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Abstract

Structural Alignment is an important tool for fold identification of proteins, structural screen-
ing on ligand databases, pharmacophore identification and other applications. In the general
case, the optimization problem of superimposing two structures is nonsmooth and noncon-
vex, so that most popular methods are heuristic and do not employ derivative information.
Usually, these methods do not admit convergence theories of practical significance. In this
work it is shown that the optimization of the superposition of two structures may be ad-
dressed using continuous smooth minimization. It is proved that, using a Low Order-Value
Optimization approach, the nonsmoothness may be essentially ignored and classical opti-
mization algorithms may be used. Within this context, a Gauss-Newton method is intro-
duced for structural alignments incorporating (or not) transformations (as flexibility) on
the structures. Convergence theorems are provided and practical aspects of implementation
are described. Numerical experiments suggest that the Gauss-Newton methodology is com-
petitive with state-of-the-art algorithms for protein alignment both in terms of quality and
speed. Additional experiments on binding site identification, ligand and cofactor alignments
illustrate the generality of this approach.
Key words: Structural alignment, Protein alignment, Gauss-Newton method, Continuous
optimization, Order-Value Optimization.

1 Introduction

We are concerned with the comparison of three-dimensional shapes, particularly biomolecules
and related chemical structures. These problems arise in Chemistry and Biology as far as an
increasing number of molecular and biomolecular structures are discovered, claiming for their
classification and comparison with respect to their three-dimensional folds.
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The most natural way to compare structures is to superimpose them in some optimal manner,
looking for their similarities and discrepancies after superposition.

Rigid structural alignments can be classified in three main groups according to the knowledge
of the relationship between the points (from now on called “atoms”) that form the structure:

1. The atoms of one structure have a known correspondence with the atoms of the second
structure.

2. The correspondence is not known, but there are restrictions on the postulated bijection.

3. The correspondence is not known and there are no restrictions to its determination.

The first case has a well known analytical solution and, therefore, represents no challenge [12, 13].
This is the alignment that is usually required when two molecules sharing the same atoms but
different structures are aligned and occurs when one compares two structures of the same protein
determined experimentally or two very similar proteins, for which a correspondence between the
amino acids can be deduced from the comparison of their sequences.

The second case is much more challenging and is very relevant for comparison of protein
structures. Proteins are chains of α-amino acids bound by peptide bonds. The structure of a
protein “starts” at one amino acid (defined, by convention, as the N-terminal amino acid) and
“ends” at the amino acid which is farther from the first one in terms of its position in the chain
(C-terminal amino acid). Therefore, there exists a natural sequence for the amino acid chain and,
consequently, the alignment must preserve order and be free of gaps as much as possible. Since
there is an analytical solution for any known correspondence, the restrictions on the possible
bijections simplify the problem. Several methods for protein structural comparison rely on these
restrictions, or penalize its lack of fulfillment. The exploitation of constraint information usually
provides these methods with improved speed. Restricting the space of correspondences, however,
is a simplification that may prevent the algorithms from finding novel structural similarities,
particularly those which cannot be identified by the simple comparison of the sequence of amino
acids. Moreover, algorithms strongly based on these constraints cannot be used for general
structural comparisons (even of proteins) when they include cofactors (other molecules that do
not belong to the amino acid chain but are bound to it), or for the comparison of non-proteic
structures (i.e. ligand databases) in which sequentiality does not appear at all. Finally, the
algorithms that rely on the atom sequence are not robust in terms of the input received. This
means that the algorithms may fail to find the alignment if the atoms are scrambled.

The third and more general case, in which no information is known on the correspondence
between atoms, is the general problem we deal in this work. This is the most challenging
problem in structural alignment, because the number of possible correspondences is too large
for every one to be tested. This general problem applies to the comparison of general molecular
structures, including proteins as a particular case, ligands, or for other problems such as image
comparison in 2D or 3D. Our focus in this work is on the comparison of molecular structures,
being Protein Alignment the best studied particular case.

The complexity of Structural Alignment problems increases if the structures have internal
degrees of freedom or may suffer non-rigid transformations. In these cases, not even the simplest
alignment (where correspondence between atoms is known) has an analytical solution. Some
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algorithms deal with non-rigidity, but most of them are ultimately based on the analytical
solution of the fixed correspondence rigid alignment. The algorithms proposed in this paper, on
the other hand, naturally incorporate flexibility or any other transformation on the structures,
being the complexity of the problem increased only by the larger number of local minima and
practical aspects of implementation.

1.1 Protein Alignment

Molecular structures are represented by the 3D coordinates of its atoms. The structure of
proteins, in particular, may be represented in a simplified way, by the 3D coordinates of the Cα
atom of each amino acid. This representation captures the main features of the three-dimensional
arrangements of amino acids in the protein structure.

The Protein Data Bank (http://www.rcsb.org/pdb/) [4] contains information for the struc-
ture of more than 30 thousand proteins. An alignment between two proteins A = (A1, . . . , AnA)
and B = (B1, . . . , BnB ) is a one-to-one correspondence Φ between a subset of atoms of A and a
subset of atoms of B such that:

1. The domain and the range of Φ must be similar and should be as large as possible.

2. The Order-Preserving property OPP (i < j ⇒ Φ(i) < Φ(j)) is generally (but not always)
desirable.

3. The number of gaps (cases in which k = Φ(i) and the first j > i belonging to the domain
is such that j > i + 1 or Φ(j) 6= Φ(i) + 1) should be, in general, small.

Structural similarity between two proteins may indicate that they are involved with similar
functions. Moreover, since structural similarity is conserved more than sequence similarity,
Protein Alignment gives powerful clues for looking back to evolutionary history [11, 16].

The first requirement for Protein Alignment (similarity and large bijection) must be always
preserved but the next two should be relaxed. Frequently, when a good alignment between
proteins is found satisfying the first requirement, the second and third requirements are (almost)
fulfilled for free. However, some alignments between proteins may satisfy the first requirement
(especially similarity) but not the remaining two.

1.2 Other Alignments of Biomolecular Relevance

In some Protein Alignment problems the OPP and the few-gaps requirement may be relaxed.
Moreover, in different important alignment problems in Chemistry, those two requirements do
not need to be satisfied at all. Some examples are given below.

1. Binding site identification: A pharmacophore is a group of amino acids that are involved in
direct interactions with some protein ligand (a drug, for example). The pharmacophore is
usually composed by amino acids from very different positions in the protein and, therefore,
no information on the sequence may be used for identification and alignment. Furthermore,
it may be interesting to use the full amino acid structure (not only the Cα atoms) and,
perhaps, allow for the rotation of the amino acids’ side chains.
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2. Ligand screening: Ligands are small molecules (usually of 30 to 100 atoms) that bind
proteins specifically and are potential drug candidates. One possible screening of ligand
databases consists in searching for other molecular structures that are similar to a known
drug or natural ligand, in such a way that new molecules with pharmacological value may
be identified. Ligand structures contain no sequence information and are usually highly
flexible.

3. Alignment of protein structures including cofactors: Proteins are frequently bound to
other structures, such as drugs, DNA or other proteins. The comparison of macromolec-
ular structures could use some information on the sequentiality of the internal protein
components, but there is no sequentiality associated to the whole arrangement (which
may contain, for example, other protein, ligand, DNA, etc.).

1.3 Measures of Similarity and Protein-Alignment Methods

For measuring similarity between two structures one needs to translate and rotate one of them
in such a way that, in some sense, both are superimposed. Given two superimposed proteins,
the best alignment relative to a separable scoring function can be found analyzing paths in the
matrix of Protein-to-Protein distances [21]. On the other hand, given the bijection Φ, the best
superposition associated to a rigid movement can be found analytically solving the Procrustes
problem [8, 12, 13].

Some methods for Protein Alignment (DALI [10, 9], SAP [32, 31], CE [29], FAST [37] and the
URMS-based algorithm introduced in [14]) seek directly a good correspondence based on internal
characteristics of the proteins (for instance, internal distance matrices) and, thus, compute the
optimal superposition only at the end of the analysis. MAMMOTH [25, 20] uses URMS to find
a superposition and, then, uses heuristics, scores and enlargements to find a sufficiently large
correspondence. Other methods (STRUCTAL [7, 30], LSQMAN [15], SSM [18, 19]) try to find an
adequate correspondence through successive superposition trials. Given a tentative bijection Φ,
a superposition that optimizes the matching distances is computed using Procrustes. Using the
superposition so far obtained, a new bijection is computed and the process continues iteratively
until a convergence criterion is satisfied. These methods differ in the way in which the one-to-
one correspondence Φ is computed at every iteration: STRUCTAL maximizes a score function
using dynamic programming, SSM uses the secondary structure of the proteins for finding a
suitable bijection and LSQMAN uses an heuristic based on matching small-distance residuals
and mapping enlargement. A comprehensive evaluation of these methods may be found in [16].
Given a required precision ε > 0, Kolodny and Linial [17] introduced a method for solving the
Protein Alignment problem whose complexity is polynomial in the number of atoms. The idea
is to use an exhaustive ε-search in the space of rotations and to exploit the polynomiality of the
dynamic programming procedure to optimize a score function. Although this is not a practical
method, it sheds light on complexity issues.

