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AN EXTREMAL NONNEGATIVE SINE POLYNOMIAL

ROBERTO ANDREANI AND DIMITAR K. DIMITROV

ABSTRACT. For any positive integer n, the sine polynomi-
als that are nonnegative in [0, π] and which have the maximal
derivative at the origin are determined in an explicit form.
Associated cosine polynomials Kn(θ) are constructed in such
a way that {Kn(θ)} is a summability kernel. Thus, for each
p, 1 ≤ p ≤ ∞ and for any 2π-periodic function f ∈ Lp[−π, π],
the sequence of convolutions Kn ∗ f is proved to converge to
f in Lp[−π, π]. The pointwise and almost everywhere conver-
gences are also consequences of our construction.

1. Introduction and statement of results. There are various
reasons for the interest in the problem of constructing nonnegative
trigonometric polynomials. Among them are the Gibbs phenomenon
[16, Section 9], univalent functions and polynomials [7], positive Jacobi
polynomial sums [1] and orthogonal polynomials on the unit circle [15].

Our study is motivated by a basic fact from the theory of Fourier
series and by an intuitive observation which comes from an overview
of the variety of known nonnegative trigonometric polynomials. The
sequence {kn(θ)} of even, nonnegative continuous 2π-periodic func-
tions is called an even positive kernel if kn(θ) are normalized by
(1/2π)

∫ π

−π
kn(θ) dθ = 1 and they converge locally uniformly in (0, 2π)

(uniformly on every compact subset of (0, 2π)) to zero. It is a slight
modification of the definition in Katznelson’s book [8]. In what follows
we denote by kn∗f the convolution (1/2π)

∫ π

−π
kn(t)f(θ−t) dt. It is well

known that, for every 2π-periodic function f ∈ Lp[−π, π], 1 ≤ p ≤ ∞,
the sequence of convolutions kn ∗ f converges to f in the Lp[−π, π]-
norm provided kn is a sequence of even positive summability kernels.
The convolutions converge also pointwise and almost everywhere. We
refer to the first chapter of [8] for the details.
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On the other hand, most of the classical positive summability kernels
are sequences of nonnegative cosine polynomials which obey certain
extremal properties. Fejér [3] proved that the cosine polynomials

(1.1) Fn(θ) = 1 + 2
n∑

k=1

(
1− k

n+ 1

)
cos kθ,

are nonnegative and established the uniform convergence of the se-
quence Fn ∗ f to f for any continuous 2π-periodic function f . It is
easily seen that Fejér’s cosine polynomial (1.1) is the only solution of
the extremal problem

max
{
a1 + · · ·+ an : 1 +

n∑
k=1

ak cos kθ ≥ 0
}
.

A basic tool for constructing positive kernels is the Fejér-Riesz repre-
sentation of nonnegative trigonometric polynomials (see [4]). It states
that for every nonnegative trigonometric polynomial T (θ),

(1.2) T (θ) = a0 +
n∑

k=1

(ak cos kθ + bk sin kθ),

there exists an algebraic polynomial R(z) =
∑n

k=0 ckz
k of degree

n such that T (θ) = |R(eiθ)|2, and conversely, for every algebraic
polynomial R(z) of degree n, the polynomial |R(eiθ)|2 is a nonnegative
trigonometric polynomial of order n. Fejér [4] showed that

(1.3)
√

a2
1 + b21 ≤ 2 cos

(
π/(n+ 2)

)

for any nonnegative trigonometric polynomial (1.2) with a0 = 1 and
that this bound is sharp. As a consequence he obtained the estimate

(1.4) a1 ≤ 2 cos
(
π/(n+ 2)

)

for the first coefficient of any nonnegative polynomial of the form

1 +
n∑

k=1

ak cos kθ.
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Moreover, Fejér determined the nonnegative trigonometric and cosine
polynomials for which inequalities in (1.3) and (1.4) are attained. A
nice simple proof of Jackson’s approximation theorem in Rivlin [10,
Chapter 1] makes an essential use of the extremal property of this
cosine polynomial.

These observations already suggest that many sequences of nonnega-
tive trigonometric polynomials whose coefficients obey certain extremal
properties are positive summability kernels.

