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Abstract

Protein Alignment is a challenging applied Optimization problem. Superposition meth-
ods are based on the maximization of a score function with respect to rigid-body modi-
fications of relative positions. The problem of score maximization can be modeled as a
continuous nonsmooth optimization problem (LOVO). This allows one to define practical
and convergent methods that produce monotone increase of the score. In this paper, trust
region methods are introduced for solving the problem. Numerical results are presented.
Computer software related to the LOVO approach for Protein Alignment is available in
Www.ime.unicamp.br/~martinez/lovoalign.

1 Introduction

Proteins are large organic compounds formed by chains of a-amino acids bound by peptide
bonds. They are essential parts of all living organisms and participate in most cellular processes.
Hormone recognition and transport, catalysis, transcription regulation, photosynthesis, cellular
respiration, and many other fundamental mechanisms of life are protein-mediated. Proteins can
work together to achieve a particular function, and can bind to different chemical structures to
be functional [42].

The sequence of amino acids in a protein is defined by a gene. This sequence is known as
the Primary Structure of a protein. Each amino acid has particular chemical characteristics,
but contributes to the main chain of the protein with identical substructures formed by one
nitrogen and two carbon atoms. One of these carbon atoms is known as the Ca atom. Roughly
speaking, the 3D coordinates of the Ca atoms is known as the Tertiary Structure of a protein.
Protein structures can be determined by experimental methods, such as X-ray crystallography
or Nuclear Magnetic Resonance. A large collection containing atom coordinates for most known

*This work was supported by PRONEX-Optimization 76.79.1008-00, FAPESP (Grants 06/53768-0, 05/56773-1
and 02-14203-6 ) and PRONEX CNPq/ FAPERJ 26/171.164/2003-APQ1. This paper is based on the talk given
by J. M. Martinez at the International Conference on Numerical Analysis and Optimization, held in Beijing, and
dedicated to the 70th birthday of Prof. M. J. D. Powell in September 2006.

TDepartment of Applied Mathematics, IMECC-UNICAMP, State University of Campinas, CP 6065, 13081-970
Campinas SP, Brazil. E-mail: andreani@ime.unicamp.br

tDepartment of Applied Mathematics, IMECC-UNICAMP, State University of Campinas, CP 6065, 13081-970
Campinas SP, Brazil. E-mail: martinezQime.unicamp.br

$Institute of Chemistry, State University of Campinas. E-mail: Imartinez@igm.unicamp.br.



proteins is the Protein Data Bank (PDB) [6], which contains around 35000 structures. This
number increases every year.

During evolution, mutations promote changes in the primary structure of a protein by intro-
ducing modifications in the genetic code. These mutations may persist in a population if they
do not result in impaired protein function. The function of different proteins may be the same
in spite of different sequences of amino acids when they share the same overall three dimensional
structure. Therefore, the classification of 3D structures is useful to determine the function of
the proteins and to provide hints on evolutionary mechanisms.

The main ingredient of the classification procedure is the comparison (alignment) between
two structures. When a new protein structure is obtained, or when a protein structure is
conjectured, its comparison with the whole data bank and consequent classification is often
used for functional classifications [14].

The degree of similarity between two proteins is usually given by a score. From this score,
a distance-like function is usually derived and the set of distances is frequently used to produce
structure maps. A structure map is a 2D or 3D representation of the whole space of proteins [15].
In a structure map, each protein is a point and the distance between two of these points reflects
the similarity given by the score. Multidimensional scaling [16, 17, 41] and Kernel methods [28§]
are useful tools for building the 3D representation that comes from scores. The Structure Space
Map developed in [16, 17] provides good predictions of function similarities in many cases.

The primary sequence of amino acids determines the structure of a protein. Protein folding
is the molecular mechanism by which a protein achieves its tertiary structure from an unfolded
sequence. Some general aspects of protein folding mechanisms are now being elucidated [35], but
the prediction of structure from sequence remains one of the greatest challenges of contemporary
biochemistry. Methods for structural modeling based on the sequence of amino acids exist,
and are frequently based on sequence similarities with proteins with known structure. The
evaluation of the quality of the models requires a measure of their potential energy and of their
similarity with the structural references used [37]. Therefore, a score must be a reliable measure
of similarity not only between known structures but also between potential ones.

We will see that the score that measures the similarity between two proteins may be seen
as the maximum of a (continuous-nonsmooth) function in the space of relative positions (dis-
placements). The reliability of the score depends on the accuracy in which we are able to obtain
this maximum, therefore robust and fast algorithms are necessary. Algorithms for obtaining the
global maximum may be defined but are not affordable for the present computer facilities [23].

In this paper we rely on the mathematical characterization of the Protein Alignment problem
given in [2] (see, also, [4]). Line-search algorithms that converge to first-order stationary points
were defined in [2, 4]. Here we introduce a trust region approach [7, 29, 36] to define second-order
convergent algorithms.