None of the practical methods mentioned above include the possibility of internal rotations.
(The method of Kolodny and Linial may be trivially extended to the case with internal rotations
preserving polynomiality.) In other words, the movement that allows one to superimpose the
proteins is assumed to be rigid in all the cases.
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Our approach is to rely on the evaluation of superpositions (translations and rotations) by
means of continuous optimization tools. A superposition is given by a translation and several
angles. Three angles correspond to a rigid movement and the remaining ones correspond to
internal rotations. A natural idea is to attribute a functional value to the superposition and to
optimize the corresponding function by means of a suitable smooth minimization algorithm. The
difficulty is that natural merit functions may be nonsmooth (perhaps non-continuous) and very
difficult to evaluate. Here we claim that, using the proper order-value based merit definition,
the employment of smooth unconstrained optimization for structural alignment is quite reliable.
Nonsmoothness of the objective function remains but, in this case, lack of differentiability is
benign, in the sense that we may define smooth methods that preserve well-definiteness and
global convergence.

In Section 2 we describe the mathematical model used for addressing the similarity problem
and we prove that the merit function may be viewed as the minimum of a set of smooth func-
tions. In Section 3 we define a Gauss-Newton-like algorithm for minimizing the merit function
defined in the previous section. Also in this section, we prove global convergence to critical
points. In Section 4 we show how to find initial approximations and we give algorithmic details.
In Section 5 we provide numerical experiments comparing the Gauss-Newton approach to the
popular DALI alignment algorithm. Conclusions are given in Section 6.

Notation.
#C denotes the cardinality of the set C.
‖ · ‖ = ‖ · ‖2
IN = {0, 1, 2, . . .}

2 Mathematical Formulation

Structures A and B are identified here by the sets of points (atoms) A1, . . . , AnA and B1, . . . , BnB

in the three-dimensional Euclidian space IR3. Associated to Structure A we have nax rotation
axes (nax ≤ nA − 1), determined by nax different pairs of consecutive atoms

(Aiax(1), Aiax(1)+1), . . . , (Aiax(nax), Aiax(nax)+1).

A movement T is defined by (3+nax) angles α1, . . . , α3, α4, . . . , α3+nax and three displacement
parameters a = (a1, a2, a3). The set of points T (A1), . . . , T (AnA) is denoted T (A). For obtaining
T (A) we perform, successively, the following transformations on the atoms of A:

1. T1(A) is the result of applying a rotation with angle α1 around the x-axis to all the atoms
of A. Analogously, T2(A) comes from applying a rotation with angle α2 around the y-axis
to all the points of T1(A) and T3(A) is the α3-rotation of all the atoms of T2(A) around
the z-axis.

2. For j = 1, . . . , na, T3+j(A) is defined as the rotation of the points

T3+j−1(Aiax(j)+2), . . . , T3+j−1(AnA)

around the axis determined by T3+j−1(Aiax(j)) and T3+j−1(Aiax(j)+1).
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3. T (A) ≡ {T (A1), . . . , T (AnA)} is the set of translated atoms {a + T3+nax(A1), . . . , a +
T3+nax(AnA)}.

A fixed orientation for rotations is preserved throughout all the calculations. Rotations are
computed using the algorithm described in [34].

Clearly, T (A) depends on αi, i = 1, . . . , (3 + nax) and a1, a2, a3. We will write T = T (α, a)
when we want to emphasize this dependence.

Our goal is to find a movement that, in some sense, maximizes the similarity between T (A)
and B. We address this objective trying to match nguess atoms of T (A) (nguess ≤ min{nA, nB})
with nguess atoms of B. Typically, nguess ∈ [0.85×min{nA, nB}, 0.95×min{nA, nB}]. The merit
function f(α, a) is computed by the following algorithm.

Algorithm FUN
Step 1. For all i = 1, . . . , nA, compute T (Ai) and pair(i) ∈ {1, . . . , nB} such that

‖T (Ai)−Bpair(i)‖ = min{‖T (Ai)−Bj‖, j = 1, . . . , nB}.

Step 2. Compute I(T ) ⊂ {1, . . . , nA}, the set of indices that define the nguess smaller distances
‖T (Ai)−Bpair(i)‖. In other words, #I(T ) = nguess and for all i ∈ I(T ), j ∈ {1, . . . , nA}− I(T ),
‖T (Ai)−Bpair(i)‖ ≤ ‖T (Aj)−Bpair(j)‖.
Step 3. Compute

f(α, a) =
∑

i∈I(T )

‖T (Ai)−Bpair(i)‖2. (1)

The function f is nonsmooth and nonconvex. In spite of this, we will see that it is reliable
to minimize it using, essentially, smooth optimization algorithms. If there exist nguess atoms in
A that fit exactly nguess atoms of B then, a transformation T (α, a) exists such that f(α, a) = 0.
Since f is nonnegative this transformation will define a global minimizer of f . Reciprocally, if
we find a global minimizer of f there are good chances of having found a good matching between
A and B.

The following characterization of f(α, a) will be useful. We will prove that the merit function
f computed by Algorithm FUN is the minimum of a set of smooth functions which, in turn, do
not need to be computed at all.

Theorem 1. Let IA be the set of subsets of {1, . . . , nA} with nguess elements. Let JB be the set
of nguess-uples of {1, . . . , nB} Then,

f(α, a) = min
{ nguess∑

i=1

‖T (Aki
)−B`j

‖2 | {k1, . . . , knguess} ∈ IA, (`1, . . . , `nguess) ∈ JB

}
.

Proof. Let us emphasize that, when we write {k1, . . . , knguess} ∈ IA we mean that ki 6= kj if
i 6= j. However, if (`1, . . . , `nguess) ∈ JB we may have `i = `j for some i 6= j.

Let us write I(T ) = {k̄1, . . . , k̄nguess}. Clearly, (pair(k̄1), . . . , pair(k̄nguess)) is an nguess-uple
whose elements are in {1, . . . , nB}. Therefore,

min
{ nguess∑

i=1

‖T (Aki
)−B`j

‖2 | {k1, . . . , knguess} ∈ IA, (`1, . . . , `nguess) ∈ JB

}
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≤
nguess∑

i=1

‖T (Ak̄i
)−Bpair(k̄i)

‖2 =
∑

i∈I(T )

‖T (Ai)−Bpair(i)‖2 = f(α, a).

Reciprocally, assume that {k̄1, . . . , k̄nguess} and (¯̀1, . . . , ¯̀
nguess) are such that

nguess∑
i=1

‖T (Ak̄i
)−B¯̀

i
‖2 = min

{ nguess∑
i=1

‖T (Aki
)−B`j

‖2 | {k1, . . . , knguess} ∈ IA, (`1, . . . , `nguess) ∈ JB

}
.

(2)
By the definition of pair(i), for all i = 1, . . . , nguess we have:

‖T (Ak̄i
)−Bpair(k̄i)

‖ ≤ ‖T (Ak̄i
)−B¯̀

i
‖.

Therefore, by the definition of I(T ),

f(α, a) =
∑

i∈I(T )

‖T (Ai)−Bpair(i)‖2 ≤
nguess∑

i=1

‖T (Ak̄i
)−Bpair(k̄i)

‖2 ≤
nguess∑

i=1

‖T (Ak̄i
)−B¯̀

i
‖2.

By (2), this completes the proof. �

Let us call m the number of elements of the Cartesian product IA× JB. Then, we can write
IA × JB = {ν(1), . . . , ν(m)}. Suppose that ν(i) = ({i1, . . . , inguess}, (j1, . . . , jnguess)). Then, we
define

fi(α, a) =
nguess∑
k=1

‖T (Aik)−Bjk
‖2. (3)

By Theorem 1 we have that

f(α, a) = min{fi(α, a), i = 1, . . . ,m}. (4)

Observe that the function f(α, a) is not differentiable although all the functions fi have
continuous partial derivatives for all α, a.

