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ABSTRACT. Constraint qualifications (CQ) are assumptions on the algebraic description of the feasible

set of an optimization problem that ensure that the KKT conditions hold at any local minimum. In this work

we show that constraint qualifications based on the notion of constant rank can be understood as assump-

tions that ensure that the polar of the linear approximation of the tangent cone, generated by the active

gradients, retains it geometric structure locally.
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1 INTRODUCTION

Consider the general nonlinear optimization problem

min f0(x)

s.t. fi (x) = 0, i = 1, . . . , m, (NOP)

f j (x) ≤ 0, j = m + 1, . . . , m + p,

where the vector of decision variables x lies in Rn and all the functions fk : Rn → R, k =
1, . . . , m + p, are assumed to be continuously differentiable. Denote by I and J the index set of

the equality and inequality constraints respectively, i.e. I = {1, . . . , m} and J = {m+1, . . . , m+
p}. For a given feasible point x̄ , we say that a constraint is active if the respective function fk is
biding at x̄ , that is if fk (x̄) = 0. In particular, all the equality constraints are active at feasible
points. As for the inequalities, we denote the index set of the active inequality constraints as

A(x̄) = { j | f j (x̄) = 0, j ∈ J}.
Optimality conditions play a central role in the study of optimization problems. They are prop-
erties that a point must satisfy whenever it is a reasonable candidate for a solution to (NOP).

*Corresponding author.
Department of Applied Mathematics, Institute of Mathematics, Statistics and Scientific Computing, University of
Campinas, Rua Sérgio Buarque de Holanda, 651, 13083-859 Campinas, SP, Brazil.
E-mails: andreani@ime.unicamp.br; pjssilva@ime.unicamp.br



�

�

“main” — 2014/9/24 — 11:10 — page 482 — #2
�

�

�

�

�

�

482 CONSTANT RANK CONSTRAINT QUALIFICATIONS: A GEOMETRIC INTRODUCTION

Usually, one desires conditions that are easily verifiable and stringent enough to rule out most

non-solutions.

Typical optimality conditions involve the gradients of the objective and constraints functions at
a point of interest. Arguably the most used one is the Karush-Kuhn-Tucker condition (KKT)[29,
28, 31]. It states that if a feasible point x̄ is a local minimizer of (NOP), then there are Lagrange

multipliers λi ∈ R, i ∈ I , and μ j ∈ R+, j ∈ A(x̄), such that

∇ f0(x̄) +
∑
i∈I

λi∇ fi (x̄) +
∑

j∈A(x̄)

μ j ∇ f j (x̄) = 0, (KKT)

Unfortunately, it may fail at a local minimum unless extra assumptions hold. In order to ensure

that it is necessary for optimality, the constraint set description given by the constraint functions
have to conform to special conditions called constraint qualifications [34, 11, 10].

The aim of this text is to present a family of constraint qualifications that use the notion of
constant rank and that have had recently a great impact in algorithmic convergence, second-order

conditions, and parametric analysis, among other applications [26, 39, 5, 6, 3, 2, 37, 38, 8, 9].
We will do this by presenting the KKT conditions from a geometric point of view, that naturally
leads to constant rank assumptions.

2 GEOMETRIC OPTIMALITY CONDITIONS AND KKT

In this section we follow the ideas from [12, 10]. Let x̄ be a feasible point, a point belonging to
F , that we want to study.

If the optimization problem was unconstrained we know that the condition

∇ f0(x̄) = 0,

is necessary for optimality. Otherwise, taking small steps in any direction d ∈ R
n such that

∇ f0(x̄)′d < 0, would lead to better points. Since (NOP) is a constrained problem, the only
directions that need to be considered are the directions that point inward the feasible set. That is

the directions in
F = {d | ∃δ > 0, x̄ + αd ∈ F, ∀α ∈ (0, δ]}.

This set is a cone known as the cone of feasible directions. It gives rise the following optimality
condition:

∀d ∈ F, ∇ f0(x̄)′d ≥ 0.