This paper is organized as follows. In Section 2, the Protein Alignment problem is formulated
as a Low Order Value Optimization problem. In Section 3 we define a trust region method for
solving LOVO and we prove convergence. In Section 4 we present numerical results. Conclusions
are given in Section 5.

Notation
The symbol || - || will denote the Euclidean norm.



If the symmetric matrix A is positive semidefinite, we denote A = 0. Analogously, if A is
positive definite, we denote A > 0.

We denote IN ={0,1,2,...}.

The Euclidean ball with center x and radius ¢ is denoted B(z, ¢).

2 Formulation

Let Q ={Q1,...,Qn} C R", P={Py,..., Py} C IR"™. The goal is to find a transformation
D : IR™ — IR such that some subset of {D(Q1),...,D(Qn)} fits some subset of P. In Protein
Alignment, D generally represents rigid-body displacements but more general transformations
can be considered. For example, assume that n, = 3,1, = 2 and that P is the set of possible
“shadows” of the points in . In that case, one could wish to find the rigid-body displacement of
Q such that a subset of the two-dimensional points represented by the (x,y) coordinates of the
displaced Q fits a subset of P in the best possible way. In that case, D would be the composition
of a rigid-body movement with a projection. A lot of examples of this general problem can be
given, from tissue recognition to security systems [3]. We will denote D the set of admissible
transformations.

Let C be the set of admissible correspondences between nonempty subsets of {1,..., N} and
{1,..., M}. (Sometimes, admissible correspondences must be bijective, sometimes monotonicity
will be required.)

Each element ® € C is a function

d:A— B,

where A C {1,...,N}and B C {1,...,M}. Given ® € C and a transformation D, an associated
score S(D,®) > 0 is assumed to be defined. This score should reflect the degree of spatial
similarity between the sets {D(Qq)}aca and {Pp}pep.

The goal of the general alignment problem is to maximize, both with respect to ® and with
respect to D, the score S(D, ®). In other words, we wish to solve the problem:

Maximizepep Maximumgee S(D, P). (1)
Since C is a finite set (say, C = {®1,...,®,,}) we may write (1) in the form
Maximizepep Maximum {S(D, ®1),...,5(D, ®p)}. (2)

Protein Alignment is a particular case of the situation explained above. The goal is to find
similarities between two proteins P and Q, represented by the coordinates of their Ca atoms.
The similarity is measured by a score. Several scores have been proposed in the protein literature.
One of them is the Structal Score [13, 40]. Assume that the 3D-coordinates of the Ca atoms

of protein P (in angstroms) are Py, ..., Py and the coordinates of the Ca atoms of protein Q
are (1, ...,Qn. Under the rigid-body displacement D, the coordinates of the displaced protein
Q are, therefore, D(Q1),...,D(Qn). Assume that ® is a monotone bijection between a subset

of {1,...,N} and a subset of {1,...,M}. (We mean that i < j = ®(i) < ®(j).) The Structal
score associated to the displacement D and the bijection @ is:

20
S5(D,®) = Z 1+ ||P, — D(Qa)lI?/5

—10 x gaps, (3)
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(a) Some bijective correspondences

1A

-—— 1B -
A 5 /
3 D>V 3p \ /
4A (—————— (J4B
/ \
S5A 5B

(1A-1B; 2A-2B; 3A-3B; 4A-4B; 5A-5B) (1A-1B; 2A-3B; 4A-5B) (2A-1B; 3A-2B; 4A-5B)

(b) Some non-Bijective correspondences

SRR

(1A-2B; 3A-2B; 5A-5B) (1A-4B; 3A-3B; 5A-5B) (3A-1B; 3A-4B; 5A-5B)

Figure 1: Examples of correspondences that form the ® domain: (a) Bijective correspondences
and (b) Non-bijective correspondences, valid only for NB methods.

where the Y symbol involves the pairs (k, ®(k)) defined by the bijection and gaps is the number
of cases in which at least one of the following situations occur:

o O(k) is defined, there exists ¢ > k such that ®(¢) is defined, but ®(¢ 4 1) is not defined;

e & !(k) is defined, there exists £ > k such that ®~1(¢) is defined, but ®~(¢ + 1) is not
defined.

In Figure 1 we give examples of bijective and nonbijective correspondences. The concept
of gap applies only to the bijective case. The bijection on the left has no gaps. The central
bijection has two gaps and the bijection on the right has one gap.

The Alignment Problem associated with the Structal score consists of finding ® and D such
that S(D, ®) is maximal. A global optimization procedure for achieving this objective was given
in [23]. However, this method is not computationally affordable and, in practice, an heuristic
procedure called Structal Method [13, 40] is generally used. In [22], the Structal Method was
reported as the best available practical algorithm for protein alignment. Each iteration of the
Structal Method consists of two steps:

1. Update ®: Given the positions Py, ..., Py and D(Q1),. .., D(Qx), the monotone bijection
® that maximizes the score (fixing D) is computed using Dynamic Programming [33].



