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Abstract We will show examples in which the primal sequence generated by the
Newton–Lagrange method converges to a strict local minimizer of a constrained
optimization problem but the gradient of the Lagrangian does not tend to zero, inde-
pendently of the choice of the dual sequence.
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1 Introduction

In this section we will consider the equality-constrained minimization problem

Minimize f (x) subject to h(x) = 0, (1)

where f : Rn → R and h : Rn → Rm are sufficiently smooth. We say that (x, λ) ∈
Rn×Rm is feasible and satisfies theKarush–Kuhn–Tucker (KKT) conditions if h(x) =
0 and ∇ f (x) + ∇h(x)λ = 0, where ∇w(x) = [∇w1(x), . . . ,∇wm(x)] denotes the
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Jacobian matrix of a function w : Rn → Rm . If x is a local minimizer of (1) and
satisfies some constraint qualification, there exist Lagrange multipliers λi for which
the KKT conditions are verified. In the absence of constraint qualifications, however,
even a global minimizer may not satisfy KKT conditions at all. For example, in the
problem

Minimize x subject to x2 = 0, (2)

the global solution x∗ = 0 does not satisfy the KKT conditions for any choice of the
multiplier λ.

Fortunately, it can be proved [1,4] that, for any local minimizer x∗ of (1), there
exists a sequence {(xk, λk)} such that lim xk = x∗, λk ∈ Rm , and lim ‖∇ f (xk) +
∇h(xk)λk‖ = 0, where the symbol ‖ · ‖ denotes an arbitrary norm.

Given an algorithm for constrained optimization and a sequence {xk} generated by
this algorithm that converges to a local minimizer, we have three possibilities:

1. The algorithm generates, together with {xk}, a dual sequence {λk} ⊂ Rm such that
lim ‖∇ f (xk) + ∇h(xk)λk‖ = 0.

2. The algorithm generates, together with {xk}, a dual sequence {λk} ⊂ Rm , but the
property “lim ‖∇ f (xk) + ∇h(xk)λk‖ = 0” fails to hold.

3. For every choice of the dual sequence {λk} ⊂ Rm , the property “lim ‖∇ f (xk) +
∇h(xk)λk‖ = 0” does not hold.

Algorithms that satisfy the first property for all generated sequences {xk} that con-
verge to local minimizers will be said to belong to the First Class. Analogously, an
algorithm that may generate some sequence with the second property belongs to the
Second Class and algorithms that may generate sequences with the third property
belong to the Third Class.

If an algorithm belongs to the First Class, it is natural to employ the stopping
criterion given by

∥
∥
∥∇ f (xk) + ∇h(xk)λk

∥
∥
∥ ≤ ε1 (3)

and ∥
∥
∥h(xk)

∥
∥
∥ ≤ ε2, (4)

for small values of ε1, ε2 > 0, since we can guarantee that (3) and (4) hold if xk is
close enough to the minimizer.

However, if an algorithm belongs to the Second Class the stopping criterion (3)–(4)
may not hold (with themultipliers generated by themethod) evenwhen {xk} converges
to a solution. If an algorithm belongs to the Third Class, the condition (3) may not
hold for a convergent sequence {xk}, even if we compute the dual sequence in the best
possible way. In particular, the stopping criterion may not hold when, after computing
xk , we take λk as the minimizer of ‖∇ f (xk) + ∇h(xk)λ‖ with respect to λ ∈ Rm .
This means that the algorithmmay not recognize the proximity to a minimizer x∗ even
being able to approximate such solution with arbitrary precision.

In [2] we proved that Newton’s (also called Newton–Lagrange) method belongs to
the Second Class. For example, by formula (22) of [2], when one applies Newton’s
method to the nonlinear KKT system derived from the problem (2), the generated
sequence {(xk, λk)} verifies lim |∇ f (xk)+∇h(xk)λk | = 1/3. However, the family of
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examples presented in [2] is not enough to include Newton’s method in the third class
of algorithms, since, in all these examples, replacing the natural multipliers λk gener-
ated by Newton’s method with alternative suitable multipliers λkopt , the fulfillment of
lim ‖∇ f (xk) + ∇h(xk)λkopt‖ = 0 takes place.