The characterization (4) allows one to minimize the nonsmooth function f using, essentially,
smooth minimization algorithms. The idea is simple. Given the approximation (αk, ak) to
the minimizer of f , one computes, using Algorithm FUN, an index i such that fi(αk, ak) =
f(αk, ak). This index does not need to be unique, but this is irrelevant for our calculations. Since
fi is smooth, it is easy to compute a new approximation (αk

trial, a
k
trial) such that fi(αk

trial, a
k
trial)

is sufficiently smaller than fi(αk, ak). But f(αk
trial, a

k
trial) is not greater than fi(xk

trial, a
k
trial),

therefore f(αk
trial, a

k
trial) must be sufficiently smaller than f(αk, ak). This argument supports

the generalization of any unconstrained method to the minimization of f . In the next section
we will see that, due to the structure of the functions fi, a generalization of the Gauss-Newton
method is quite adequate for our problem.
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3 Gauss-Newton-like Algorithm

For simplicity, let us write x = (α, a), n = 6 + nax. Then, fi : IRn → IR is continuously
differentiable for all x ∈ IRn, i = 1, . . . ,m. The first derivatives of fi are hard to compute
when nax > 0. Second derivatives also exist but their practical computation is prohibitive. The
problem of minimizing f is an Order-Value Optimization problem in the sense of [1, 2, 3]. As
in [2] we say that x∗ is a critical point of the problem if there exists i ∈ {1, . . . ,m} such that
fi(x∗) = f(x∗) and ∇fi(x∗) = 0. According to [2], local minimizers of f must be critical points.
The sum-of-squares structure (3) suggests the use of a variation of Gauss-Newton method for
minimizing f . Observe that, by (3),

∇fi(x) = 2Ji(x)T Fi(x),

where Ji(x) is a Jacobian nguess × n matrix and Fi(x) ∈ IRnguess is the corresponding residual
vector. The Gauss-Newton direction di(x) comes from solving:

Gi(x)di(x) = −Ji(x)T Fi(x),

with G(x) = Ji(x)T Ji(x). If Ji(x) is not full-rank or is severely ill-conditioned we replace
Gi(x) by 0.995Gi(x) + 0.005I. If, after this change, Gi(x) remains ill-conditioned we repeat
this regularization. Eventually, Gi(x) is suitable conditioned and di(x) can be used as search
direction.

Therefore, the direction di(x) is given by[
(1− t)Ji(x)T Ji(x) + tI

]
di(x) = −Ji(x)T Fi(x),

for some t ∈ [0, 1). Obviously, di(x) is continuous as a function of t and tends to −Ji(x)T Fi(x)
as t tends to 1. Assuming that Ji(x)T Fi(x) 6= 0, it follows that:

lim
t→1

di(x)T∇fi(x)
‖di(x)‖‖∇fi(x)‖

= −1.

Therefore, given c ∈ (0, 1), after a finite number of replacements Gi(x)← 0.995Gi(x) + 0.005I,
one obtains that

di(x)T∇fi(x) ≤ −c‖di(x)‖‖∇fi(x)‖. (5)

The formal description of the algorithm is the following.

Algorithm GN
Given x0 = (α0

1, . . . , α
0
3+nax

, a0
1, a

0
2, a

0
3) ∈ IRn, α0

j ∈ [0, 2π] for all j = 1, . . . , 3 + nax,
γ ∈ (0, 1/2), θ ∈ (0, 1), tinic ≥ 1, ε ≥ 0, perform the following steps:

Step 1. Initialize k ← 0.
Step 2. Compute f(xk). Let i = i(xk) be such that fi(xk) = f(xk).
Step 3. Compute Ji(xk) and ∇fi(xk). If ‖∇fi(xk)‖∞ ≤ ε, terminate.
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Step 4. Compute dk = di(xk) such that

(dk)T∇fi(xk) ≤ −θ‖dk‖‖∇fi(xk)‖. (6)

using the Gauss-Newton procedure described above.
Step 5. Define tk by one of the following rules:
Rule 5.a: The step tk is the first element of the sequence {tinic× 2−k, k = 0, 1, 2, . . .} such that

f(xk + tkd
k) ≤ f(xk) + γtk(dk)T∇fi(xk). (7)

Rule 5.b: The step tk is the first element of the sequence {tinic× 2−k, k = 0, 1, 2, . . .} such that

fi(xk + tkd
k) ≤ f(xk) + γtk(dk)T∇fi(xk). (8)

Step 6. Compute xk+1 = (αk+1
2 , . . . , αk+1

3+nax
, ak+1

1 , ak+1
2 , ak+1

3 ) such that

αk+1
j ∈ [0, 2π), j = 1, . . . , 3 + nax (9)

and
f(xk+1) ≤ fi(xk + tkd

k). (10)

Set k ← k + 1 and go to Step 2.

Remark 1. There is a a subtle difference between the stepsize rules 5.a and 5.b. Since
f(xk + tkd

k) ≤ fi(xk + tkd
k) it is obvious that (8) implies (7). Therefore the step obtained by

Rule 5.a cannot be smaller than the one obtained by Rule 5.b. For this reason, in our tests we
use Rule 5.a and f(xk+1) = f(xk +tkd

k). However, let us suppose that we are able to obtain wk,
the global minimizer of the function fi. In this case, taking xk+1 = wk, we have:

f(xk+1) ≤ fi(xk+1) = fi(wk) ≤ fi(xk + tkd
k).

This means that wk may be taken as new iterate and that the computation of tk may be avoided.
In the case nax = 0, as we mentioned before, a global minimizer of fi may be analytically obtained
as the solution of the Procrustes problem therefore, in this case, the algorithm can be described
as the iterated computation of i(xk) and Procrustes resolutions.

The computer work per iteration is dominated by O(nguessn
2). It can be reduced to

O(nguessn) if one uses a quasi-Newton formula instead of Gauss-Newton. However, since i(xk)
changes from one iteration to another, it is not clear how a quasi-Newton update should be
implemented.

Theorem 2. If Algorithm GN does not terminate at xk, then xk+1 is well defined and
f(xk+1) < f(xk).

Proof. Let i = i(xk). Since ε ≥ 0, if the algorithm does not terminate at xk, we have that
∇fi(xk) 6= 0. By the reasoning that leads to (5), the direction dk satisfies (6). Therefore,
(dk)T∇fi(xk) < 0, so:

lim
t→0

fi(xk + tdk)− fi(xk)
t(dk)T∇fi(xk)

= 1.
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Thus, for t > 0 small enough,
fi(xk + tdk)− fi(xk)

t(dk)T∇fi(xk)
≥ γ

and, so,
fi(xk + tdk) ≤ fi(xk) + γt(dk)T∇fi(xk).

But f(xk) = fi(xk) and f(xk + tdk) ≤ fi(xk + tdk). Therefore, for t > 0 small enough,

f(xk + tdk) ≤ f(xk) + γt(dk)T∇fi(xk).

Therefore, tk is well defined at Step 5 of Algorithm GN.
Let us write

xk + tkd
k = (α1, . . . , α3+nax , a1, a2, a3).

Let βj ∈ [0, 2π), j = 1, . . . , 3+nax be such that (αj−βj)/(2π) is integer for all j = 1, . . . , 3+nax.
Clearly, f(β1, . . . , β3+nax , a1, a2, a3) = f(α1, . . . , α3+nax , a1, a2, a3). Therefore, we may complete
the iteration defining

xk+1 = (β1, . . . , β3+nax , a1, a2, a3).

�

Theorem 3. The sequence generated by Algorithm GN lies in a compact set.

Proof. By periodicity, we may think that T3+nax is generated by rotations with angles αj ∈
[0, 2π). By the continuity of T3+nax and the compacity of [0, 2π], there exists c1 > 0 such that
‖T3+nax(Ai)‖ ≤ c1 for all i = 1, . . . , nA, and all possible choices of α1, . . . , α3+nA .

Clearly, there exists c2 > 0 such that ‖B`‖ ≤ c2 for all ` = 1, . . . , nB.
Let M >

√
f(x0). Let ‖a‖ > M + c1 + c2, αj ∈ [0, 2π) for all j = 1, . . . , 3+nA, T = T (α, a),

i ∈ {1, . . . , nA}, ` ∈ {1, . . . , nB}. Then,

‖T (Ai)−B`‖ ≥ ‖T (Ai)‖ − ‖B`‖ ≥ ‖T (Ai)‖ − c2.

But
‖T (Ai)‖ ≥ ‖a‖ − ‖T (Ai)− a‖ = ‖a‖ − ‖T3+nax(Ai)‖ ≥ ‖a‖ − c1,

so,
‖T (Ai)−B`‖ ≥ ‖a‖ − c1 − c2 > M >

√
f(x0).

Therefore, ‖T (Ai) − B`‖2 > f(x0) for all i = 1, . . . , nA, ` = 1, . . . , nB. This implies that
f(α, a) > f(x0). So,

f(x) ≤ f(x0)⇒ ‖a‖ ≤M + c1 + c2.

Since f(xk) ≤ f(x0) for all k, we have that

‖ak‖ ≤M + c1 + c2

for all k. Since αk
j ∈ [0, 2π) for all j = 1, . . . , 3 + nax, the theorem is proved. �
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Theorem 4. Let {xk} be an infinite sequence generated by Algorithm GN. Then, there exists
c > 0 such that

tk ≥ min
{

1
‖dk‖

,
(1− γ)θ‖∇fi(xk)(xk)‖

2c‖dk‖
, tinic

}
for all k ∈ IN .