2. Update D: Assume that the graph of ® is {(k1, ®(k1)),..., (ks, ®(ks))}. Then, the rigid-
body displacement that minimizes Y ;_; || Py, — D(Qa(,))||* is computed.

The computation of D at the second step of the Structal Method involves the solution of
the well known Procrustes problem [18, 19]. The main drawback of the Structal Method is
that the Update-® step aims the optimization of a function (the Structal score) with respect to
® and the Update-D step involves the optimization of a different function (the sum of squared
distances) with respect to D. This may lead to oscillation [2].

The Structal Method is the most efficient Superposition method for Protein Alignment.
Superposition methods are iterative algorithms whose main iteration has two phases:

1. Update ®: Given the positions Py, ..., Py and D(Q1),...,D(Qx), the admissible corre-
spondence ® that maximizes S (fixing D) is computed.

2. Update D: Assume that the graph of ® is {(k1, ®(k1)),..., (ks, ®(ks))}. Then, a rigid-
body displacement that presumably improves the score associated to this correspondence
is computed.

In [2] the set of admissible correspondences has been defined in two different ways: in the first
case, an admissible correspondence must be a monotone bijection (as in the Structal Method)
and, in the second case, admissible correspondences are mere functions between subsets of Q
and P (bijective or not). The Structal score is used in both cases, but in the second case the
gap-term is not included. In both cases, for a fixed correspondence ®, the function S(D, ®) is
a continuous and smooth function of D. As a consequence, Protein Alignment methods that
improve a score at every iteration are defined. The typical iteration of these methods has two
phases, as in general superposition methods. The first phase is as stated above. In the second
phase we find a new displacement D that improves the score associated to ® by means of a
continuous optimization method.

3 Low Order Value Optimization Algorithm
Assume that f; : IR® — IR, i =1,...,m. Define, for all z € IR",
fmin(z) = min{f1(x),..., fim(2)}.
We will consider the optimization problem
Minimize fyin(x). (4)

This is a Low Order Value optimization problem as defined in [3]. Let us identify the trans-
formation D with the set of parameters by means of which D is defined (rotation angles and
translation in the case of rigid-body displacements). Writing x = D, fi(z) = —S(D, ®;), we
observe that (2) is a particular case of (4). Therefore, the Protein Alignment problems defined
in Section 2 are Order Value Optimization problems in the sense of (4). We will assume that the
second derivatives of f; are Lipschitz-continuous on a sufficiently large set, for all ¢ = 1,...,m.
This requirement is clearly fulfilled when S is the Structal score.



For all x € IR"™, we define:

Lin(z) = {i € {1,...,m} | fi(2) = fmin(2)}-

Here we will define a Newtonian trust region method for solving (4). This method will be
applied to the Protein Alignment problem.

Before defining the main algorithm, let us give a technical lemma, which will be useful both
in the well-definiteness proof and in the convergence proof.

Lemma 3.1. Let {z;} be a sequence that converges to * € IR™ and let f : IR — IR possess
Lipschitz-continuous second derivatives on a open and convex set that contains {x;}. We define
I, the second order quadratic approzimation of f(x) by:

W (@) = flg) + V()" (@ —2)) + %(fﬂ — ;) V2 f(2))(z — ).

Assume that {A;} is a sequence of positive numbers that tends to zero and define T; as a global
minimizer of 7 (z) subject to ||z — x| < A;. Finally, assume that the condition

V(@) =0 and V2f(Z) =0 (5)
does not hold, and define
S @)~ ()
Ti(Tg) — ()

(6)

Then,
lim p; = 1.

J—00

Proof. Since T does not satisfy (5), we have that

V@) #0 (7)

or

V(@) =0 and V2f(Z) #£0. (8)

By the continuity of Vf and the convergence of {z;}, if (7) takes place, we have that
Vf(x;) # 0 for j large enough. In the case of (8), V2f(Z) has a negative eigenvalue, therefore,
V2 f (zj) # 0 for j large enough. Therefore, for j large enough, z; is not a solution of the
problem that defines ;. So, there exists j; € IN such that, for all j > ji,

P (T5) — P (x5) < 0.

This implies that p; is well defined (the denominator in (6) is not null) for j > j;.
Assume, first, that V f(Z) # 0. Then, there exists d € IR" be such that ||d|| = 1 and

V@) Td <o. (9)
Since ||A;d|| = Aj, for all j > j; we have:



. . . A2
W (T5) < (5 + Ajd) = ¢ (z5) + AV fa) T d + ﬁdTVQf(wj)d :

Therefore, ) ,
. , | A2
W (T5) — ¢ (25) < A5V f ) d + W?)HJ7
SO, ] )
Y (x5) — P (x5) V2 f ()|

< Vf(zj)d+ A;.