While there are many results concerning extremal nonnegative cosine
polynomials [2, 12], only a few results of the same nature about
nonnegative sine polynomials are known. Since sine polynomials are
odd functions, in what follows we shall call

sn(θ) =
n∑

k=1

bk sin kθ

a nonnegative sine polynomial if sn(θ) ≥ 0 for every θ ∈ [0, π]. It is
clear that, if sn(θ) is nonnegative, then b1 ≥ 0 and b1 = 0 if and only
if sn is identically zero. Rogosinski and Szegő [11] considered some
extremal problems for nonnegative sine polynomials. Among the other
results, they proved that

(1.5) s′n(0) = 1+2b2+· · ·+nbn ≤
{

n(n+ 2)(n+ 4)/24 n even
(n+ 1)(n+ 2)(n+ 3)/24 n odd,

provided bk are the coefficients of a sine polynomial sn(θ) in the space

S+
n =

{
sn(θ) = sin θ +

n∑
k=2

bk sin kθ : sn(θ) ≥ 0 for θ ∈ [0, π]
}
.

However, the sine polynomials for which the above limits are attained
were not determined explicitly. The first objective of this paper is to
fill this gap.

Theorem 1. The inequality (1.5) holds for every sn(θ) ∈ S+
n .

Moreover, if n = 2m + 2 is even, then the equality S′
2m+2(0) =

(m + 1)(m + 2)(m + 3)/3 is attained only for the nonnegative sine
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polynomial

(1.6)

S2m+2(θ) =
m∑

k=0

{(
1− k

m+1

)(
1− k

m+2

)(
2k+1 +

k(k−1)
m+3

)

× sin(2k+1)θ + (k+1)
(
1− k

m+1

)

×
(
2− k+3

m+2
− k(k+1)
(m+2)(m+3)

)
sin(2k + 2)θ

}
,

and, if n = 2m+ 1 is odd, the equality

S′
2m+1(0) = (m+ 1)(m+ 2)(2m+ 3)/6

is attained only for the nonnegative sine polynomial

(1.7)

S2m+1(θ) =
m∑

k=0

{(
1− k

m+1

)(
1+2k − k(k+2)

m+2
− k(k+1)(2k+1)
(m+2)(2m+3)

)

× sin(2k+1)θ + 2(k+1)
(
1− k

m+1

)(
1− k+2

m+2

)

×
(
1 +

k+1
2m+3

)
sin(2k + 2)θ

}
.

We shall obtain a close form representation of the extremal polynomi-
als (1.6) and (1.7) in terms of the ultraspherical polynomials P

(2)
n (x).

Recall that, for any λ > −1/2, {P (λ)
n (x)} are orthogonal in [−1, 1]

with respect to the weight function (1 − x2)λ−1/2 and are normalized
by P

(λ)
n (1) = (2λ)n/n! where (a)n is the Pochhammer symbol. Sec-

tion 4.7 of Szegő’s book [13] provides comprehensive information on
the ultraspherical polynomials.

Theorem 2. For any positive integer m the polynomials (1.6) and
(1.7) are given by

S2m+2(θ) =
12

(m+1)(m+2)(m+3)
sin θ

[
cos(θ/2)P (2)

m (cos θ)
]2(1.8)
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and

S2m+1(θ) =
6

(m+1)(m+2)(2m+3)
sin θ

[
P (2)

m (cos θ)+P
(2)
m−1(cos θ)

]2
.

(1.9)

Since 2(n + 2)P (2)
n (x) = T ′′

n+2(x), where Tn(x) denotes the nth
Chebyshev polynomial of the first kind, then we can represent S2m+2(θ)
and S2m+1(θ) in the form

S2m+2(θ) =
3

(m+1)(m+2)3(m+3)
sin θ

[
cos(θ/2)T ′′

m+2(cos θ)
]2(1.10)

and

S2m+1(θ) =
3

2(m+1)3(m+2)3(2m+3)

(1.11)

× sin θ
[
(m+1)T ′′

m+2(cos θ) + (m+2)T ′′
m+1(cos θ)

]2
.