Proof. The functions fi have continuous second derivatives for all x ∈ IRn. By Taylor’s formula,
since {xk} is bounded, there exists c > 0 such that, whenever ‖tdk‖ ≤ 1,

fi(xk + tdk) ≤ fi(xk) + t(dk)T∇fi(xk) + c‖tdk‖2 (11)

for all i = 1, . . . ,m.
Since f(xk + tdk) ≤ fi(xk) for all i = 1, . . . ,m and fi(xk)(xk) = f(xk), we deduce that, if

‖tdk‖ ≤ 1,
f(xk + tdk) ≤ f(xk) + t(dk)T∇fi(xk)(x

k) + c‖tdk‖2

for all k ∈ IN . By (6), (dk)T∇fi(xk)(xk) < 0 and, by the definition of the algorithm, since
∇fi(xk)(xk) 6= 0, we also have that dk 6= 0. By (11) and an elementary calculation shows that, if

t ∈
(

0,
(γ − 1)(dk)T∇fi(xk)(xk)

c‖dk‖2

)
and ‖tdk‖ ≤ 1, then

fi(xk + tdk) ≤ f(xk) + γt(dk)T∇fi(xk)(x
k).

and, so,
f(xk + tdk) ≤ f(xk) + γt(dk)T∇fi(xk)(x

k).

Therefore,

tk ≥ min
{

1
‖dk‖

,
(γ − 1)(dk)T∇fi(xk)(xk)

2c‖dk‖2
, tinic

}
.

Thus, by (6),

tk ≥ min
{

1
‖dk‖

,
(1− γ)θ‖∇fi(xk)(xk)‖

2c‖dk‖
, tinic

}
,

as we wanted to prove. �

Theorem 5. Let {xk} be an infinite sequence generated by Algorithm GN. Then,

lim
k→∞

‖∇fi(xk)(x
k)‖ = 0.

Proof. By the definition of Algorithm GN and (6) we have that

f(xk+1) ≤ f(xk)− γθtk‖dk‖‖∇fi(xk)(x
k)‖

for all k ∈ IN .

11



Therefore, by Theorem 4,

f(xk+1) ≤ f(xk)−min
{

γθ‖∇fi(xk)(x
k)‖,

γ(1− γ)θ2‖∇fi(xk)(xk)‖2

2c
, γθtinic‖dk‖‖∇fi(xk)(x

k)‖
}

.

(12)
But G(xk)dk = −∇fi(xk)(xk), so ‖∇fi(xk)(xk)‖ ≤ ‖G(xk)‖‖dk‖. Since {xk} is bounded, ‖G(xk)‖
is bounded as well. Therefore, there exists c1 > 0 such that ‖∇fi(xk)(xk)‖ ≤ c1‖dk‖ for all
k ∈ IN . Therefore, by (12),

f(xk+1) ≤ f(xk)−min
{

γθ‖∇fi(xk)(x
k)‖,

γ(1− γ)θ2‖∇fi(xk)(xk)‖2

2c
,
γθtinic‖∇fi(xk)(xk)‖2

c1

}
for all k ∈ IN . Since f(xk) ≥ 0 for all k ∈ IN , this inequality implies that ‖∇fi(xk)(xk)‖ → 0, as
we wanted to prove. �

Theorem 4 shows that ∇fi(xk)(xk) plays the same role as ∇f(xk) does in smooth uncon-
strained optimization. As a consequence, the algorithm always terminates in a finite number
of iterations if ε > 0. In Remark 1 we observed that the choice xk+1 = arg min fi(xk)(x) is a
particular case of the iteration of Algorithm GN. When this choice is adopted, the algorithm
terminates in a finite number ktot of iterations, even when ε = 0, at a global minimizer of fi(xktot ).
This follows from the fact that, in this case, k 6= ` implies that i(xk) 6= i(x`).

4 Implementation Features

4.1 Initial Approximations for Sequential Alignments

In practical terms, Theorem 5 says that Algorithm GN tends to find local minimizers of the
function given by (1). In order to increase the chance of finding global minimizers we need to
use suitable initial angles and displacements.

Many times (but not always!) there exists a natural correspondence between chains of
consecutive atoms of A and B. In order to exploit this fact, we define nsmall = b0.45× nguessc
(with nguess ≈ b0.90×min{nA, nB}c) and we seek a chain of nsmall atoms of A that is analogous
to a chain of nsmall atoms of B, without internal rotations. For each atom Ai (i = 4, . . . , nA),
we define

∆(Ai) = (‖Ai −Ai−1‖2, ‖Ai −Ai−2‖2, ‖Ai −Ai−3‖2).
Analogously, for all i = 4, . . . , nB,

∆(Bi) = (‖Bi −Bi−1‖2, ‖Bi −Bi−2‖2, ‖Bi −Bi−3‖2).

If T is a movement without internal rotations we have that

∆(T (Ai)) = ∆(Ai) for all i = 4, . . . , nA.

Therefore, if the chain (T (Ai), T (Ai+1), . . . , T (Ai+nsmall−1)) fits the chain (Bj , Bj+1, . . . , Bj+nsmall−1)
(4 ≤ i ≤ nA − nsmall + 1, 4 ≤ j ≤ nB − nsmall + 1) we have that

∆(Ai) ≈ ∆(Bj), . . . ,∆(Ai+nsmall−1) ≈ ∆(Bj+nsmall−1).

12



The observations above led us to define the following algorithm for finding small paired
chains.

Algorithm CHAIN
Step 1. Set big ←∞.
Step 2. For i = 4, . . . , nA − nsmall + 1, j = 4, . . . , nB − nsmall + 1, execute Step 3.
Step 3. If

nsmall∑
k=1

‖∆(Ai+k−1)−∆(Bj+k−1)‖1 ≤ big

then, set

big ←
nsmall∑

k=1

‖∆(Ai+k−1)−∆(Bj+k−1)‖1

and save (i, j).

Each saved small pair of chains is used to find initial approximations for angles and displace-
ments. If the pair (i, j) was saved by Algorithm CHAIN, we compute the movement associated
to (i, j) solving

Minimize
nsmall∑

k=1

‖T (Ai+k−1)−Bj+k−1‖2. (13)

Problem (13) is a smooth nonlinear least-squares problems whose variables are α1, . . . , α3+nax ,
a1, a2, a3. Usually, it is quite easy to solve (13) by means of a simplification of Algorithm GN.
Moreover, when there are no internal axes, a global minimizer is available as a solution of the
Procrustes problem.

This procedure is used to find initial points for minimizing (1), as described in the following
algorithm.

Algorithm INITIAL
Step 1. Set big ←∞.
Step 2. For each (i, j) saved by Algorithm CHAIN, execute Steps 3 and 4.
Step 3. Solve the easy auxiliary problem (13). Let feasy be the objective function value at the
solution of this problem.
Step 4. If feasy ≤ big, set big ← feasy and save the solution (α1, . . . , α3+nax , a1, a2, a3) of (13).

As a result of the application of Algorithm INITIAL, we have a few initial points (angles
and displacements) that may be used by GN for minimizing (1). Algorithm GN uses these
initial points for finding minimizers of (1) in the cases in which the Order-Preserving Property
must be fulfilled.
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4.2 Computing the Function pair

At Step 1 of Algorithm FUN we need to compute, for all i = 1, . . . , nA, the atom of B which is
closest to T (Ai). This computation can be costly, if nB is large. For reducing the cost as much
as possible, we store, for each atom Bi, the distances to the atoms Bj in increasing order. The
algorithm used for this purpose is FLASHSORT [22]. This sorting process is rather expensive,
even using this fast subroutine, but it is performed only once, as a preprocessing phase of the
alignment. The availability of the distances to each Bi in increasing order is essential for ab-
breviating the computation of pair(i) at each call of FUN. We proceed as follows: Assume that
i ∈ {1, . . . , nB}. Let Bj1 , Bj2 , Bj3 , . . . be the atoms of B with ‖Bjk+1

− Bj1‖ ≥ ‖Bjk
− Bj1‖ for

all k. Bj1 may be chosen arbitrarily although it is desirable that j1 should be a good guess for
pair(i). In our implementation we choose j1 = 1 if i = 1 and j1 = pair(i − 1) if i > 1. Then,
pair(i) is computed by the following algorithm:

Algorithm PAIR
Step 1. Let kmax be the largest k such that

‖Bjk
−Bj1‖ ≤ 2‖Bj1 − T (Ai)‖. (14)

Step 2. Compute kmin ∈ {1, . . . , kmax} such that

‖Bjkmin
− T (Ai)‖ = min{‖Bj1 − T (Ai)‖, . . . , ‖Bjkmax

− T (Ai)‖}.

Define pair(i) = jkmin.

Observe that, by (14), if k > kmax,

‖Bjk
− T (Ai)‖ ≥ ‖Bjk

−Bj1‖ − ‖Bj1 − T (Ai)‖ > ‖Bj1 − T (Ai)‖.

