72e−08 ; 4 6.46e−03 ; 5 2.72e−08 ; 4 6.46e−03 ; 5 5.71e−03 5.91e−03

P13.2 2.71e−08 ; 4 4.43e−08 ; 6 2.71e−08 ; 4 4.43e−08 ; 6 3.66e−08 5.53e−03
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Table 4 (continued)

IRF IRξ
F IRL IRξ

L KKT KKTξ

Inst. F ; It F ; It F ; It F ; It F / Status F / Status

P13.3 6.76e−03 ; 2 8.81e−08 ; 7 6.76e−03 ; 2 2.95e−08 ; 8 infeas 5.53e−03

P13.4 4.86e−07 ; 5 1.12e−05 ; 16 4.00e+00 ; 3 1.44e+00 ; 6 3.68e−01 1.00e+00

reached the same functional value or a method attains the optimal value whenever
the difference between the functional values is at most 10−4. The term “It” indicates
the number of outer iterations. We do not report the number of iterations for the KKT
reformulation because its not comparable with the outer iterations of inexact restora-
tion techniques. On the other hand, the number of iterations of all IR strategies are
comparable. The column “F /Status” also reports the answer of the method for the
KKT reformulation and Scholtes’ strategy: the value of F to indicate convergence,
“max it” if the maximum number of iterations (1000) is reached and “infeas” if the
method converges to a point that does not conform to the first-order stationary con-
ditions of the lower level problem. We note that all IR strategies declare convergence
within 150 iterations, except for IRξ

F on P11.11 instance, where a fatal error occurred.
Analyzing the highlighted best and optimal values of F of both tables, for prob-

lems 1 to 8 (Table 3), the inexact restoration strategy, particulary its perturbed version
IRξ

F, overcame the KKT reformulation. Actually, for problems 1 to 8, the strategy

IRξ
F had the best performance, and IRξ

L was the second-best strategy. These prob-
lems have nonlinear constraints, whereas the remaining have just bound constraints.
For problems 9 to 13 (Table 4), among the IR strategies, IRξ

L stood out, but, overall,
the KKT reformulation had a better performance, even improved by the perturbed
KKT reformulation approach. Hence, we have observed that the inexact restoration
strategy suits better for problems that have more complicated constraints.

All in all, the perturbed inexact restoration proved effective for problems 1 to 5,
7, 8, 12, and 13. It is worth mentioning that the set of efficient solutions of prob-
lem 11 is composed by several discontinuous parts (see Table 5 and the discussion
in the Appendix), what possibly justifies the poor performance of the KKT reformu-
lation, never reaching an optimal value for any instance of this problem. Scholtes’
method, on the other hand, reached the best value for F at four instances, and a
similar performance was attained by the IRξ

L version.
Despite the good behavior of the inexact restoration method, especially its per-

turbed version, we have not obtained practical evidences to affirm that the IR
approach always overcame the KKT-based strategies. Indeed, for problem 10, the
KKT reformulation and Scholtes’ method obtained the best results. Nevertheless, for
19 out of the 69 total tested instances, the KKT reformulation could not achieve a
first-order stationary point, being these “infeas” occurrences connected with the lack
of robustness of such a strategy. Among these failures, we highlight instance P1.1,
thoroughly discussed as example 1. For this particular instance, as can be seen in
Table 3, the lack of preference of the KKT-based reformulations towards optimizers
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clearly leaves such strategies in disadvantage in comparison with the four IR-based
strategies.

5 Final remarks

We have applied inexact restorationstrategies to address bilevel programming prob-
lems in which the lower level is a multiobjective constrained problem. Compared
with the traditional strategy of reformulating the bilevel problem and replacing the
lower level optimization by its first-order optimality conditions, our approaches have
shown better computational performance, especially in terms of robustness. For prob-
lems P1 to P7, similar conclusions can be reached in comparison with Scholtes’
regularization method for MPCCs [26]. From the results of instances P7.1–P7.6
(Table 3), one can notice that employing pertubations within the IR strategy has
shown the expected effect. Indeed, following our primary motivation, the generated
sequences managed to escape from undesired KKT points. For these instances, how-
ever, Scholtes’s method was not as successful as the perturbed IR strategies. On
one hand, the theoretical convergence analysis of the employed IR must encom-
pass the optimality conditions of the lower level problem and its relationship with
the upper level problem. On the other hand, the proposed approach allows a prac-
tical deep search into the lower level problem, exploiting its original and intrinsic
structure. Moreover, nonlinear problems were solved, with general inequalities in
the description of the feasible set of the multiobjective lower level problem, tackled
by a perturbation scheme, with promising results. The weighted-sum scalarization
reformulation allowed us to put our original and non-standard problem as a classical
bilevel one. Distinct possibilities for handling the lower level optimization problem,
as well as a wider set of computational experiments are objects of future research.