Therefore, the natural question is whether Newton’s method may generate a
sequence {xk} that converges to a local minimizer x∗, with the property that, for
every choice of {λk} ⊂ Rm , one has that lim ‖∇ f (xk) + ∇h(xk)λk‖ = 0 does not
hold.

In Sect. 2 wewill prove that Newton’s method in fact belongs to the Third Class.We
will prove that, for a very simple problem with only equality constraints, sequences
{xk} with the third property exist.

In Sect. 3, using a simplemodification of the example in Sect. 2, wewill prove that a
similar property holds for the inequality constrained optimization problem. Moreover,
we provide numerical evidence of such property for an example in which the feasible
set does not coincide with its boundary.

2 An example

In this section we will present an equality constrained optimization problem and a
sequence {xk} generated by Newton’s method such that, for every choice of λk ∈ Rm ,
‖∇ f (xk) + ∇h(xk)λk‖ does not tend to zero. From now on we define ‖ · ‖ = ‖ · ‖2.
Let us define

λk = argmin
λ

∥
∥
∥∇ f (xk) + ∇h(xk)λ

∥
∥
∥

2
. (5)

Clearly, for proving the desired property it is enough to prove that ‖∇ f (xk) +
∇h(xk)λk‖2 does not tend to zero. Moreover, since∇ f (xk)+∇h(xk)λk is the projec-
tion of −∇ f (xk) on the null-space of ∇h(xk)T , the fact that ‖∇ f (xk)+∇h(xk)λk‖2
does not tend to zero implies that {xk} is a sequence that does not detect the Approx-
imate Gradient Projection (AGP) optimality condition introduced in [9] (see, also,
[1,4]).

The problem is the following:

Minimize x1 subject to x21 + x22 = 0. (6)

The KKT (with feasibility) conditions for (6) are

g + 2λx = 0 and ‖x‖2 = 0, (7)

where x ∈ R2, λ ∈ R and g = (1, 0)T . Clearly, x∗ = (0, 0)T is the global solution
and there are no Lagrange multipliers associated to it. Applying Newton’s method to
(7), we obtain the following iteration scheme:

[

2λk I 2xk

2(xk)T 0

] [

xk+1 − xk

λk+1 − λk

]

= −
[

g + 2λk xk

‖xk‖2
]

, (8)
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where I is the identity matrix of order 2. Rearranging the equations, we find

xk+1 = 1

2

(

xk + xk2
λk‖xk‖2

[−xk2
xk1

])

and λk+1 = 1

2

(

λk − xk1
‖xk‖2

)

. (9)

The iterations are well defined under the condition that λk‖xk‖ 	= 0, for all k =
0, 1, 2, . . .. Moreover, the least-square Lagrange multiplier and its associated KKT
residual are given by

λk = argmin
λ

∥
∥
∥g + 2λxk

∥
∥
∥

2 = − xk1
2‖xk‖2 , (10)

and

rk =
∥
∥
∥g + 2λk xk

∥
∥
∥ = |xk2 |

‖xk‖ . (11)

From (9), if we define a new variable y = 2λx , we have, after some algebraic manip-
ulation, that

yk+1 = ak
[

−g +
(

1 − ak
)

yk
]

, with ak = 1

2
− yk1

‖yk‖2 . (12)

Observe that the condition λk‖xk‖ 	= 0 is equivalent to ‖yk‖ 	= 0. Define α =
−(

√
5 + 1)/4 ≈ −0.809 and β =

√

(5 − √
5)/40 ≈ 0.263.

Lemma 1 There exists 0 < ε < min{|α|, β2} such that if |y01 − α| < ε and |(y02 )2 −
β2| < ε then the iteration scheme (12) is well defined, lim yk1 = α, and lim |yk2 | = β.