However, the cone of feasible directions can be small, and even empty, if the feasible set is not
convex. For example, consider the feasible set F = {(x1, x2) | x2 = sin(x1)}, a sinus curve in
the plane, and x̄ = (0, 0). In this case there is not any straight direction that points inside the

feasible set from x̄ . But, in this same example it is easy to find directions that point “almost”
inside F . They are given by the tangent to the curve at x̄ . Even though points in this tangent are
not feasible, there are feasible points very close to it, so close that the directional derivative of
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the objective at the tangent direction can determine whether those nearby feasible points are

better or worse than x̄ whenever this directional derivative is nonzero.

Hence, it may be interesting to consider not only directions that point straight inside the feasible
set from x̄ , but also directions that are tangent to the feasible set. Remembering that tangents are
defined as limit of secant directions this leads us to the definition of the tangent cone to F at x̄

T de f=
{

d ∈ Rn | ∃xk ∈ F, xk → x̄
xk−x̄

‖xk−x̄‖ → d
‖d‖

}
∪ {0}.

Once again it is not hard to show that if x̄ is a local minimum of (NOP) then

∀d ∈ T , ∇ f0(x̄)′d ≥ 0. (1)

This condition is known as the (first order) geometric optimality condition [12, 10]. The term
geometric is used to emphasize that it does not directly depend on the algebraic description of
the feasible set, given by the constraints. It actually depends only on the (local) shape of the set

itself.

Finally, note that the geometric condition can be rewritten as

∀d ∈ T , −∇ f0(x̄)′d ≤ 0.

This directly recalls the definition of the polar of a cone C, which is the cone C◦ of all directions

that make an obtuse angle with the directions in C. What is written above is that −∇ f0(x̄)

belongs to the polar of the tangent cone. This can be stated compactly as

−∇ f0(x̄) ∈ T ◦, (2)

where T ◦ denotes the polar of the cone tangent to the feasible set at x̄ .

The main drawback of the geometric condition is that it is not easy to compute the tangent cone
directly from the definition. It might then be interesting to search for some approximation of
T that depends on the functional definition of the constraints. Naturally, this can be achieved

linearizing the active constraints around x̄ using the functions gradients. That is, we can expect
that, at least in most situations, the linearized cone

L de f= {d | ∇ fi (x̄)′d = 0, i ∈ I, ∇ f j (x̄)′d ≤ 0, j ∈ A(x̄)}

should be a good approximation of the tangent T . But what is the exact relationship between T
and L? Or even better, in the light of the compact form of the geometric condition given in (2),
what is the relation between T ◦ and the polar of the linearized cone L◦?

A first result in this direction is that T ⊂ L and hence T ◦ ⊃ L◦. Therefore, if we try to replace
T ◦ in (2) we arrive at

−∇ f0(x̄) ∈ L◦, (3)

Pesquisa Operacional, Vol. 34(3), 2014
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a condition that may fail whenever L◦ is strictly contained in T ◦, even though the original

geometric condition always hold at a local minimum.

On the other hand, using Farkas Lemma [12] it is easy to compute the polar of L. It has the form

L◦ =
⎧⎨
⎩d | d =

∑
i∈I

λi∇ fi (x̄) +
∑

j∈A(x̄)

μ j ∇ f j (x̄), μ j ≥ 0, j ∈A(x̄)

⎫⎬
⎭ . (4)

Hence, condition (3) is actually just the KKT condition and the observation above explains why
the KKT condition may fail at a local minimum. See Figure 1.

Figure 1 – A feasible set where the KKT condition can fail. The feasible set is the dark gray region
to the left. The tangent cone at the origin is just the negative horizontal axis while the linearized cone

is the complete horizontal line. The polar of the tangent cone is the semi-plane of positive horizontal
values. The polar of the linearized cone is the vertical line which is properly contained in T ◦.

It becomes clear now that any condition that can assert that L◦ = T ◦ is a tool to ensure that
KKT is always necessary for optimality. These conditions only deal with the constraint set and

are known as constraint qualifications (CQ). Actually, the conditionL◦ = T ◦ itself is known in
the optimization literature as the Guignard’s constraint qualification [19, 18].

Definition 2.1. Guignard’s constraint qualification holds at x̄ if L◦ = T ◦.