Acknowledgements The authors are thankful to an anonimous reviewer, whose remarks and suggestions
have provide improvements upon the original version of the manuscript.

Appendix: Test Problems

Problem 1. This is the problem (10)–(11) of example 1 on page 8.

Problem 2. We define problem 2 as the minimization of F(x1, x2) = x2
1 + x2

2 over
the set X ∗ of efficient solutions of the multiobjective constrained problem [28]

min {x1, : x2}
s.t. 1 + 0.1 cos

(
16 arctan x2

x1

)
− x2

1 − x2
2 ≤ 0

(
x1 − 1

2

)2 +
(
x2 − 1

2

)2 ≤ 1
2

0 ≤ x1, x2 ≤ π .

X ∗ is discontinuous and nonconvex. There are four optimal solutions with functional
value F ∗ ≈ 0.95 (see Fig. 3).
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Fig. 3 Geometry of problem 2. The feasible set X ∗ is discontinuous and nonconvex. There are four
solutions, with optimal value F ∗ ≈ 0.95

Problem 3. Problem 3 consists in minimizing F(x1, x2) = x2
1 + x2

2 over the set of
efficient solutions of

min {−x1, x1 + x2
2}

s.t. x2
1 − x2 ≤ 0

x1 + 2x2 ≤ 3
x1, x2 ≥ 0.

The feasible set is X ∗ = {(x1, x2) ∈ R
2; x2 = x2

1 , : 0 ≤ x1 ≤ 2} and (0, 0)T is the
optimal solution.

Problem 4. The lower level multiobjective problem is exactly the same of the prob-
lem 3, and thus the feasible set X ∗ is the same. The upper level objective function of
problem 4 is F(x1, x2) = (x1 − 1)2 + (x2 − 1)2, and (1, 1)T is the optimal solution.

Problem 5. This is a slight modification of problem 4. It consists in minimizing
F(x1, x2) = (x1 − 1)2 + (x2 − 1)2 over the set of efficient solutions of

min {x1, −x1 + x2
2}

s.t. x2
1 − x2 ≤ 0

−x1 + 2x2 ≤ 3
x1, x2 ≥ 0.

The feasible set is X ∗ = {(x1, x2) ∈ R
2; x2 = x2

1 , 0 ≤ x1 ≤ 2−2/3} and the optimal
solution is (2−2/3, 2−4/3)T ≈ (0.63, 0.40)T .
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Problem 6. The lower level problem is

min

{

x2
1 + 1

4

(
x2 − 9

2

)2
, x2

2 + 1
4

(
x1 − 9

2

)2
}

s.t. −x1 − x2 + 2 ≤ 0
x1, x2 ≥ 0.

Geometrically, the set X ∗ of efficient solutions of this multiobjective problem is
composed by the simultaneously tangential points of the level sets of both objective
functions, when it is contained in the semispace defined by x1 + x2 ≥ 2, and by the
line x1 + x2 = 2 otherwise. More specifically, X ∗ is the union of the curves

C1 :
{(

9t
2t−8 , 9

2−8t

)
; − 1

2 ≤ t ≤ 0
}

,

C2 :
{
(t, 2 − t) ; 1

2 ≤ t ≤ 3
2

}
,

C3 :
{(

9
2−8t

, 9t
2t−8

)
; − 1

2 ≤ t ≤ 0
}

.

The upper level objective function is F(x1, x2) = (x1 − 9/2)2 + x2
2 , for which

(9/2, 0)T is the optimal solution. Figure 4 illustrates its geometry.
Problem 7. This is the problem (12)–(13) of example 2 on page 9.