A, 2

Therefore, by (9) and the continuity of V f, there exists jo > ji such that for all j > jo,

(@) - $ie;) _ VG
A]’ - 2

=a<0. (10)
By Taylor’s theorem and (10), we have:

o —1] = f(fﬂj)—f(iﬂj)—W(%)—d}j(:ﬂj)]‘ _ ‘f(xj — i ()
Pj | o

)
I (Z5) — I () ;) — I (x;)

F@j) = flag) = V()" (@ — 25) — 5@ — 25)" V2 (25) (@5 — 25)
¥ (@) — P (x5)

< o(A2)/(—ahr;) — 0.

Therefore, lim p; = 1.
j—oo
Assume now that (8) holds. Then, there exists d € IR™ such that ||d|| = 1 and
dT'V2f(z)d < 0.
For all j > ji, define d; = d if Vf(z;)7d <0 and d; = —d if Vf(z;)Td > 0.
Since ||Ajd;|| = A, we have:
, : . A?
Y (T;) < P () + Ajdy) < ¢ (z5) + %dfwf(%')dj-
Therefore, since djTV2f(:vj)dj = dT'V? f(x;)d,
Vi) -~ ()
A2
J

1
<3 A"V f(x;)d.

Hence, by the continuity of V2f(x), there exists j3 € IN such that for all j > js,

W (@) — ¢ ()
5

< i ATV f(@)d=b<0. (11)



Therefore,
_ o _ 2
F@) = @) | oz — =l*) _ o(A)
i@;) — i) | — 0 AY T A3
Then, lim p; = 1. This completes the proof. O
j—00

— 0.

lpj = 1] =

Algorithm 3.1.

Assume that Ay > 0, 01,02 € (0,1) (with 01 < 02) and a € (0, 1) are given independently
of k. Let zp € IR™ be the initial approximation to the solution of (4).

Forall ke IN,ie€ {1,...,m}, z € IR", we define:

Ui(x) = filer) + Vfilxr) " (@ — zp) + %(a: — 2p) V2 fia) (x — 21).
Step 0. Initialize k£ < 0.

Step 1. Choose v(k) € Lnin(zk). If

terminate the execution of the algorithm.

Step 2. Newton trust region step.

Step 2.1. Choose A > Apin.
Step 2.2. Compute Z(A), a global minimizer of wl’f(k) (x) subject to ||z — zk|| < A.

Step 2.3. If
Frin(B(A)) < Frnin(@r) + g (@A) = ¥ (@1)], (13)
define ;11 =Z(A), Ay = A, k— k+ 1 and go to Step 1.
Else, choose Apew € [01||Z(A) — x|, 024], A «— Apew and go to Step 2.2.

In Theorem 3.1, we prove that, if (12) does not hold at z, then the iteration that computes
zx+1 is well defined. That is, after a finite number of reductions of A, one obtains x; such
that the sufficient descent criterion (13) holds.

In the rest of the paper we will assume that, for all i = 1,...,m, V2f;(z) is Lipschitz-
continuous in an open and convex set that contains all the iterates generated by Algorithm 3.1.

Theorem 3.1. If xi,v(k) do not satisfy (12), then, xp41 is well defined and satisfies

Frin(@ri1) < Frnin(@k) + lh g (@re1) — 5 (@r)] < fonin(z1)- (14)
Proof. Assume that xy, (k) do not satisfy (12). Define i = v(k). Then,
Vfi(zg) #0 (15)



or

Vfi(zr) =0 and V2 fi(z) £ 0. (16)
Observe that
UF(ar) = filar) = fmin(Tk). (17)

For all A > 0, we define Z(A) as a minimizer of ¥/¥(x) subject to ||z — zx|| < A. By (15)
and (16), zx is not a minimizer of this subproblem.

Define, for all A > 0,
@A) - filw)
DE@(A)) — f ()

By Lemma 3.1, if {A;} is a sequence of positive numbers that tends to zero, we have that

p(A)

lim p(A;) = 1.

J]—00

Therefore, iimop(A) = 1. Since fmin(T(A)) < fi(x(A)), this implies that for A sufficiently
small, (14) will be fulfilled. So, the proof is complete. O

Remark. Theorem 3.1 says that, if Algorithm 3.1 terminates at xj, then there exists i €
Iin(zk) such that xy is a second-order stationary point of f;. The reciprocal is not true. For
example, define, with n = 1,m = 2, fi(z) = z, fo(x) = 2%. Clearly, 0 is a second order station-
ary point of fo. However, if one chooses v(k) = 1, the algorithm will not stop and, in fact, it
will find a better point such that fiin(z) < fimin(0).