Then the well-known representation of the second derivative of the
Chebyshev polynomial

T ′′
n (cos θ) =

n

sin3 θ
{cos θ sinnθ + n sin θ cosnθ}

yields the following equivalent closed-form representations of the above
extremal sine polynomials:

S2m+2(θ) =
3 cos2( θ

2 )
[
(m+2) sin θ cos

(
(m+2)θ

)−cos θ sin (
(m+2)θ

)]2
(m+1)(m+2)(m+3) sin5 θ

and

S2m+1(θ) =
3

2(m+ 1)(m+ 2)(2m+ 3)
1

sin3 θ

× [
(m+ 2) cos

(
(m+ 2)θ

)
+ (m+ 1) cos

(
(m+ 1)θ

)
+ cot θ

(
sin

(
(m+ 2)θ

)
+ sin

(
(m+ 1)θ

))]2
.
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Set Kn(θ) = (1/2π) sin θSn(θ) and, for any function f(x) which is 2π-
periodic and integrable in [−π, π], define the trigonometric polynomial

Kn(f ;x) =
∫ π

−π

Kn(θ)f(x− θ) dθ.

Observe thatKn(θ) is a cosine polynomial of order n+1. In Section 4 we
shall prove that {Kn(θ)} is a positive summability kernel and then the
following results on Lp, pointwise and almost everywhere convergence
of Kn(f ;x) will immediately hold.

Theorem 3. For any p, 1 ≤ p ≤ ∞, and for every 2π-periodic
function f ∈ Lp[−π, π], the sequence Kn(f ;x) converges to f in
Lp[−π, π].

Theorem 4. Let f be a 2π-periodic function which is integrable in
[−π, π]. If, for x ∈ [−π, π], the limit lim

h→0
(f(x+ h) + f(x− h)) exists,

then

Kn(f ;x)→ (1/2) lim
h→0

(
f(x+ h) + f(x− h)

)
as n diverges.

Theorem 5. Let f be a 2π-periodic function which is integrable in
[−π, π]. Then Kn(f ;x) converges to f almost everywhere in [−π, π].

It is worth mentioning that, while the sequences {kn(θ)} of classical
summability kernels, namely, Fejér’s, de la Vallée Poussin’s and Jack-
son’s one, converge to infinity at the origin, in our case Kn(0) vanishes
for any positive integer n.

2. Preliminary results. The above-mentioned Fejér-Riesz’s theo-
rem and a result of Szegő [13, p. 4] imply a representation of nonneg-
ative cosine polynomials.

Lemma 1. Let

cn(θ) = a0 + 2
n∑

k=1

ak cos kθ
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be a cosine polynomial of order n which is nonnegative for every real
θ. Then an algebraic polynomial R(z) =

∑n
k=0 ckz

k exists of degree
n with real coefficients, such that cn(θ) = |R(eiθ)|2. Thus, the cosine
polynomial cn(θ) of order n is nonnegative if and only if there exist real
numbers ck, k = 0, 1, . . . , n, such that

(2.12) a0 =
n∑

k=0

c2k and ak =
n−k∑
ν=0

ck+νcν for k = 1, . . . , n.

The following relation between nonnegative sine polynomials sn(θ)
and nonnegative cosine polynomials cn−1(θ) is an immediate conse-
quence of the relation sn(θ) = sin θcn−1(θ) (see [11]).

Lemma 2. The sine polynomial of order n

sn(θ) =
n∑

k=1

bk sin kθ

is nonnegative in [0, π] if and only if the cosine polynomial of order
n− 1

cn−1(θ) = a0 + 2
n−1∑
k=1

ak cos kθ,

where

bk = ak−1 − ak+1 for k = 1, . . . , n− 2,
bn−1 = an−2,(2.13)

bn = an−1,

is nonnegative.

These two lemmas imply a parametric representation for the coeffi-
cients of the nonnegative sine polynomials.

Lemma 3. The sine polynomial of order n

sn(θ) =
n∑

k=1

bk sin kθ
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is nonnegative if and only if there exist real numbers c0, . . . , cn−1 such
that

b1 =
n−1∑
ν=0

c2ν −
n−3∑
ν=0

cνcν+2,

(2.14) bk =
n−k∑
ν=0

ck+ν−1cν −
n−k−2∑

ν=0

ck+ν+1cν , for k = 2, . . . , n− 2,

bn−1 = c0cn−2 + c1cn−1,

bn = c0cn−1.