In 1971, Gould and Tolle showed that if a constraint set is such that for all possible continuously
differentiable objectives that have local minimum at x̄ the KKT condition holds, then Guignard’s
condition also holds. Hence, as expected, this is the weakest constraint qualification possible.

Throughout the optimization literature many other CQs were stated. Another famous example,

that can be easily understood under the light of discussion above, is Abadie’s CQ [1].

Definition 2.2. Abadie’s constraint qualification holds at x̄ if L = T .

Pesquisa Operacional, Vol. 34(3), 2014
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It is simple to see that if Abadie’s CQ hold, the polars of the cones also coincide and hence Guig-

nard’s CQ holds. Figure 2 gives an example where Guignard’s condition hold while Abadie’s
CQ fails. Figure 3 is an example where Abadie holds.

Figure 2 – An important feasible set is given by the complementarity conditions, that define the positive
axes. In this case the feasible set and the tangent cone coincide, but the linearized cone is the whole

positive orthant. Even though L properly contains T , both cones have the same polars.

Figure 3 – Abadie holds, that is L = T .

These two conditions are usually of more theoretical importance, as they still directly use full
geometric information of the feasible set by depending explicitly on T , or its polar, in their
statement. We will now start to discuss constraint qualifications that only require properties from

Pesquisa Operacional, Vol. 34(3), 2014
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the functional description of the feasible set. We are particularly interested in constraint quali-

fications that are associated to the convergence of optimization algorithms and that involve the
notion of constant rank of a set of active gradients [11, 35, 26, 39, 37, 8, 9].

3 CONE DECOMPOSITION AND CLASSICAL CONSTRAINTS QUALIFICATIONS

Let C ⊂ R
n be a closed convex cone. One of its most important geometric properties is whether

C contains a line (passing through the origin) or is composed only of half-lines. Since C is

convex, this is equivalent to ask if the origin is an extreme point of C or whether the largest
subspace contained in C is just the origin. If the answer to any of the three last questions is yes,
then C is called a pointed cone. In this sense studying the largest subspace contained in a cone

is important to better understand its geometric properties. This subspace is called the lineality
space of C and can be defined as

L(C)
de f= {d ∈ C | −d ∈ C},

see [12].

Now, let us turn our attention to the polar of the linearized cone that appears in the KKT condi-

tions, that is to

L◦ =
⎧⎨
⎩d | d =

∑
i∈I

λi∇ fi (x̄) +
∑

j∈A(x̄)

μ j ∇ f j (x̄), μ j ≥ 0

⎫⎬
⎭ .

It is clear from the expression above that the lineality space of L◦ contains at least the subspace

spanned by the equalities gradients. Hence L◦ can only be pointed if there are no equality con-
straints. Actually we may argue that L(L◦) is expected to be exactly this subspace, as equalities
are associated to multipliers that are free of sign. For example, consider the interpretation of the

KKT conditions as an equilibrium with the active constraints reacting against minus the gradient
of the objective function. Let k be the index of an active constraint such that both ±∇ fk (x̄) ∈ L◦.
Then this constraint can react against any movement with a component in ∇ fk (x̄) direction, act-

ing like a track that only allow movements in its tangent space. It seems to act as an equality.

Now, using the polyhedral representation of L◦, it is easy to compute its lineality space. In fact,
let us define

I ′ de f= {i ∈ I ∪A(x̄) | −∇ fi (x̄) ∈ L◦},
then

L(L◦) = span{∇ fi (x̄) | i ∈ I ′}. (5)

In particular, I ′ contains the indexes of all equalities. It may also contain the index of some

inequality constraints, the ones with index in

J−
de f= { j ∈A(x̄) | −∇ fi (x̄) ∈ L◦}. (6)

By construction I ′ = I ∪ J−.

Pesquisa Operacional, Vol. 34(3), 2014
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Moreover, defining J+
de f= A(x̄) \ J−, the indexes of all inequalities whose gradients do not

belong to the lineality space, we can decompose L◦ as a (direct) sum of the form

L◦ =
{∑

i∈I′
λi∇ fi (x̄) | λi ∈ R, i ∈ I ′

}
+

⎧⎨
⎩

∑
j∈J+

μ j ∇ f j (x̄) | μ j ≥ 0, j ∈ J+

⎫⎬
⎭ . (7)

The first term is a subspace, the lineality space L(L◦), and the second a pointed cone.