Proof Let us define z = (y1, (y2)2)T and z∗ = (α, β2)T . Therefore, the iteration
scheme (12) is transformed to zk+1 = Φ(zk), where

Φ(z) =
[

a(z)[−1 + (1 − a(z))z1]
a(z)2(1 − a(z))2z2

]

, with a(z) = 1

2
− z1

z21 + z2
. (13)

It is easy to check thatΦ(z∗) = z∗, i.e., z∗ is a fixed point of functionΦ. The Jacobian
matrix of Φ at z∗ is given by

∇Φ(z∗) = 1

8

[√
5 − 3 5 − √

5
−10 5

√
5 − 7

]

, (14)

which has two complex eigenvalues with modulus (
√
5 − 1)/2 ≈ 0.618 < 1. There-

fore, from the Fixed Point Theorem, there exists 0 < δ < min{|α|, β2} such that if
‖z0 − z∗‖ < δ then the iterations are well defined and lim zk = z∗. Therefore, there
exists 0 < ε < δ such that |y01 − α| < ε and and |(y02 )2 − β2| < ε implies that

‖z0 − z∗‖ < δ, and then lim yk1 = lim zk1 = α and lim |yk2 | = lim
√

|zk2| = β, and the
proof is complete. �
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Lemma 2 There exists ε > 0 such that if |2λ0x01 − α| < ε and |(2λ0x02 )2 − β2| < ε

then, in the iteration scheme (9), lim |λk | = ∞ and lim ‖xk‖ = 0.

Proof Let ε > 0 be given by Lemma 1 and choose x0 and λ0 such that |2λ0x01 −
α| < ε and |(2λ0x02 )2 − β2| < ε. Therefore, lim yk1 = lim 2λk xk1 = α, lim |yk2 | =
lim |2λk xk2 | = β, and, from Eq. (9),

λk+1 = 1

2

(

λk − xk1
‖xk‖2

)

= 1

2

(

λk − 2λk yk1
‖yk‖2

)

= λk

(

1

2
− yk1

‖yk‖2
)

= akλk, (15)

where

lim ak = 1

2
− α

α2 + β2 =
√
5 + 1

2
≈ 1.618. (16)

Then, for k sufficiently large, |λk+1| > 1.5|λk |, and so lim |λk | = ∞. Now, since
lim ‖2λk xk‖ is finite, we must have lim ‖xk‖ = 0. �
Theorem 1 Consider the iteration scheme (9). For any given λ0 > 0 there exists u1 >

	1 > 0 and u2 > 	2 > 0, all of them depending on λ0, such that if 	1 < −x01 < u1
and 	2 < |x02 | < u2, then lim xk = (0, 0)T and lim rk = (

√
5− 1)/4 > 0. Moreover,

xk1 < 0 and λk > 0 for all k = 0, 1, 2, . . ..

Proof Let ε > 0 be given by Lemma 1. Since ε < min{|α|, β2} we can define

	1 = |α| − ε

2λ0
, u1 = |α| + ε

2λ0
, 	2 =

√

β2 − ε

2λ0
, and u2 =

√

β2 + ε

2λ0
. (17)

Therefore, if 	1 < −x01 < u1 then |2λ0x01 − α| < ε, and if 	2 < |x02 | < u2 then
|(2λ0x02 )2 − β2| < ε. So, from Lemmas 1 and 2, lim 2λk xk1 = α, lim |2λk xk2 | = β,
and lim xk = (0, 0)T . Now,

lim rk = lim ‖g + 2λk xk‖ =
√

(1 + α)2 + β2 =
√

5 − 2
√
5

5
≈ 0.325 > 0, (18)

and

lim rk = lim
|xk2 |
‖xk‖ = lim

|2λk xk2 |
‖2λk xk‖ = β

√

α2 + β2
=

√
5 − 1

4
≈ 0.309 > 0. (19)