Set qk = (k+1)/(2k). It can be verified that, if n is even, n = 2m+2,
then b1 is given by

(2.15)

b1=
m−1∑
k=0

{
qk+1

(
(c2k−c2k+2)/(2qk+1)

)2+qk+1

(
(c2k+1−c2k+3)/(2qk+1)

)2
}

+ qm+1c
2
2m + qm+1c

2
2m+1,

and, if n is odd, n = 2m+ 1, then

(2.16)

b1=
m−1∑
k=0

{
qk+1

(
(c2k−c2k+2)/(2qk+1)

)2+qk+1

(
(c2k+1−c2k+3)/(2qk+1)

)2
}

+ qm

(
(c2m−2 − c2m)/(2qm)

)2 + qmc22m−1 + qm+1c
2
2m.

3. Proof of Theorem 1. We need to maximize s′n(0) subject to
the conditions sn(θ) ≥ 0 in [0, π] and b1 = 1. Apply Lemmas 1 and 2
to represent the derivative of the nonnegative sine polynomial sn(θ) at
the origin in terms of the parameters ck. We obtain

s′n(0) =
n∑

k=1

kbk =
n−2∑
k=1

k(ak−1 − ak+1) + (n− 1)an−2 + nan−1

= a0 + 2
n−1∑
k=1

ak =
n−1∑
j=0

c2j + 2
∑

0≤j<k≤n−1

cjck =
( n−1∑

k=0

ck

)2

.
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Set

G(c) = G(c0, . . . , cn−1) =
( n−1∑

k=0

ck

)2

.

Then the extremal problem to be solved is

(3.17) max{G(c) : b1(c) = 1},

where b1 = b1(c) = b1(c0, . . . , cn−1) is defined by (2.15) or (2.16)
depending on the parity of n.

We employ the Lagrange multipliers approach (see [6, Section 9.1])
to solve this problem. The necessary conditions for c = (c0, . . . , cn−1)
to be a point of extremum for (3.17) are

(3.18) ∇G(c) = λ∇b1(c) and b1(c) = 1,

where∇ denotes the gradient operator and λ is the Lagrange multiplier.

It is obvious that every solution c of (3.18) which corresponds to
λ = 0 minimizes G(c). Indeed, in this case we have

∑n−1
i=0 ci = 0 and

these are the only points where the nonnegative function G(c) vanishes.
It is worth mentioning that this observation means that a nonnegative
sine polynomial has a derivative which vanishes at the origin if and
only if its coefficients are given by (2.14) and the parameters satisfy∑n−1

i=1 ci = 0.

Thus, for the points of maximum the Lagrange multiplier λ is
nonzero. Define

re(ro) = λ−1
n−1∑
j=1

cj if n even (odd),

and
ξ2k = c2k − (2qk+1)−1c2k+2,

and
ξ2k+1 = c2k+1 − (2qk+1)−1c2k+3, k = 0, . . . ,m,

where we set c2m+2 = c2m+3 = 0.
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Consider first the case n = 2m+2. The conditions ∇G(c) = λ∇b1(c)
reduce to the parametric system of linear equations

q1ξ0 = q1ξ1 = re

−ξ2k + 2qk+2ξ2k+2 = −ξ2k+1 + 2qk+2ξ2k+3 = 2re,

k = 0, . . . ,m− 1

for the unknowns ξk, k = 0, . . . , 2m + 1 and the parameter re. The
explicit form of qk yields

1
qk+1

(
1 +

1
2qk

(
1 + · · ·+ 1

2q2

(
1 +

1
2q1

)))
= k + 1.

Then we obtain the solution ξk, k = 0, . . . , 2m+ 1, of the above linear
system explicitly in terms of re:

ξ2k = ξ2k+1 =
1

qk+1

(
1 +

1
2qk

(
1 + · · ·+ 1

2q2

(
1 +

1
2q1

)))
re

= (k + 1)re, k = 0, . . . ,m.

Hence, for the parameters ck, k = 0, . . . , 2m, we obtain

c2k = c2k+1 = (k + 1)(m− k + 1)re, k = 0, . . . ,m.

Now the condition b1(c) = 1 gives

(3.19) r2
e = 3/

(
(m+ 1)(m+ 2)(m+ 3)

)
.

In the case when n = 2m+ 1 similar observations yield

c2k = (k + 1)(m− k + 1)ro, k = 0, . . . ,m,

c2k+1 = (k + 1)(m− k)ro, k = 0, . . . ,m− 1,

and

(3.20) r2
o = 6/

(
(m+ 1)(m+ 2)(2m+ 3)

)
.