Theorem 3.2 Assume that, for an infinite set of indices K C IN, we have that limgc g = x4,
where {x} is an infinite sequence generated by Algorithm 3.1. Then:

1. Ifi e {1,...,m} is such that v(k) = i for infinitely many indices k € K, then

Vfi(x,) =0 and V2 fi(z,) = 0. (18)

2. There exists i € I (w4) such that V fi(x.) = 0 and V2 fi(x.) = 0.

Proof. The sequence {Ay}reck satisfies one of the following possibilities:

liminf Ay = 1
iminf Ay 0 (19)
or

{Ak}rek is bounded away from 0. (20)

Assume, initially, that (19) holds. Then, there exists an infinite set of indices K7 C K such
that

lim A, =0. 21
i Ak =0 (21)



Therefore, there exists k1 € IN such that Ay < Ay forall k € Ky, where Ko = {k € K1 | k > k1}.
Since, at each iteration, the initial trial trust region radius is greater than or equal to A,,;p, it
turns out that, for all k € Ko, there exist Ay and T(Ag) such that Z(Ay) is global solution of

Minimize ¥ (z)

—~ 22
2 — 2]l < 2 22
but B o B
[i@B8) = frin(@(B)) > filwr) + a[f (F(A)) — of (z1)] - (23)
Clearly, (22) implies that Z(A}) is global solution of:
o . . k
Mlmmle ¥ (2) (24)
|2 — zp|| < [|[Z(Ak) — x|
By the definition of Ag at Step 2 of Algorithm 3.1, we have:
Ag > o1 [[T(Ag) — ]| - (25)
Therefore, by (21) e (25) we have that
lim [|Z(Ag) — =0. 2
Jim [[7(Ak) = zx] =0 (26)
Define L
(T(A — filx
. fi@(Ag)) — fi(zk) 27)

CUF@(A) - R ()
By Lemma 3.1, if (18) does not hold, we have that limye g, pr = 1, which contradicts (23).
Therefore, (18) is proved in the case (19).
Let us consider the possibility (20). Since fpin(Tk+1) < fmin(xg) for all k, and limge g xp =

T, by the continuity of fi,in we have that limg o[ frmin(Tk+1) — fmin(2k)] = 0. Therefore, by
(14),

lim (¢F —F =0. 2
Jim (4 (@e41) — 95’ (2x)) = 0 (28)
Define A = kinlg Ay > 0 and let T be a global solution of
€K
Minimize Vf;(z.)7 (2 — 2.) + (2 — 2.)T V2 fi(z,) (x — ) (29)
o — 2| <A/2.
Let k3 € IN such that
[z — 2| < A/2 (30)
forall ke Ky={ke K|k > ks}.
By (29) and (30), for all k € K4, we have:
17— ol < A < Ag. (31)

10



Therefore, since x4 is a global minimizer of ¥F(z) subject to ||z — xx|| < Ay, we get:

O (wp1) S YPE) = ¥ (2r) + Vfilar) (@ — ap) + %(5 — x) V2 fip) (T — p). (32)
So,
OF (@pg1) — O (wk) < Vfilar)T (@ — ax) + %(55\ — ap) VP fi(a) (@ — ) - (33)

By (28), taking limits in (33) for k € K3, we have that:
1
0 < Vii(z)T (@ —z.) + 5(5? — )TV () (T — 4.

Therefore x, is a global minimizer of (29) for which the constraint ||z —x.|| < A/2 is inactive.
This implies that V fi(z.) = 0 and V2 f;(z.) = 0.

So, the first part of the thesis is proved.

Now, let us prove the second part of the thesis. Since {1,...,m} is finite, there exists
i € {1,...,m} such that i = v(k) for infinitely many indices k € K1 C K. So, for all k € K,

filae) < filmp) ¥ je{l,...,m}.

Taking limits in the previous inequality and using the first part of the thesis, we get:

fz(a:*) < f](a:*) A j S {1, . ,m}.
Therefore, i € Inin (). O

Assumption Al. We say that this assumption holds at z, if, for all i € I, (z4) such that
Vfi(xs) = 0, we have that V2f;(z,) = 0.

Lemma 3.2. Assume that x, is a limit point of a sequence generated by Algorithm 3.1 and that
Assumption A1 holds at x.. Then, there exists € > 0 such that the reduced ball B(xy, ) — {x4}
does not contain limit points of {xy}.

Proof. If i € Inin(zs) and Vfi(z,) = 0, we have, by Assumption Al, that V2f;(x,) is pos-
itive definite. Therefore, by the Inverse Function Theorem, V f;(z) # 0 for all  # z, in a
neighborhood of z,.

If i € Inyin(x4) and V fi(z.) # 0, then V fi(z) # 0 in a neighborhood of z,.

Finally, if ¢ ¢ Ipin (), we have that fi(x.) > foin(z«). So, fi(z) > fmin(z) and i & Lyin(z)
for all x in a neighborhood of x,.