Finally, the fact that xk1 < 0 and λk > 0 for all k follows from x01 < 0 and (9). �
Remark 1 By (8), since λk > 0 for all k, xk+1 is the unique minimizer of the strictly
convex quadratic with Hessian λk I and gradient g, subject to 2(xk)T (x − xk) =
−‖xk‖2. In the general case, this is the reason for the denomination Sequential
Quadratic Programming (SQP) usually given to several variations of the Newton–
Lagrange method [10].
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Remark 2 A different Newton-like method arises if, at every iteration, one replaces
λk with the least-square approximation λk . Such replacement obviously modifies the
primal sequence which makes the analysis much more complicated. We do not have
a rigorous mathematical characterization of this modified method in the general case.
However,motivated by a question of an anonymous referee,we considered the counter-
example analyzed in this section with the replacement λk ← λk and we verified that,
in this particular example, the gradient of the Lagrangian at primal-dual sequences
generated by the algorithm always tends to zero. Obviously, this algorithm is more
expensive than the straight Newton–Lagrange method but deserves further research.

Remark 3 Denoting the Golden number by φ = (
√
5+1)/2, we have that α = −φ/2

and lim rk = 1/(2φ) = sin 18o.

3 Problems with inequality constraints

Consider the general nonlinear programming problem,

Minimize f (x)
subject to hi (x) = 0, i ∈ E,

hi (x) ≤ 0, i ∈ I,

(20)

where f : Rn → R and the functions hi : Rn → R are all sufficiently smooth
and E ∪ I = {1, . . . ,m}. According to the Local Sequential Quadratic Programming
(SQP) method (see, for example, [10], p. 533) given xk ∈ Rn and λk ∈ Rm , with
λki ≥ 0 for all i ∈ I, xk+1 is defined as a solution of the quadratic programming
problem

Minimize 1
2 (x − xk)T Hk(x − xk) + ∇ f (xk)T (x − xk)

subject to ∇hi (xk)T (x − xk) + hi (xk) = 0, i ∈ E,

∇hi (xk)T (x − xk) + hi (xk) ≤ 0, i ∈ I,

(21)

where Hk is the Hessian of the Lagrangian, given by

Hk = ∇2 f (xk) +
m

∑

i=1

λki ∇2hi (x
k). (22)

Moreover, λk+1 is defined as the vector of Lagrange multipliers corresponding to
the solution of (21). Clearly, if the solution of this subproblem exists, we have that
λk+1
i ≥ 0 for all i ∈ I.
Let us apply this method to the problem defined by

Minimize x1 subject to x21 + x22 ≤ 0. (23)

Therefore, n = 2, m = 1, E = ∅, I = {1}, f (x1, x2) = x1, and h(x1, x2) = x21 + x22 .
Assume that xk1 < 0 and λk > 0. Then, Hk = 2λk I and, since this matrix is positive
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definite, the problem (21) has a unique solution. The only constraint in (21) is, in this
case,

2(xk)T (x − xk) + ‖xk‖2 ≤ 0, (24)

and the objective function is

Qk(x) = λk‖x − xk‖2 +
(

x1 − xk1

)

. (25)

Writing the optimality conditions that corresponds to the minimization of Qk(x) sub-
ject to (24) we note that the constraint (24) is necessarily active at the solution and the
following equations are satisfied,

2λk(xk+1 − xk) + (1, 0)T + 2λk+1xk = 0, (26)

and
2(xk)T (xk+1 − xk) + ‖xk‖2 = 0. (27)

Simple calculations show that these equations are equivalent to (8) and the solution
(xk+1, λk+1) is givenby (9). Therefore, by induction, if x01 < 0 andλ0 > 0wehave that
the solution of the quadratic subproblem that defines the SQP iteration is well-defined,
unique, the linear constraint is active, xk1 < 0, and λk > 0 for all k = 0, 1, 2, . . ..
Since the recurrence relation (8) is the same as in the equality constrained case, the
arguments that follows equation (9) in Sect. 2 can be repeated here, showing that,
choosing x01 as in Theorem 1, the norm of ∇ f (xk) + λk∇h(xk) does not tend to zero,
independently of the choice of λk .