Therefore, the distances ‖Bjk
− T (Ai)‖ do not need to be computed for k > kmax. In the

case of proteins, the number of atoms that may be present in a region of given diameter is
bounded independently of the size of the protein. For this reason the time complexity of FUN
is O(max{nA, nB}).

4.3 Algorithmic Parameters

4.3.1 Angle and Sufficient Descent

The parameter θ is a lower bound for the cosine of the angle between the (negative) gradient
and the search direction. Since Gi(x) is positive semidefinite this cosine is always nonnegative
but it may be close to zero if Gi(x) is severely ill-conditioned. We use θ = 10−8.

In smooth unconstrained optimization, the sufficient decrease (or Armijo) parameter is gen-
erally equal to 10−4. We follow the same tradition here.

14



4.3.2 Stopping Criteria

We use ε = 10−4. Sometimes, the algorithm uses a rather large number of unfruitful iterations
to arrive to ‖∇fi(xk)‖ ≤ ε, so we use a second stopping criterion:

f(xk−1)− f(xk) ≤ εrelf(xk−1)

with εrel = 10−8.
Usually, GN terminates in less than 45 iterations. However, we also are prepared to stop

the process if the number of iterations is greater than 100.

4.3.3 Initial Step

The initial step tinic is a sensitive parameter for this class of problems. In the classical Gauss-
Newton method for ordinary unconstrained smooth nonlinear least-squares problems, one uses
tinic = 1, with the expectancy of obtaining quadratic convergence, if the residual at the solution
is close to zero [23] (Chapter 10). In our problem, one of whose characteristics is the presence of
many local minimizers, it is better to use tinic > 1. Many times, this choice allows the algorithm
to jump over local-nonglobal minimizers and to reach lower functional values. In our experiments
we used tinic = 1.75. A remarkable experimental fact is that, in the vast majority of iterations,
only one function evaluation is needed (sufficient descent was obtained with tk = tinic).

4.4 Greedy Bijection

The objective of alignment is to fit the largest number of atoms of A to the corresponding
atoms of B with the smallest possible average sum of squared distances. So, one has two
goals: maximize the number of matched pairs and minimize the distances. Obviously, these two
objectives are conflictant. When the number of matched atoms increases, the average sum of
squared distances tends to increase and vice-versa. Our approach to the problem uses a tentative
number of matches nguess and finds the movement that minimizes the sum of squared distances
of nguess atoms of Structure A to nguess atoms of Structure B, allowing repetitions in B. We
sacrifice bijection in order to produce a suitable optimization problem. It seems plausible that
the optimal movement so far obtained will also produce good fittings when we force a one-to-one
correspondence between points of T (A) and atoms of B, but this hypothesis needs to be tested
in practice.

Assume that our optimal movement is represented by the transformation T , so that the
rotated and displaced Structure A is T (A) = {T (A1), . . . , T (AnA)}. Without loss of generality,
assume nA ≤ nB. For each nbij ∈ {1, . . . , nA} we wish to consider all the bijections between nbij

points of T (A) and nbij points of B, selecting the one for which the sum of squared distances is
the smallest. This exhaustive procedure would be extremely expensive, therefore we use cheap
greedy approximation. The algorithm that computes the greedy one-to-one correspondences is
given below.

Algorithm GREEDY
Define

di,j = ‖T (Ai)−Bj‖2, i = 1, . . . , nA, j = 1, . . . , nB.
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For nbij = 1, . . . , nA, execute Steps 1–2.
Step 1. Compute inbij

, jnbij
such that

dinbij
,jnbij

= min{di,j , i = 1, . . . , nA, j = 1, . . . , nB}.

Step 2. For all i = 1, . . . , nA, j = 1, . . . , nB, replace

dinbij
,j ←∞, di,jnbij

←∞.

Algorithm GREEDY computes a bijection between the points {T (A1), . . . , T (AnA)} and a
subset of nA points of {B1, . . . , BnB}. This bijection exhibits the increasing order property:

‖T (Ai1)−Bj1‖ ≤ ‖T (Ai2)−Bj2‖ ≤ . . . ‖T (AinA
)−BjnA

‖.

The first nbij pairs of this bijection define the optimal greedy matching between T (A) and B
with nbij elements, under the movement computed by the Gauss-Newton approach. Associated
to each nbij ∈ {1, . . . , nA}, we have a root mean-squared deviation rmsd(nbij), defined by

rmsd(nbij) =

√√√√ 1
nbij

nbij∑
k=1

‖T (Aik)−Bjk
‖2.

These quantities provide means for comparison of this approach with methods for Protein Align-
ment.

Several warnings regarding the greedy algorithm are necessary:

1. Algorithm GREEDY is not optimal at all. Given nbij , better one-to-one correspondences
associated to the superposition computed by GN probably exist.

2. Given nbij and the bijection Φ computed by GREEDY, a smaller value for the root mean
squared deviation rmsd may be obtained matching the domain with the range of Φ (using
Procrustes if nax = 0). The reported rmsd(nbij) corresponds to the movement computed
by GN and no additional effort is made trying to reduce it.

3. The bijection computed by GREEDY does not necessarily fulfill the Order-Preserving
Property and there is no limitation in the number of gaps it produces.

4. If one wants a bijection that maintains OPP, GREEDY may be replaced by Dynamic
Programming with a STRUCTAL-like score.

5 Numerical Experiments

5.1 An Illustrative Example

In order to visualize the concepts displayed above, let us consider the comparison of two protein-
like structures with 115 and 123 atoms each. We applied Algorithm GN with the initial points
provided by Algorithm INITIAL. We used nguess = b0.85 × nAc = 97 and nsmall = b0.45 ×
nguessc = 43.
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nbij rmsd (rigid) MD (rigid) rmsd (flexible) MD (flexible)
10 0.727 0.880 0.794 1.019
20 0.880 1.118 0.947 1.132
30 1.029 1.368 1.061 1.439
40 1.177 1.690 1.211 1.674
50 1.369 2.107 1.349 1.923
60 1.539 2.337 1.490 2.140
70 1.720 2.721 1.636 2.509
78 1.900 3.323 1.793 3.090
80 1.960 3.632 1.841 3.223
90 2.430 5.402 2.191 4.711
100 3.143 8.832 2.894 7.428
110 5.514 21.987 4.584 17.966
115 8.029 35.113 6.687 25.693

Table 1: Results for the illustrative example. MD is the Maximal Distance obtained for rigid
and flexible (with one internal rotation) alignments. The internal rotation reduces both rmsd
and MD for significant (> 50) values of nbij .

5.1.1 Without Internal Rotations

Let us consider first the case in which nax = 0. In this case, Algorithm INITIAL saved only
two points, therefore Algorithm GN needed to be executed twice. The best of these two runs
gave f(x∗) = 428.66. The best translation obtained was

(a∗1, a
∗
2, a

∗
3) = (0.284,−3.25, 1.11)

and the best rotation angles were:

(α∗1, α
∗
2, α

∗
3) = (3.881, 6.055, 4.586).

5.1.2 With One Internal Rotation

In this example we consider nax = 1. The internal rotation is around the axis determined
by atoms 50 and 51 of Protein A. Again, Algorithm GN needed to be executed only twice
(two points saved by INITIAL). The best objective function was f(x∗) = 422.20. The best
translation obtained was

(a∗1, a
∗
2, a

∗
3) = (0.0936,−2.84, 0.575).

The best rotation angles were:

(α∗1, α
∗
2, α

∗
3) = (3.857, 6.042, 4.640).

The best internal rotation angle was:
α∗4 = 0.109.

Using the Greedy Alignment (Algorithm GREEDY) we obtained the results given in Table 1.
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5.2 A Comparison against DALI

In order to test the reliability of the GN approach we selected, at random, 5 proteins of the
Protein Data Bank. We obtained from the DALI webpage the 20 proteins of the PDB that
are more similar to the selected proteins, according to [11] (see Appendix). It must be warned
that, according to [16], STRUCTAL seems to be the algorithm that finds best alignment and,
in terms of speed, SSM is the fastest method. We used DALI for the comparison because it
is currently the most widely cited algorithm and the alignment results for large databases are
readily available. The Protein Data Bank identifier (PDBId) and names of the five selected
proteins are:

1. 1LBD: Retinoid-X-Receptor (238 Cα atoms)

2. 1NPD: Hypothetical Shikimate 5-Dehydrogenase (277 Cα atoms)

3. 1KTB: Alpha-N-Acetylgalactosaminidase (388 Cα atoms)

4. 1UKX: GCN2 EIF2α kinase (2740 Cα atoms)

5. 1M4U: Bone Morphogenic Protein-7 (112 Cα atoms)

As usually in Protein Alignment, the comparison involves the structure of Cα atoms of the
different proteins.