We can learn a lot about the basic shape of the cone L by analyzing the decomposition above and
identifying the dimensions of the subspace and pointed cone components. For example in R2 the

basic shapes of all possible cones are:

• A single point. The subspace component and the pointed cone are only the origin, that is
both have zero dimension.

• A ray. The subspace component is of dimension 0 and the pointed cone of dimension 1.

• A line. Now the subspace component is of dimension 1 and the pointed cone of dimen-

sion 0.

• An angle. The subspace component has dimension 0 and the pointed cone, dimension 2.

• A semi-plane. The subspace has dimension one and the pointed cone has dimension 1 or
2 (pointing to the same side of the subspace).

• The whole plane. The subspace component has dimension 2 and the pointed cone dimen-
sion 0.

One of the main points of this contribution is to show that many constraint qualifications can

be better understood taking into consideration this cone decomposition. Actually, we will show
that a whole family of CQs is directly or indirectly trying to ensure that locally the decomposi-
tion is stable, at least from the point of view of the dimensions involved. With this aim, let us

start with the two most important constraint qualifications, linear independence (regularity) and
Mangasarian-Fromovitz CQ.

Definition 3.1. The linear independence constraint qualification, or regularity condition, holds
at x̄ if the gradients of all active constraints at x̄ are linearly independent.

In this case the index set of the subspace component I ′ is simply I , as showing that j ∈ J−
directly shows that ∇ f j (x̄) can be written in terms of the other active gradients. Moreover, since
linear independence is a property that is preserved locally we can see that the local version of L◦

L◦(x)
def=

⎧⎨
⎩d | d =

∑
i∈I

λi∇ fi (x) +
∑

j∈A(x̄)

μ j ∇ f j (x), μ j ≥ 0

⎫⎬
⎭ . (8)

Pesquisa Operacional, Vol. 34(3), 2014
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still has linearly independent generators for both the subspace component and the pointed cone.

That it, it still have the same basic shape as L◦(x̄) = L◦.

Next we introduce the Mangasarian-Fromovitz constraint qualification (MFCQ) [35] using the
notion of positive linear independence.

Definition 3.2. Let V = (v1, v2, . . . , vk) be a tuple of vectors in Rn and Ī, J̄ index sets such that
Ī ∪ J̄ = {1, 2, . . . , k}. A positive combination of elements of V with respect to the (ordered) pair

(Ī , J̄) is a vector in the form∑
i∈Ī

λivi +
∑
j∈J̄

μ jv j , μ j ≥ 0, ∀ j ∈ J̄.

The tuple V is said to be positively linearly independent (PLI) if the only way to write the zero
vector using positive combinations is using zeros coefficients. Otherwise the vectors are said to

be positive linear dependent (PLD).

Now we are ready to state MFCQ. Actually, we use an alternative definition that can be found
in [41]. The original definition has a stronger geometric flavor but is not well suited for our
discussion.

Definition 3.3. The Mangasarian-Fromovitz constraint qualification (MFCQ) holds at x̄ if the

set of gradients of all active constraints at x̄ is PLI with respect to (I,A(x̄)).

Once again, it is easy to see that the MFCQ implies that the index set of the subspace component
of L◦ is simply the index set of all equalities. In fact, to say that an active inequality gradient is
in L(L◦) is to say that the gradients are PLD. Hence, Mangasarian-Fromovitz CQ is asking that

the natural decomposition of the cone is given precisely by the division of the constraints among
equalities and inequalities, that is I ′ = I , J− = ∅, and J+ = A(x). Moreover, it also requires
that the subspace component have the same dimension around x̄ , as it is spanned by linearly

independent vectors, therefore preserving its geometric structure locally.

Finally, an interesting remark is that the gradients in the definition of the pointed cone, the gra-
dients with index in J+, are always PLI. Hence, their dimension and basic direction will be
preserved locally without further assumptions as positive linear independence is preserved

locally by continuous transformations just like the usual linear independence.