Now the relations (2.14) and straightforward calculations imply the
explicit form of the coefficients bk.
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4. Proofs of Theorems 2, 3, 4 and 5.

Proof of Theorem 2. Observe that the statement of Lemma 2 is
equivalent to the equality Sn(θ) = sin θCn−1(θ), where

Cn−1(θ) = a0 + 2
n−1∑
k=1

ak cos kθ,

and the coefficients of Cn−1(θ) are given by (2.12) for the parameters
c0, . . . , cn−1 determined in the proof of Theorem 1. Then Lemma 1
and the explicit form of ck yield

(4.21) Sn(θ) = r2 sin θ
∣∣Rn−1(eiθ)

∣∣2,
where r = re or r = ro depending on the parity of n and

R2m+1(z) = (1 + z)
m∑

k=0

(k + 1)(m− k + 1)z2k

and

R2m(z) =
m∑

k=0

(k + 1)(m− k + 1)z2k + z

m−1∑
k=0

(k + 1)(m− k)z2k.

Following Fejér and Szegő [5], consider the Cesàro sums Sj
m(ζ) of

order j of the geometric series,

Sj
m(ζ) =

m∑
k=0

(
m+ j − k

j

)
ζk.

Then

R2m+1(z) = (1 + z)
dS1

m+1(ζ)
dζ

∣∣∣
ζ=z2

and

R2m(z) =
dS1

m+1(ζ)
dζ

∣∣∣
ζ=z2

+ z
dS1

m(ζ)
dζ

∣∣∣
ζ=z2

.
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On the other hand, Turán [14] proved that, for any pair n, j of positive
integers,

(d/dζ)jSj
n+j(ζ) = j!ζn/2P (j+1)

n

(
(ζ1/2 + ζ−1/2)/2

)
,

where P
(λ)
n denotes the ultraspherical polynomial. Applying this result

for j = 1, we obtain

R2m+1(z) = (1 + z)zmP (2)
m

(
(z + z−1)/2

)
and

R2m(z) = zm
{
P (2)

m

(
(z + z−1)/2

)
+ P

(2)
m−1

(
(z + z−1)/2

)}.
Substitute z = exp(iθ) in these representations and use (4.21) to
complete the proof.

The next is a basic technical result.

Lemma 4. For every positive integer n and for any real θ, the
inequality

(4.22) sin2(θ/2)Kn(θ) ≤ c(1/n),

holds with an absolute constant c.

Proof. We provide three different proofs of the lemma depending on
the representation of the extremal sine polynomials. It suffices to prove
the above inequality for θ ∈ [0, π].
The first proof uses representations (1.8) and (1.9) of Sn(θ). First we

establish (4.22) in the case n = 2m + 2. It follows from the definition
of the kernel Kn(θ) and from (1.8) that

(4.23)

sin2(θ/2)K2m+2(θ) =
1
2π

sin2(θ/2) sin θS2m+2(θ)

=
r2
e

2π
sin2(θ/2) sin2 θ

[
2 cos(θ/2)P (2)

m (cos θ)
]2

=
r2
e

2π
[
sin2 θP (2)

m (cos θ)
]2
.
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Kogbetliantz [9] proved that, for any λ ≥ 0,

(4.24) (sin θ)λ
∣∣P (λ)

n (cos θ)
∣∣ ≤ 2Γ(n+ λ)

Γ(λ)Γ(n+ 1)
for 0 ≤ θ ≤ π.

An application of this result for λ = 2 yields

sin2(θ/2)K2m+2(θ) ≤ 6
π

m+ 1
(m+ 2)(m+ 3)

.

When n = 2m+ 1, we need a little more effort. We have

sin2(θ/2)K2m+1(θ) =
r2
o

2π
sin2(θ) sin2(θ/2)

[
P (2)

m (cos θ) +P
(2)
m−1(cos θ)

]2
.

The recurrence relation for the ultraspherical polynomials (see (4.7.17)
in [13]) implies

P (2)
m (x)+P

(2)
m−1(x) = (1+x)P (2)

m−1(x) +
m+2
m

(
xP

(2)
m−1(x)− P

(2)
m−2(x)

)
and formulae (4.7.14) and (4.7.28) in [13] yield

xP
(2)
m−1(x)−P

(2)
m−2(x) =

1
2

(
x

d

dx
P (1)

m (x)− d

dx
P

(1)
m−1(x)

)
=

m

2
P (1)

m (x).