For each pair of proteins under consideration, we consider the values “lali” and “rmsd” re-
ported by DALI’s tables. These values refer to the best alignment computed by DALI. “lali”
is the number of aligned pairs and “rmsd” is the root mean-squared deviation related to the
alignment. Recall that the optimal alignment computed by DALI is obtained from the analysis
of the internal distance matrices. Once the bijection Φ is determined, range and domain of
Φ are superimposed using Procrustes and “rmsd” is computed for this superposition. We ap-
plied our method to the same comparison, including the GREEDY algorithm, and we selected
nbij =“lali”. We report rmsd(nbij), as defined in Section 5. We do not intend to superimpose the
bijection that corresponds to nbij . Instead, rmsd(nbij) is completely determined by Algorithm
GN.

In the comparison between our algorithm and DALI, we consider that GN “wins” if rmsd(nbij) <
“rmsd” (given by DALI) and vice-versa. This analysis provides a rough basis of comparison. It
must be observed that neither DALI nor GN are designed with the purpose of minimizing the
root mean-squared deviation for “lali” atoms. DALI maximizes a score function, on the basis
of which the value of “lali” is decided, and our algorithm minimizes the merit function f , for
nguess = 0.9nA. However, the root mean-squared deviation related to a “lali”-bijection is the
only parameter that may be used to assess the reliability of our approach.

With these warnings in mind, we report the results in Table 2. In this table, the first 20
best alignments obtained by DALI [11] are reported together with the rmsd of GN (between
parentheses) for nbij =“lali”. The names of the proteins corresponding to these alignments are
given in the Appendix.

As can be observed in Table 2, the GN algorithm obtained smaller rmsd’s for 88 of the 100
alignment tests. Five alignments were ties, since the rmsd’s obtained by both methods were zero
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1LBD 1NPD 1KTB 1UKX 1M4U
Protein lali rmsd lali rmsd lali rmsd lali rmsd lali rmsd

1 238 0.0(0.00) 288 0.0(0.00) 388 0.0(0.00) 137 0.0 (0.00) 112 0.0(0.00)
2 182 1.1(0.78) 276 1.9(2.12) 383 1.1(1.07) 65 3.2 (1.68) 106 0.9(0.81)
3 193 2.4(1.21) 253 2.6(2.92) 361 1.6(1.70) 42 2.5 (1.45) 103 3.2(2.77)
4 191 2.5(1.90) 263 2.1(2.24) 357 1.8(1.48) 59 3.0 (1.42) 87 2.5(1.50)
5 196 2.5(1.90) 252 2.7(2.28) 317 3.6(2.41) 43 4.7 (1.40) 103 4.0(3.34)
6 189 2.2(1.86) 267 3.5(4.72) 301 3.7(2.55) 59 4.1 (1.81) 59 1.5(1.26)
7 190 2.2(1.86) 229 3.7(2.82) 316 3.7(2.72) 55 4.2 (0.43) 81 6.2(4.17)
8 202 3.1(2.42) 220 3.1(2.23) 309 3.1(3.15) 46 3.5 (1.57) 77 3.4(2.61)
9 191 2.5(2.00) 221 3.6(2.45) 315 3.3(3.52) 47 5.8 (1.83) 72 3.9(3.30)
10 189 2.4(2.03) 171 3.7(2.61) 318 3.6(2.61) 60 12.1(0.62) 68 4.9(3.08)
11 197 2.6(2.15) 172 4.1(2.34) 320 3.8(3.03) 55 4.5 (1.50) 74 6.2(2.45)
12 194 2.9(1.92) 223 3.4(2.51) 319 3.8(2.52) 62 8.3 (0.24) 65 3.8(2.37)
13 192 2.6(1.89) 168 4.2(2.83) 276 3.6(3.13) 63 5.3 (1.51) 54 3.4(0.85)
14 188 2.5(2.05) 208 3.6(2.33) 292 3.8(3.16) 50 3.3 (0.64) 35 2.8(1.75)
15 109 5.9(2.71) 183 4.9(2.70) 320 3.9(2.52) 52 4.7 (1.72) 45 3.9(2.00)
16 92 3.6(2.26) 219 3.3(2.39) 318 3.9(2.54) 56 8.4 (1.46) 57 6.2(2.25)
17 93 5.2(1.99) 224 3.2(3.86) 315 3.7(2.69) 51 5.1 (0.79) 46 4.6(1.75)
18 84 4.3(1.99) 217 3.4(2.49) 292 3.8(3.24) 54 7.5 (0.26) 48 5.6(2.12)
19 94 4.3(3.04) 205 3.3(2.30) 276 3.6(3.02) 46 6.3 (1.34) 40 2.9(1.78)
20 83 5.3(1.94) 220 3.5(2.57) 297 3.7(3.58) 58 5.3 (1.31) 52 6.3(2.05)

Table 2: A comparison of Gauss-Newton with DALI alignments. The lali value is the one
reported by DALI. The rmsd values reported are the ones available for DALI alignments and,
between parentheses, the value rmsd(lali) provided by the Gauss-Newton method. Cases were
the rmsd obtained by Gauss-Newton is larger than the rmsd obtained by DALI are highlighted
in bold-face fonts.
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when comparing the proteins to themselves (the first alignment of each set). Finally, the rmsd
obtained by DALI was smaller than the one obtained by GN in 7 alignments. Unfortunately,
the comparison of alignment algorithms is a very difficult task, because each algorithm is based
on a different score [16]. The purpose of this comparison is not to state that the quality of the
alignments obtained by GN is better than the ones given by DALI, but to provide convincing
evidence that the GN approach is reliable, particularly if the natural rmsd score is used.

In general, there is a clear correlation between the rmsd obtained by DALI and the rmsd
obtained by the GN algorithm. An exception is the 1UKX example, in which the rmsd’s
obtained by GN were much smaller than the rmsd’s obtained by DALI. The proteins being
compared in this example are relatively large (2740 Cα atoms) and, as can be observed, the
values of lali reported by DALI are small (up to 65). Therefore, in this case, the DALI method
was unable to find good alignments and, for the same small values of nbij =lali, the GN algorithm
finds much better rmsd’s. This occurs independently of the large variations of nguess (from 43
to 2466, depending on the size of the second protein). For example, we observed that in the
comparison of 1UKX with 1OV2 (3198 Cα atoms), the GN solution induces a bijective alignment
of 1471 atoms with the same rmsd reported by DALI (3.3 Å) for lali=50.

5.2.1 Timing Analysis

Protein Alignment methods are frequently used to compare one or more proteins with all the
structures of a large database. This requires, not only quality of the solutions found, but also
efficiency in terms of computer time.

The comparison of times required for the alignment of proteins in a large database was
reported in [16]. The results presented were obtained on a Intel Xeon 2.8 GHz. In order to
roughly estimate the speed of the GN approach, we performed a comparison of the Retinoic
Acid Receptor (pdb id. 1LBD, 238 atoms) to all the structures in Protein Data Bank (31948
structures). Although the number of comparisons of our test is smaller, it provides a tentative
measure of the average time required for the alignment of two structures in the PDB database.
Our results were obtained in an Opteron 242 with 1.2 GHz, which is a CPU similar in speed
as the one used in [16]. The code was written in Fortran77 (with double precision) and was
compiled with the GNU Fortran compiler version 3.4.4 with the options -O3 -ffast-math. The
results are presented in Table 3.

This comparison seems to show that the Gauss-Newton method is competitive with current
state-of-the-art algorithms for protein alignment. The most popular algorithm continues to be
DALI and the time required by each alignment of the Gauss-Newton method is similar to the
DALI average time.

The distribution of the time required by each task in the alignment performed by the Gauss-
Newton algorithm is given in Table 4. We observe that distance matrix computations (calcu-
lation and ordering) takes about 20% of the total time of the alignment. This is step is not
required in a large database comparison, since these matrices can be computed and stored pre-
viously. In our run, the matrices for both proteins were computed every time a new alignment
was performed.

The most costly task was the INITIAL heuristic. No algorithm that ignores the fact that
most protein alignments are indeed sequential can compete both in quality and speed with an
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Method Average time / s
SSAP 3.79
STRUCTAL 0.80
DALI 1.89
LSQMAN 0.75
CE 1.11
SSM 0.26
GAUSS-NEWTON 1.39

Table 3: Average time required to perform an alignment

Task Average time required / s
Reading files 0.015
INITIAL Heuristic 0.600
Distance matrix computations 0.312
Gauss-Newton 0.460

Table 4: Time required by each task of the Gauss-Newton program.

algorithm that takes advantage of this property. The INITIAL heuristic is not a fundamental
part of our method and, in principle, may be replaced by different initial-point techniques (as
multistart, Monte Carlo or dynamic programming).

Fast algorithms using the secondary structure (as SSM does) could be used to provide initial
approximations for Gauss-Newton alignments. In this case, the time increase required by the
use GN does not appear to be critical. The fact that the GN trials take 0.460 s per alignment
is encouraging. We observed that each trial uses an average of 42.9 GN iterations and decreases
the function value obtained by the INITIAL procedure by an average of 65%. Therefore, the
GN algorithm significantly improves the quality of the alignments while being relatively fast.