Let us now consider the following problem,

Minimize x1 subject to − x31 + x22 ≤ 0. (28)

The point x∗ = (0, 0) is the global minimum with no Lagrange multipliers associated
to it. The SQP iteration (21) for the above problem takes the form

Minimize λk

[

−3xk1
(

x1 − xk1

)2 +
(

x2 − xk2

)2
]

+
(

x1 − xk1

)

subject to −3
(

xk1
)2 (

x1 − xk1
) + 2xk2

(

x2 − xk2
) ≤ (

xk1
)3 − (

xk2
)2

.

(29)

The solution of (29) defines xk+1 and λk+1 ≥ 0 is the corresponding Lagrange multi-
plier. If we take x01 < 0 and λ0 > 0, it is not difficult to show by induction that for all
k > 0, xk1 < 0 and λk > 0 (the linear constraint is always active.) The KKT residual
is then given by

rk =
√

(

1 − 3λk
(

xk1
)2

)2 + (

2λk xk2
)2

, (30)

and, for the least-square solution, we have that

λk = argmin
λ

(

1 − 3λ
(

xk1

)2
)2

+
(

2λxk2
)2 = 3

(

xk1
)2

9
(

xk1
)4 + 4

(

xk2
)2 ≥ 0, (31)
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and

rk =
√

(

1 − 3λk
(

xk1
)2

)2 + (

2λk xk2
)2 = 2

∣
∣xk2

∣
∣

√

9
(

xk1
)4 + 4

(

xk2
)2

. (32)

We have applied the SQP procedure (29), for a huge number of initial dual pairs
(x0, λ0) with x01 < 0 and λ0 > 0. With no exception we obtained that lim xk = x∗,
lim λk = +∞, lim rk = +∞, lim λk = +∞, and lim rk = 1. These numerical
experiments suggest that the SQP method applied to problem (28) generates a primal
sequence {xk} such that the norm of the KKT residue does not converge to zero for any
choice of the dual sequence. Therefore, there seems to be enough numerical evidence
that (28) provides another example of a situation in which SQP generates a sequence
that converges to a solution for which the approximate KKT stopping criterion is not
satisfied, independently of the choice of the dual sequence.

4 Conclusions

The examples presented in this paper put an end on the question about the behavior of
the local Newton–Lagrange method with respect to the existence sequences generated
by the algorithm on which Approximate KKT and Approximate Gradient Projection
optimality conditions can be detected. The answer turned out to be negative. The
Newton–Lagrange method may converge to minimizers without detecting those nec-
essary optimality conditions at all. On the other hand, we know that AKKT and AGP
certainly hold [1].

Many open questions arise: With respect to Newton’s method the question is
whether the observed “anomaly” can be “fixed” by means of stabilization [5,6,11,12]
or globalization approaches [7,8]. With respect to many other methods the question is
whether they generate sequences for which sequential optimality conditions as AKKT
or AGP can be detected. The answer is positive for some Augmented Lagrangian and
Penalty-like methods [2,3] but remains unclear for most potentially useful algorithms
introduced in the last 20 years.

Practical algorithms for constrained optimization stop, declaring convergence,
when approximate feasibility, approximate complementarity, and approximate anni-
hilation of the Lagrangian gradient take place. Here we showed that the Newton–
Lagrange method, even converging to an isolated global minimizer, may fail to detect
approximate annihilation of the Lagrangian gradient. Moreover, we showed that this
inconvenience is associated with the primal sequence {xk} and cannot be overcome by
means of alternative choices of the dual sequence {λk}. The practical consequence of
this property could be that, in nontrivial problems, the presence of a very close local
minimizer to the current iteration would not be detected at all.
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