Therefore, there exists ¢ > 0 such that Vf;(x) # 0 whenever i € Iin(x) and x € B(xy, ) —
{z«}. Therefore, by Theorem 3.2, z cannot be a limit point of a sequence generated by Algo-
rithm 3.1, for all x € B(zx,e) — {+}. O

Lemma 3.3. Suppose that x. satisfies Assumption Al and limpeg x = =, where {xx} is a
sequence generated by Algorithm 3.1 and K is an infinite subset of indices. Then,
lim ||z — x|l = 0.
Jim [|zps — ]
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Proof. Let I be the set of integers in {1,...,m} such that ¢ = v(k) for infinitely many indices
k € K. Since fi(xr) = fmin(zk) infinitely many times, we obtain, taking limits, that i € I, ()
for all ¢ € I. Therefore, by Theorem 3.2, V f;(z.) = 0 and, consequently, limgcr V fi(zr) = 0
for all k € I. This implies that

lim V£, (k) (2r) = 0. (34)

Moreover, by Assumption Al, V2f;(z;) = 0 for all i € I. So, by the continuity of the Hessians,
there exists ¢ > 0 such that, for all A > 0 and k& € K large enough:

11V fo iy () + A TH < IV foay ()| < 2IgleaIX||V2fz($*)_1|| =c (35)
Now, xk11 is a solution of
Minimize wllf(k) (x) subject to ||z — zx| < Ay (36)
Therefore, by the KKT conditions of (36),

(V2 foie) () + M) (w1 — 21) + Vi (22) = 0
MNellzper — 2 =0 (37)
M >0, [[zpg1 — 2kl < Ay

Therefore, by (35), [[zry1 — 2kl < |V (zx)| for k € K large enough, and, by (34),

limgeg ||xp+1 — zk|| = 0, as we wanted to prove. O

Theorem 3.3. Assume that x, is a limit point of a sequence {x} generated by Algorithm 3.1.
Suppose that Assumption A1 holds at x.. Then, the whole sequence xy converges quadratically
to Ty.

Proof. Let K be an infinite sequence of indices such that limge i 1 = x4. Let us prove first that

lim xp = 2.
k—o0

By Lemma 3.2, there exists € > 0 such that z, is the unique limit point in the ball with center

z, and radius €. Define
Ky ={ke N ||z — x| <e/2}.

The subsequence {zy }rex, converges to ., since x is its unique possible limit point. Therefore,
by Lemma 3.3,
lim ||z — x|l =0. 38
Jim g — o (38)

Let k1 be such that, for all £ € K1,k > k1,
k1 — il < /2.

The set B(xy,e) — B(zy,e/2) does not contain limit points of {x}. Therefore, there exists
ko € IN such that, for all k > ko,

|z — x| < €/2 or ||xg — x| > €.

12



Let k € K such that k > max{ki, ka}. Then,
[@ht1 = @ull < llwp — || + [[p41 — ap]| S€/2+e/2=e.

Since z41 cannot belong to B(zy, e) —B(z«,€/2), it turns out that ||zg41 —x«|| < /2. Therefore,
k+1 € K;. So, we may prove by induction that xy € Ky for all £ > k. By (38), this implies
that

lim xp = z.. (39)

k—o0

Let us prove now the quadratic convergence.

Let I C {1,...,m} be the set of indices ¢ such that ¢ = v(k) infinitely many times. Then,
there exists ko such that for all k > ko, v(k) € 1.

Now, if i € I it turns out that f;(zx) < fmin(xk) infinitely many times. Therefore, by (39),
and the continuity of f; and fpnn, we have that i € Ipin(zs). By Theorem 3.2, V fi(z,) = 0.
Therefore, by Assumption A1, V2 fi(x.) = 0. Thus, by the continuity of the Hessians, there exists
c¢; > 0 such that V2f;(x) is positive definite and ||[V2fi(x)~!|| < ¢; for all z in a neighborhood
of x,. This implies that there exists k3 > ko such that szu(k) (zx) is positive definite and
V2 foy () 7| < B = max{e;,i € I} for all k > k3.

Therefore, for all k£ > k3, we may define

T = xp — V2 fun (@) 'V o (). (40)

Since Vfi(r.) = 0 for all i € I, we have that limj .o Vf,(x)(zx) = 0. Then, by the
boundedness of ||V? £, (z) ||, we have that ||z — x| — 0, therefore, for k large enough,
1Tk —xk|| < Apin. But Ty is, for k large enough, the unconstrained minimizer of @Z}’Ij - Therefore,
since the first trust region radius at each iteration is greater than or equal to Ayun, it turns out
that, for k large enough, Ty is the first trial point at each iteration of Algorithm 3.1.