Problems 8 to 11 (ZDT family instances). Multiobjective problems of [29] (here
named ZDT problems) are constructed with three functions f1, g, h in the following
way:

min {f1(x1), f2(x1, . . . , xn)}

0.5 1.5 4.5

0.5

1.5

4.5

C1

C2

C3 x

F level sets

x1

x2

Fig. 4 Geometry of problem 6. The feasible set is the union of curves C1, C2, and C3. The optimal solution
is x∗ = (9/2, 0)T
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where

f2(x1, . . . , xn) = g(x2, . . . , xn)h(f1(x1), g(x2, . . . , xn))

(see also [9]). We were inspired in four combinations suggested in Definition 4
of [29]. For each combination, we minimize the following:

F(x1, x2, . . . , xn) = (x1 − 1)2 +
n∑

i=2

x2
i

over the set of efficient solutions defined by the minimization of functions f1 and f2
on certain box constraints. We summarized the properties of these test problems in
Table 5. For these problems, the set of efficient solutions is split into discontinuous
components, one for each (local) minimum of g, formed with all possible values of
f1 (see Section 5.1 of [9]). Thus, problems 8 to 10 have a unique set of efficient
solutions component, for which x2 = · · · = xn = 0 (i.e. g(x2, . . . , xn) = 1), while
Problem 11 has several components. For problems 8, 9, and 11, the possible values of
x1 = f1(x1) are the whole interval [0, 1]. For problem 10, the possible values of x1
are the intervals for which h decreases (see Fig. 5). Hence, (1, 0, . . . , 0) is the optimal
solution of problems 8, 9, and 11, whereas (0.954, 0 . . . , 0)T is the (approximated)
optimal solution of problem 10. Problem 11 has 21n−1 sets of efficient solutions
components, one for each combination of the local minimizers of x2

i − 2 cos(4πxi),
i = 2, . . . , n (see Fig. 6).

Table 5 ZDT family instances.

Problem ID f1, g, h, box constraints Set of efficient solutions

Problem 8 f1 = x1 x2 = · · · = xn = 0

g = 1 + 9
∑n

i=2 xi/(n − 1) x1 ∈ [0, 1]
h = 1 − f1/g

x ∈ [0, 1]n
Problem 9 f1 = x1 x2 = · · · = xn = 0

g = 1 + 9
∑n

i=2 xi/(n − 1) x1 ∈ [0, 1]
h = 1 − (f1/g)2

x ∈ [0, 1]n
Problem 10 f1 = x1 x2 = · · · = xn = 0

g = 1 + 9
∑n

i=2 xi/(n − 1) x1 in the intervals

h = 1 − f1/g(1 − sin(10πf1)) in which h decreases

x ∈ [0, 1]n
Problem 11 f1 = x1 several efficient

g = 2n − 1 +∑n
i=2(x

2
i − 2 cos(4πxi)) components

h = 1 − (f1/g)2

x1 ∈ [0, 1], x2, . . . , xn ∈ [−5, 5]
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1

1 f1

x1

2

Fig. 5 Geometry of problem 10. In the set of efficient solutions, g(x∗
2 , . . . , x∗

n) = 1 and x1 lies on the
intervals for which f̃2(x1) = f2(x1, x

∗
2 , . . . , x∗

n) = 1 − x1(1 − sin(10πx1)) decreases (huge lines). These
are the non-dominated values corresponding to the two objectives f1(x1) = x1 and f̃2(x1)

Problems 12 and 13 (WFG family instances). Based on the Walking Fish Group
(WFG) Toolkit [19], we consider two instances, for which particular choices of the
parameters were made to come up with smooth functions:

– Problem 12, that consists in minimizing F(x) = ∑n
i=1 x2

i , over the set of
efficient solutions defined by the minimization of

f1(x) = xn

2n
+ 2

n−1∏

i=1

[
1 − cos

(πxi

4i

)]
,

fj (x) = xn

2n
+ 2j

[

1 − sin

(
πxn−j+1

4(n − j + 1)

)] n−j∏

i=1

[
1 − cos

(πxi

4i

)]
,

j = 2, . . . , n − 1,

fn(x) = xn

2n
+ 2n

[

1 − x1

2
− cos(5πx1 + π/2)

10π

]

on [0, 1]n. The optimal solution is the origin.

5 52

xi

Fig. 6 Geometry of problem 11. There is one set of efficient solutions component for each combination
of local minimizers of g̃i (xi ) = x2

i − 2 cos(4πxi), i = 2, . . . , n
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– Problem 13, that consists in minimizing F(x) = ∑n
i=1 x2

i , over the set of
efficient solutions defined by the minimization of

f1(x) = xn

2n
+ 2

n−1∏

i=1

[
1 − cos

(πxi

4i

)]
,

fj (x) = xn

2n
+ 2j

[

1 − sin

(
πxn−j+1

4(n − j + 1)

)] n−j∏

i=1

[
1 − cos

(πxi

4i

)]
,

j = 2, . . . , n − 1,

fn(x) = xn

2n
+ 2n

[

1 − x1

2
cos2

(
5πx1

2

)]

on [0, 1]n. Again, the optimal solution is the origin.
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