5.3 General alignments

5.3.1 Binding site identification

In this section we illustrate the application of Algorithm GN to two cases in which binding sites
of proteins need to be identified.

The first case involves the identification of the binding site of DNA in Human Topoisomerase.
Two structures of the Human Topoisomerase bound to DNA strands [26, 6] were taken from the
Protein Data Bank. The structures are similar, but not identical. The DNA binding site in the
first structure was defined as the set of Cα atoms whose distance to the DNA strand is less than
6Å. The full structure and the selected Cα atoms (black balls) are shown in Figure 1(a). The
second Topoisomerase is represented in Figure 1(b). The goal was to identify the binding site
in this second structure. The complete binding site contains 238 Cα atoms and preserves some
sequentiality, but it exhibits 28 gaps. The complete protein structures contain 471 Cα atoms.

We performed alignments both with and without the INITIAL heuristic, using nguess = nA.
In both cases the binding site in the second structure was correctly identified. The heuristic,
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Figure 1: DNA binding site identification in Topoisomerases. (a) Structure of the Human
Topoisomerase bound to DNA with the Cα atoms of residues close to DNA drawn as black
balls. (b) A different structure of the Human Topoisomerase in which the binding site is to be
recognized. (c) The alignment between the binding site Cα atoms of the first structure (black)
to the second structure.

however, achieved a best function value of 18340.49, while, at the solution, the function value
f(x∗) was 80.99. Therefore, the GN execution was crucial for obtaining the global solution, and
decreased the merit function value by 96.6%. The heuristic is not clearly successful in this case
due to the presence of many gaps in the solution.

We also performed 100 GN trials starting from random initial points. The global solution
was found in 75 of these 100 trials. Therefore, in this case, the GN algorithm is successful even
without using sequential information. The best alignment can be seen in Figure 1(c).

The second case involves the identification of the binding site of the Triac ligand in the
isoform β of the Thyroid Hormone Receptor [24]. This binding site contains all the atoms
(not only Cα) corresponding to the 16 amino acids of the binding site of the Thyroid Hormone
Receptor α, bound to the same ligand. The residual indices of the binding site in the Thyroid
Hormone Receptor α are 215, 218, 219, 221, 222, 225, 256, 260, 262, 263, 276, 277, 290, 291, 292,
and 381. Therefore, few sequential information seems to be useful. The binding site contains
244 atoms and the β isoform contains 4151 atoms.

The similarity between the isoform α and the isoform β allows one to obtain a solution by
isoform superposition with rmsd = 0.52 Å. For obtaining this solution we simply align the whole
isoform α with the isoform β and we take the subset of atoms corresponding to the binding
site. Therefore, for a successful alignment of binding-site versus Isoform β one expects to obtain
rmsd≈ 0.52.

However, the alignment of the binding site versus Isoform β using the INITIAL heuristic
was completely unsuccessful, probably due to the large number of gaps in the solution. Moreover,
even using 10000 initial random approximations for GN the best rmsd obtained was 1.12Å. (We
used nguess = 0.9bnAc.) In spite of this lack of success, a remarkable fact was that, for most
alignments obtained with 10000 trials, we got rmsd≤1.5Å. Each trial employed an average of 39

22



Figure 2: Identification of a pharmacophore with GN alignment: (a) The structure TRα with
its pharmacophore (black). (b) The structure of TRβ with its pharmacophore (light grey) and
the aligned α pharmacophore (black). (c) The best alignment found for the pharmacophore.

GN iterations. It is somewhat surprising that many local minimizers can be identified in this
problem with very small values of rmsd.

In Figure 2(a) we show the structure of the isoform α bound to Triac. The molecule inside
(balls) is the Triac ligand. The binding site is the group of amino acids that interact with the
ligand directly, drawn as black sticks. In Figure 2(b) we show the isoform β with the optimal
binding site determined by its alignment with the isoform α. In Figure 2(c) we show the isoform
β with the best binding site (rmsd=1.12 Å) obtained by GN. Observe that this “local” binding
site is not close to the optimal one. This example illustrates the fact that the number of local
minimizers increases as nA/nB decreases. The quotient nA/nB was approximately 0.51 in the
DNA binding site example and 0.059 in the second case.

The fact that the optimal solution could not be obtained in this case suggests that specific
initial-point heuristics may be necessary for pharmacophore identification.

5.3.2 Flexible Ligand Alignment

In order to illustrate the capability of the GN method to deal with flexibility or other transfor-
mations, we show here a flexible ligand alignment. The ligands are T3 (the Thyroid Hormone)
and a drug candidate with similar function, the KB-141 ligand [36]. The structures of these lig-
ands are shown in Figures 3(a) and (b). This example was run without the INITIAL heuristic,
since sequentiality is not relevant for general ligand alignments. We employed 200 trials of the
GN algorithm with nguess = nA and starting from random initial points.

The flexibility of the ligand was represented by three internal rotations of chemical relevance.
The bonds that define the axes of rotation are indicated in Figure 3(a) by R1, R2 and R3. The
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Figure 3: Flexible ligand alignment. (a) Structure of the Thyroid Hormone. The allowed
rotations are indicated. (b) Structure of the drug candidate KB-141. Alignments performed
with (c) no rotations, (d) R1 allowed, (e) R1 and R2 allowed, (f) R1, R2 and R3 allowed.

Rotations allowed Best function value rmsd Successful trials
None 27.1069780 0.88 54
R1 26.9802612 0.87 13

R1, R2 21.8226606 0.78 13
R1, R2, R3 18.2595802 0.72 14

Table 5: Statistics of the flexible ligand alignments.

results of the alignment are listed in Table 5.
As expected, the introduction of flexibility improves the quality of the alignment. The merit

function and rmsd decrease as the number of rotations is increased. The improvement of the
alignment can also be observed in Figures 3(c) to (f). On the other hand, the introduction
of internal rotations clearly adds difficulties for the obtention of the global solution. As can
be seen in Table 5, the number of successful trials (in which the global solution was found)
decreases from 54 to 13 by the introduction of one rotation. In this example, the introduction of
more rotations did not decrease further the probability of finding the global minimizer, probably
because the molecules are small.

5.3.3 Cofactor Identification

Cofactors are molecules that are bound to enzymes and are important for their function. Differ-
ent enzymes with similar functions may have similar cofactors. The identification of a cofactor
within a protein structure may be useful for the analysis of protein function independently of the
overall protein structure. In this example, we align the HEME group of the Human Hemoglogin
(43 atoms) with the also HEME-containing protein complex of Sperm Whale Myoglobin (HEME
group: 42 atoms, protein matrix: 154 Cα atoms). The HEME group of Hemoglobin is repre-
sented in Figure 4(a) and the Sperm Whale Myoglobin protein, containing the HEME group is
represented in Figure 4(b).

In this case, since the HEME groups contains no sequence information, the INITIAL
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Figure 4: Alignment of HEME groups. (a) The HEME group of Human Hemoglobin. (b) The
structure of Sperm Whale Myoglobin containing its HEME group (pointed by the arrow). (c)
Detail of the best alignment obtained.

heuristic was not used. Random initial points were generated for 100 GN trials and we used
nguess = 0.9nA. The correct alignment of the HEME groups was found 4 times, with an rmsd of
1.03Å. Figure 4(c) illustrates the alignment obtained. The total time of the alignment was 1.4s.
Therefore, Algorithm GN is able to successfully identify the cofactor without any adaptation.
On the other hand, as in the case of other non-sequential alignments, specialized heuristics could
probably be used to increase the chances of obtaining the global solution.

6 Concluding Remarks

In Structure Alignment one tries to find a transformation (movement) of the structure A that
optimizes a merit function with respect to the structure B. The choice of the merit function
depends on the problem under consideration. Moreover, merit functions must be easy to com-
pute.

A transformation (or movement) can be frequently parameterized with respect to a finite
number of variables. Therefore, the merit function depends on those variables and the Structural
Alignment between A and B becomes an Optimization problem in finite dimension.

Numerical Continuous Optimization is a well developed area of Computational Mathematics.
So, practical problems that can be reduced to the minimization of a continuous function have
good chances to be solved efficiently. In particular, differentiability is a desirable property of the
objective function that allows one to use well studied fast Newtonian or gradient-like methods.

The merit function f used in this paper is not differentiable. Instead, it is the minimum of
a set of differentiable functions fi which, in turn, do not need to be exhaustively computed. As
a consequence, smooth descent methods using a single gradient per iteration can be defined for
minimizing the merit function. Global convergence in the usual sense of Nonlinear Programming
can be proved. The fact that each fi is a sum of squares motivated us to choose a variation of
the Gauss-Newton method for the minimization process.

Ideally, we would like to define fi as the sum of the squared distances corresponding to a
bijection between a subset of the transformed A and a subset of B. However, such a function
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would not be easily computable. The compromise with computability led us to sacrifice bijec-
tivity of the correspondence that defines fi. In fact, we showed that the only fi that needs to
be explicitly computed is the one that defines the minimum of all the fj ’s.