By (40) we have that

1
W @k) — Ul (@) = =@k — 26) T V2 fo 0 () Tk — ).
(k) (k) 9
Therefore, by Assumption A1, there exists ¢ > 0 such that for k large enough,

Wﬁ(k) (@k) — W;(k) (z1)| > cllZr — ol (41)
Define
Foty(@k) — fo) (Tk)
wlj(k) (T) — @bf(l‘k)

By (41), and Taylor’s formula, we have that

i) — filwn) — 5@ — vh@] | _ ol - wl?) 2
F(Tx) — ¥y (2r) = cllme — el
Since ||Ty — xk|| — 0, we have that py — 1. Therefore, for k large enough, the sufficient
descent condition (14) is satisfied at the first trial point Zy. Therefore, x4, = Ty for k large
enough. This means that, for k > k3 large enough,

Pk =

ok — 1| =

Tt = T — V2 Lo (@) TV fo ) ()
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Then, by the elementary local convergence theory of Newton’s method (see, for example [§],
pp. 90-91) we have that, for k large enough:

ps1 — 2] < Byllzk — 2%,

where v is a Lipschitz constant for all the Hessians V2 f;(x). O

4 Numerical results

Algorithm 3.1 was implemented with the following specifications:
1. We choose aw = 0.1,01 = 0.001,09 = 5/9.

2. The initial A at each iteration was chosen as the average norm of the Ca atoms of the
protein @ at their original positions multiplied by 10. This is a “big A” decision, the
consequence of which is that, in most iterations, the initial trial point comes from an
unconstrained Newton step. Clearly, in Algorithm 3.1 we may consider that A,,;, is equal
to the adopted big A.

3. When (13) does not hold, Ay is computed in the following way: We define
Ared = fmm(xk) - fmzn(j;)a

Pred = ¢5(k) (xk) - wlg(k) (j)7

and
Pred

Anew = . 17 T — : 4
max{() 00 2(Pred — Ared)} X1z = (43)

The fact that Apew < 032]|Z — 2| is guaranteed for oo = 5/9 because Ared > aPred in
the case that Apew needs to be computed and o« = 0.1 in our implementation.

We arrived to the formula (43) after careful experimentation with other possibilities, in-
cluding the classical ones associated to smooth trust region methods (see, for example [10],
pp. 95-96).

In order to optimize the behavior of Algorithm 3.1, it was crucial to define a “big” trust
region radius at the beginning of each iteration. The trust region radius that defines the first
trial point was chosen to be independent of the last trust region radius employed at the previous
iteration. This decision allowed the algorithm to use, very frequently, pure Newton steps and
avoided artificial short steps far from the solution. Since the function f; that defines f,,:, at a
trial point may be different than the one that defines f,;, at the current point, the quadratic
model of f,,;» tends to underestimate the true value in many cases. This fact seems to stimulate
the use of initial optimistic large steps.

We implemented Algorithm 3.1 under the framework of the standard trust region method
Betra for box-constrained optimization [5] (see www.ime.usp.br/~egbirgin/tango). Since
our problem is unconstrained, we set artificial bounds —10%°,10%° for each variable. The code
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Betra needed to be adapted to the algorithmic decisions described at the beginning of this
section. In the unconstrained case, Betra is a standard trust region method that uses the Moré-
Sorensen algorithm [30]. Many line-search and trust region methods for smooth unconstrained
minimization may be used for solving (4) if one simply ignores the nonsmoothness of the objective
function “defining” V fiin(z) = Vfi(z) and V2 fnin(z) = V2fi(z) for some i € Ly (z). Of
course, the theoretical properties may change for each algorithmic choice. For example, we
cannot expect that the thesis of Theorem 3.2 hold if one uses the algorithms TRON [26] or
BOX-QUACAN [11] [26], since this theorem does not hold for those algorithms in the ordinary
smooth case (m = 1).

Numerical experiments were run on an AMD Opteron 242 with 1Gb of RAM running Linux.
The software was compiled with the GNU fortran compiler version 3.3 with the “-O3 -ffast-math”
options.

We employed two different versions of the trust region method for solving Protein Alignment
problems:

1. Dynamic Programming Newton Trust (DP-Trust) method: Admissible correspondences
are monotone bijections between subsets of @ and P. This is the trust region counterpart
of the line-search method DP-LS (Dynamic Programming Line-Search) introduced in [2].

2. Non-Bijective Newton Trust (NB-Trust) method: Admissible correspondences are, merely,
functions (not necessarily bijective) between subsets of Q and P. This is the trust region
counterpart of the line-search method NB-LS (Non-Bijective Line-Search) introduced in
[2].

Given a rigid-body displacement D, the correspondence that maximizes the Structal Score
(with gap penalization) is obtained using Dynamic Programming in DP-Trust, and using a
cheap procedure for computing non-bijective correspondences (described in [2, 4]) in NB-Trust
(without gap penalization). The second phase at each iteration of DP-Trust and NB-Trust is a
Newtonian trust region iteration as described in Section 3. The computer time of both methods
is dominated by the computation of the objective function. For DP-Trust, 98% of the time is
spent on performing the dynamic programming steps and other 1.4% computing the gradient and
the hessian, which are steps also performed by the line-search procedure. For NB-Trust, the DP
steps required for obtaining the initial point and for computing the final Structal score takes 61%
of the time, followed by the identification of the shortest distances (16%) and by the computation
of the gradient and hessian of the objective function (15%). The cost of solving trust region
subproblems represents less than 0.1% in both cases, thus being negligible. Therefore, it is not
worthwhile to use approximate solutions of subproblems, instead of exact ones, as many well
established trust region methods for large-scale optimization do (see [7, 11, 26] and [34](Chapter
4), among others).