4 CONSTANT RANK CONSTRAINT QUALIFICATIONS AND BEYOND

After the discussion above, it starts to become clear that a key property to ensure the validity
of a constraint qualification is that the geometric structure of L◦ should be preserved around

x̄ . Moreover, we have learned that this is somewhat summarized by the dimension of its sub-
space component L(L◦) or, in other words, the rank of {∇ fi (x) | i ∈ I ′}. This idea seems to be
behind a family of constant rank constraint qualifications that appeared in the mid eighties with

Janin [26] and many variations following [39, 37, 8, 9].

Pesquisa Operacional, Vol. 34(3), 2014
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The first constant rank condition was introduced by Janin to study the directional derivative

of the marginal value function of a perturbed optimization problem [26]. It was then used in the
context of optimization problems with equilibrium constraints [32, 42], bilevel optimization [15],
variational inequalities [27], and second order conditions [6, 4].

Definition 4.1. The constant rank constraint qualification (CRCQ) holds at x̄ if for all index
subsets K ⊂ I ∪A(x̄) the set of gradients {∇ fk (y) | k ∈ K} has the same rank locally around

x̄ .

It is clear from the definition that CRCQ is a generalization of regularity since linear indepen-
dence of a group of vectors also imply linear independence of all its subgroups. Moreover, linear
independence of continuous gradients is stable locally, i.e. if it holds at x̄ it holds in a neighbor-

hood of x̄ . This last fact helps to explain why the definition above asks for a property to hold
close to x̄ and not only at x̄ . In effect, any constraint qualification will need to imply Guignard’s
condition that equates the pointwise object L◦ with the geometric object T ◦. Since T ◦ depends

on all feasible points close to x̄ , it is natural that any constraint qualifications should require,
implicitly or explicitly, properties locally around x̄ .

CRCQ also implies that the index set J− will remain constant in a neighborhood of x̄ , as the
signs of the positive combinations will be preserved by continuity. Hence, the subspace com-

ponent of the local perturbation of the polar of the linearized cone L◦(x) will be spanned by
gradients with the same indexes as in L◦ and its geometry will be preserved due to rank preser-
vation.

The constant rank condition was then generalized by taking into account that the multipliers

associated to inequality constraints are always positive, similarly to the way MFCQ generalizes
regularity. In 2000, Qi and Wei introduced the notion of constant positive linear dependence [39]
that was proved to be a constraint qualification in [5].

Definition 4.2. The constant positive linear dependence (CPLD) constraint qualification holds
at x̄ if, for all subsets Ī ⊂ I and J̄ ⊂ J, the positive linear dependence with respect to (Ī, J̄) of
the gradients {∇ fk | k ∈ Ī ∪ J̄} imply that they remain PLD in a neighborhood of x̄ .

This condition proved to be very useful in the convergence analysis of optimization algorithms
like SQP [39], exterior penalty and augmented Lagrangian methods [3, 2], and inexact restora-
tion [17]. It was also generalized to problems with complementarity and vanishing constraints

[23, 24].

Again, CPLD implies that the indexes in J− are stable close to x̄ and hence the subspace com-
ponent of L◦(x) is generated by gradients with the same indexes as in x̄ . The index sets in the
cone decomposition are stable. Moreover, it can be shown that it also implies that the rank of the

subspace component is constant close to x̄ . We will give more details on this fact below when
we define the relaxed version of CPLD.

The conditions above impose assumptions on all subsets of the active constraints. Follow up
conditions appeared requiring properties only of subsets of the active constraints that contain all

Pesquisa Operacional, Vol. 34(3), 2014
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equalities. Actually, for equality constrained problems it was already known that the constant

rank of the full set of gradients was sufficient to qualify the constraints [4]. Later on, Minchenko
and Stakhovski incorporated inequality constraints [37].

Definition 4.3. The relaxed constant rank constraint qualification (RCR) holds at x̄ if for all
index sets sets in the form K = I ∪ J̄, where J̄ ⊂ A(x̄), the set of gradients {∇ fk (y) | k ∈ K}
has the same rank locally around x̄.