The Gauss-Newton-like algorithm defined for minimizing the merit function f turned out to
be very effective. It is remarkable that in almost all the iterations (involving thousands of GN
executions) only one function evaluation was needed. This indicates that the GN quadratic
model chosen always represents well the objective function and its minimization leads to strong
descent of f . Roughly speaking, the behavior of GN on these problems is similar to the one
that would be observed if all the functions fi were sums of squared linear functions.

Concerning the minimization of f , the real difficulty is the presence of many local minimizers.
Since the number of parameters is usually small, this difficulty may be many times overcome
using multistart techniques or other simple heuristics for initial approximations. When we
have additional information about the solution, as in the case of Protein Alignment, specific
heuristics may be defined for finding initial points that seem to work well. Experiments on
Protein Alignment problems seem to indicate that the Gauss-Newton approach is reliable.

This research continues following at least two main directions. On one hand, we need to go
deeper in the approach to specific problems, as Protein Alignment. Stronger heuristics must
be used for initial approximations and the greedy post-processing strategy must be replaced by
dynamic searches in the Protein-to-Protein distance matrix [5, 33]. Moreover, post-processing
may become middle-processing without altering the general structure of the algorithm with
possible improvement of the overall optimization method. Finally, the use of more powerful
computer facilities will allow us to perform all-to-all comparisons and to address the MSTA
(Multiple-Structure Alignment) problem [5, 27] in reasonable time.

On the other hand, more general problems should be addressed. The space of admissible
movements by means of which flexibility is allowed may be expanded in many ways. For instance,
more general internal rotations may be admitted and scale transformations may be incorporated
in order to detect size-invariant similarities. It must be mentioned that methods that perform
flexible alignment of proteins already exist [28, 35]. A comparison of our approach with these
recent algorithms will be reported soon. Applications to object detection in 2D or 3D images
are not excluded.
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A Appendix: Protein Identities in the DALI Comparison

The 20 best alignments of DALI for the five examples reported here correspond to the following
proteins. The order is from the best to the worst alignment obtained by DALI, as given in the
website

http://ekhidna.biocenter.helsinki.fi/dali/start.

The code is the Protein Data Bank identifier, and the last letter of the code corresponds to the
protein chain compared, when required. Note that the first protein of each group is the same as

26



the reference protein.
For 1LBD: (1) 1LBD, Retinoid X Receptor; (2) 1MV9A, RXR Retinoid X Receptor; (3)
1DKFB, Retinoid X Receptor-Alpha; (4) 1PZLA, Hepatocyte Nuclear Factor 4-Alpha; (5)
2LBD, Retinoic Acid Receptor Gamma; (6) 1HG4A, Ultraspiracle; (7) 1G2NA, Ultraspiracle
Protein; (8) 1PK5A, Orphan Nuclear Receptor NR5A2; (9) 1QKNA, Estrogen Receptor Beta;
(10) 1LV2A, Hepatocyte Nuclear Factor 4-Gamma; (11) 1NQ2A, Thyroid Hormone Receptor
Beta-l; (12) 1QKUA, Estradiol Receptor; (13) 1IE9A, Vitamin D3 Receptor; (14) 1L2JA, Es-
trogen Receptor Beta; (15) 1N81A, Plasmodium Falciparum Gamete Antigen 27; (16) 1EYXL,
R-Phycoerythrin; (17) 1A87, Colicin N; (18) 1DI1A, Aristolochene Synthase; (19) 1Q8CA, Hy-
pothetica Protein MG027; (20) 1IV8A, Maltooligosyl Trehalose Synthase.

For 1NPD: (1) 1NPDB, Hypothetical Shikimate 5-Dehydrogenase; (2) 1NVTA, Shikimate Dehy-
drogenase (AROE or MJ1084) in complex with NADP+; (3) 1WXDA, Shikimate 5-Dehydrogenase;
(4) 1NPYB, Hypothetical Shikimate 5-Dehydrogenase; (5) 1P74A, Shikimate 5-Dehydrogenase;
(6) 1NYTA, Shikimate 5-Dehydrogenase; (7) 1LUAA, Methylene Tetrahydromethanopterin De-
hydrogenase; (8) 1VL6A, Malate Oxidoreductase; (9) 1EE9A, 5,10-Methylenetetrahydrofolate
Dehydrogenase; (10) 1QPJA, Glutamyl-Trna Reductase; (11) 1SAYA, L-Alanine Dehydroge-
nase; (12) 1VLVA, Ornithine Carbamoyltransferase; (13) 1A7AA, S-Adenosylhomocysteine Hy-
drolase; (14) 1B0AA, Fold Bifunctional Protein; (15) 1F8GA, Nicotinamide Nucleotide Tran-
shydrogenase; (16) 1HYLA, N-Acetyl-L-Ornithine Carbamoyltransferase; (17) 1GQ2A, Malic
Enzyme; (18) lML4A, Aspartate Transcarbamoylase; (19) 1DIAB, Methylenetetrahydrofolate;
(20) 1PG5A, Aspartate Carbamoyltransferase.

For 1KTB: (1) 1KTBA, Alpha-N-Acetylgalactosaminidase; (2) 1R46B, Alpha-Galactosidase
A; (3) 1UASA, Alpha-Galactosidase; (4) 1SZNA, Alpha-Galactosidase; (5) 1JIBA, Neopullu-
lanase; (6) 1MXGA, Alpha Amylase; (7) 1M7XB, 1,4-Alpha-Glucan Branching Enzyme; (8)
1JG9A, Amylosucrase; (9) 1UOK, Oligo-1,6-Glucosidase; (10) 2AAA , Acid Alpha-Amylase; (11)
1QHPA, Alpha-Amylase; (12) 1CYG, Cyclodextrin Glucanotransferase; (13) 1LWJA, 4-Alpha-
Glucanotransferase; (14) 1QI4A, Exo-Maltotetraohydrolase; (15) 1D3CA, Cyclodextrin Gly-
cosyltransferase; (16) 9CGTA, Cyclodextrin Glycosyltransferase; (17) 2TAAA, Taka-Amylase
A; (18) 1IV8A, Maltooligosyl Trehalose Synthase; (19) 1AVAA, Barley Alpha-Amylase 2; (20)
1GJWA, Maltodextrin Glycosyltransferase.

For 1UKX: (1) 1UKXA, GCN2 EIF2α Kinase; (2) 1RU0A, DCOH-like Protein DCOHM; (3)
1NH2B, Transcription Initiatition Factor TFIID; (4) 1H3QA, Sedlin (5) 1JM0A, Four-Helix
Bundle Model; (6) 1H3LB, RNA Polymerase Sigma Factor 4; (7) 1WJ2A, Probable Wrky
Transcription Factor 4; (8) 1Q2HA, Adaptor Protein with Pleckstrin Homology; (9) 1SKVA,
Hypothetical 7.5 KDA Protein; (10) 1IURA, KIAA0730 Protein (11) 1Y2OA, BAI1-Associated
Protein 2 Isoform 1; (12) 1W0BA, Alpha-Hemoglobin Stabilizing Protein; (13) 1AVOJ, 11S
Regulator; (14) 1OV2A, Alpha-2-Macroglobulin Receptor Associated; (15) 1P84F, Ubiquinol-
Cytocrome C Reductase; (16) 1WCRA, PTS System; (17) 1LQ7A, Alpha3W; (18) 1M62A,
Bag-Family Molecular Chaperone Regulator 4; (19) 1WPBA, Hypothetical Protein YFBU; (20)
1XVHA, Hypothetical Protein, similar to Streptococcal.
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For 1M4U: (1) 1M4UL, Bone Morphogenetic Protein 7; (2) 3BMPA, Bone Morphogenetic Pro-
tein 2; (3) 1TFG, Transforming Growth Factor Type Beta 2; (4) 1S4YB, Activin Receptor
Type IIB Precursor; (5) 1KLAA, Transforming Growth Factor-Beta 1; (6) 1NYUD, Activin
Receptor; (7) 1FZVA, Placenta Growth Factor; (8) 1M4UA, Bone Morphogenetic Protein-7; (9)
1FL7B, Follicle Stimulating Protein Alpha Chain; (10) 1JPYA, Interleukin 17F; (11) 1HCFA,
Neurotrophin-4; (12) 1AOCA, Coagulogen; (13) 1DZ7A, Chorionic Gonadotropin; (14) 1JMAB,
Herpesvirus Entry Mediator; (15) 1CLZA, Beta2-Glycoprotein-I; (16) 1AFVH, Human Immun-
odeficiency Virus Type 1 Capsid; (17) 4DPVZ, Canine Parvovirus Strain D Viral Protein 2;
(18) 1QZLA, Neural Cell Adhesion Molecule 1; (19) 1CRUB, Soluble Guinoprotein Glucose
Dehydrogenase; (20) 1JMZB, Amine Dehydrogenase.
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