Therefore,

sin2(θ/2)K2m+1(θ)

=
r2
o

2π
sin2(θ) sin2(θ/2)

[
2 cos2(θ/2)P (2)

m−1(cos θ) +
m+2
2

P (1)
m (cos θ)

]2

.

Then we use (4.24) for λ = 1 and for λ = 2 to obtain

sin2(θ/2)K2m+1(θ)

≤ r2
o

2π

{
cos2(θ/2)

[
sin2 θP

(2)
m−1(cos θ)

]2

+
m+ 2
2

sin θ
[
sin2 θ

∣∣P (2)
m−1(cos θ)

∣∣][ sin θ
∣∣P (1)

m (cos θ)
∣∣]

+
(m+ 2)2

4
sin2(θ/2)

[
sin θP (1)

m (cos θ)
]2}

≤ r2
o

2π

{
4m2 cos2

θ

2
+ 2m(m+ 2) sin θ + (m+ 2)2 sin2 θ

2

}

=
r2
o

2π

∣∣2m cos(θ/2) + (m+ 2) sin(θ/2)
∣∣2

≤ 1
2π

6
(m+ 1)(m+ 2)(2m+ 3)

(5m2 + 4m+ 4)2

4m2
.
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Here the latter inequality follows from the fact that the maximal
value in [0, π] of the function 2m cos(θ/2) + (m + 2) sin(θ/2), which
is positive in [0, π], is attained at the point θ0 for which 2m sin(θ0/2) =
(m+ 2) cos(θ0/2). This completes the first proof of the lemma.

The second proof is based on the representations (1.10) and (1.11)
of Sn(θ) in terms of the Chebyshev polynomials. It is essentially
equivalent to the first one. We only sketch the proof for n = 2m + 2
because, for n = 2m + 1, it is similar. The representation (4.23) and
the relation between P

(2)
n (x) and T ′′

m+2(x) yield

sin2(θ/2)K2m+2(θ) =
r2
e

8π(m+ 2)2
[
sin2 θT ′′

m+2(cos θ)
]2
.

Then the second order differential equation for the Chebyshev polyno-
mials

(1− x2)T ′′
m+2(x) = xT ′

m+2(x)− (m+ 2)2Tm+2(x)

and the inequalities |Tm+2(x)| ≤ 1 and |T ′
m+2(x)| ≤ (m + 2)2 for

x ∈ [−1, 1] imply

sin2(θ/2)K2m+2(θ) ≤ r2
e

8π(m+ 2)2
4(m+ 2)4.

The third proof is straightforward, and it was the one we obtained
before discovering the nice relation between the extremal polynomials
Sn(θ) and ultraspherical and Chebyshev polynomials.

The coefficients βk in the representation

sin2(θ/2)Kn(θ) =
1
8π

n+2∑
k=0

βk cos kθ

are given by

β0 = 3/(m+ 2),
β2k = −12k/((m+ 1)(m+ 2)(m+ 3)

)
, k = 1, . . . ,m+ 1,

β2k+1 = 0, k = 0, . . . ,m+ 1,
β2m+4 = 3(m+ 1)/

(
(m+ 2)(m+ 3)

)
,
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when n = 2m+ 2, and by

β0 = 6/(2m+ 3),
β2k = −12k/((m+ 1)(m+ 2)(2m+ 3)

)
, k = 1, . . . ,m+ 1,

β2k+1 = −6(2k + 1)/
(
(m+ 1)(m+ 2)(2m+ 3)

)
, k = 0, . . . ,m,

β2m+3 = 6(m+ 1)/
(
(m+ 2)(2m+ 3)

)
,

when n = 2m + 1. It is easy to see that the sum of the modulus of
these coefficients is less than c/n where c is an absolute constant. More
precisely, we have

∣∣ sin2(θ/2)K2m+2(θ)
∣∣ ≤ 3

2π(m+3)
,

∣∣ sin2(θ/2)K2m+1(θ)
∣∣ ≤ 3

2π(m+2)
.

As it has already been mentioned, Lemma 4 implies the truth of
Theorems 3, 4 and 5.
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