In [37], the authors showed that RCR implies the existence of a local error bound, that is that

it is possible to estimate the distance to the feasible set by using a natural infeasibility measure
which is in turn a constraint qualification [43]. They also showed that the error bound property
holds under CPLD. A follow up work also used RCR to study the directional differentiability of

the optimal value function of a perturbed problem and second order optimality conditions [38].

This condition was then generalized using only positive linear dependence in place of rank by
Andreani et al. in [8].

Definition 4.4. The relaxed constant positive linear dependence constraint qualification (RC-
PLD) holds at x̄ if

• The gradients of all equality constraints have the same rank in a neighborhood of x̄ .

• Let Ī ⊂ I be the index set of a basis of the space spanned by gradients of all equalities
at x̄ . Then, for all J̄ ⊂ A(x̄) the positive linear dependence with respect to ( Ī , J̄) of

{∇ fk (x̄) | k ∈ Ī ∪ J̄} implies that it remains PLD in a neighborhood of x̄ .

This constraint qualification have the same interesting properties as CPLD. It is stable locally,
that is if it holds at x̄ it holds at all feasible points close to x̄ [8]. It implies the existence of an
error bound [8]. It has been used in the context of problems with complementarity constraints
and parametric analysis [21, 20, 22, 14], convergence analysis of algorithms [16, 25, 13], and

vector optimization [33].

The last two conditions still require properties of gradients whose indexes belong to all possible
subsets of active inequalities. We know from the discussion of the previous section that only the
active constraints with index in I ′, are relevant in the definition of the subspace component of

L◦, see (5) and the following discussion. It is then natural to define a related CQ:

Definition 4.5. The constant rank of the subspace component (CRSC) constraint qualification
holds at x̄ if there is a neighborhood of x̄ where the rank of {∇ fk (y) | k ∈ I ′} remains constant.

This condition was recently introduced by Andreani et al. in [9]. An equivalent condition, with
an extra, superfluous, assumption, was developed independently by Minchenko and Stakhovski

in [36], see also [30].

The CRSC generalizes all the previous constraint qualifications while keeping their most im-
portant theoretical properties. In particular, it is implied by RCPLD [9], a result that is not
very obvious but that can be shown using the theory from [40], see [9].

Pesquisa Operacional, Vol. 34(3), 2014
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Among the major properties of feasible sets that conform with CRSC we would like to empha-

size the following.

• Under the CRSC, the inequality constraints in J− hold as equalities for all feasible points
close to x̄ . That is, even though those constraints appear only as inequalities in the descrip-
tion of the feasible set, the reverse inequality is implied by the other constraints locally. In

this sense, the subspace component of L◦ is actually generated only by the equalities that
appear explicitly or implicitly in the description of the feasible set just like in MFCQ.

• The CRSC is stable, that is, if it holds at a feasible point x̄ it holds for all feasible point in

a neighborhood of x̄ . This was proved in [9] showing that set J− is also stable.

• The CRSC implies the error bound property like the previous CQs. The error bound is also
in turn a constraint qualification, as it implies Abadie’s CQ [43].

• The convergence theory of many optimization algorithms can be extended from requiring
CPLD to just CRSC. This is true at least for methods in the family of pure penalty al-
gorithms, multiplier methods, sequential quadratic programming, and inexact restoration.
This can be shown using the approximate – KKT sequences [7] and a weaker constraint

qualification called constant positive generators (CPG), that can also be used to generalize
convergence results for interior points methods. See details in [9].

5 CONCLUSION

We introduced a geometric view of constraints qualifications based on the constant rank condition
and showed that their key property is that they preserve the geometric structure of the lineality
space of the polar of linearized cone L◦. The weakest condition of this family, called the con-
stant rank of the subspace component (CRSC) still preserves important properties like stability,

the validity of an error bound and is adequate to study the convergence of many optimization
algorithms like inexact restoration [13] and augmented Lagrangian methods [9].
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[5] ANDREANI R, MARTÍNEZ JM & SCHUVERDT ML. 2005. On the Relation between Constant Posi-
tive Linear DependenceCondition and Quasinormality Constraint Qualification. Journal of Optimiza-

tion Theory and Applications, 125(2): 473–483.
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