We used the same initial approximations for the application of all the methods under con-
sideration to Protein Alignment problems [2].
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Method Average time per alignment (s) One-to-all in PDB  All-to-all in PDB

DP-LS 0.127 75 min 2.5 years
DP-Trust 0.141 82 min 2.8 years
NB-LS 0.033 19 min 7.7 months
NB-Trust 0.033 19 min 7.7 months
Structal 0.224 130 min 4.4 years

Table 1: Computer time required for an average alignment by each method.

4.1 Numerical comparison
4.2 Average computer times

We compared the performances of DP-Trust, DP-LS, NB-Trust, NB-LS and Structal by per-
forming 79800 alignments containing both related and unrelated proteins. The set of 400 proteins
for which this all-on-all comparison was performed was chosen from a DALI [14, 15] classifica-
tion: 20 proteins were selected randomly within the DALI alignment database and the 20 best
matches for each of these 20 proteins were also included in the set. Therefore, the 400 proteins
include both different and similar structures, approximately grouped in sets of 20. The list of
proteins used in the comparison is available at the lovoalign site. Each alignment was stopped
when the difference between scores at two consecutive iterations was less than or equal to 1075,
The average time per alignment required by each method is shown in Table 4.2.

Table 1 reports average computer times, disregarding the effective scores obtained by the
different methods. The methods that use nonbijective correspondences (NB-LS and NB-Trust)
are faster because computing the best nonbijective correspondence (given the displacement) is
much easier than computing the best bijective and monotone correspondence using Dynamic
Programming. In fact, the whole application of NB-methods involves two Dynamic Program-
ming calls, one at the beginning, to compute the initial approximation, and the other at the
end, to compute the final Structal Score. As shown before, more than 60% of the computer time
used by these methods is spent in these two Dynamic Programming calculations.

Line Search and trust region methods turned out to be more efficient than Structal in terms
of overall computer time. The introduction of the trust region strategy in place of the line-search
procedure did not improve the speed of the LS methods. However, we will show in the following
section that the slight speed decrease of DP-Trust with respect to DP-LS is compensated by the
best quality of the scores obtained.

We observe that the alignment of one protein to the whole Protein Data Bank (presently
with about 35 thousand structures) takes less than two hours. The alignment of all the proteins
in the PDB would require several months, using a single processor. However, this job may be
obviously done in parallel, since different alignments are entirely independent, so that the whole
task may be completed in quite affordable computer time for practical purposes.

The slightly bigger computer time required by DP-Trust relative to DP-LS is not a serious
limitation, since score improvement is more important in massive alignments.
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Figure 2: Performance profiles. (a) DP-Trust against DP-LS. (b) NB-Trust againts NB-LS. (c)
DP-Trust against Structal. Analysis of the robustness of the methods for different alignment
qualities are shown in (d) and (e).

4.3 Performance Profiles

Performance profiles [9] concerning the comparison of the 5 methods are presented in this section.
We consider that a method “solves” a problem when it obtains the best score up to a tolerance
0.1%. If a method “does not solve” a problem, we consider, as usually, that the computer time
used is co. Given the abscissa x > 1, the profile curve of a method takes the value y if there
are y problems in which the computer time employed by this method is less than x times the
computer time used by the best of the methods for the problem.

In Figure 2(a) the performance profile of DP-Trust against DP-LS is shown. DP-Trust
obtains the best scores in 71% of the alignments, while DP-LS obtains the best scores in 67%.
Therefore, the substitution of the line-search procedure by the trust region one improves the
robustness of the alignment algorithm. Furthermore, for a relative time tolerance greater than
2, DP-Trust appears to be more efficient than DP-LS.

There is no meaningful differences when we compare NB-Trust and NB-LS strategies, as
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shown in Figure 2(b). In this set of alignments, NB-Trust obtains the best score (relatively only
to these two methods) in 81% of the problems while NB-LS obtains best scores in 82% of the
alignments. The differences in score values are not meaningful.

Finally, in order to contextualize the present results in terms of previously reported algo-
rithms, we compute the performance profile of DP-Trust against Structal. DP-Trust is, as
expected, both faster and more robust than Structal, as shown in Figure 2(c).

4.4 Robustness and score relevance

Good protein alignment methods should be able to obtain the best possible scores. However, if
two proteins are completely different, obtaining the best score is not so relevant. In practice,
one is interested in giving accurate distances and identifying similarities only when the proteins
are similar.

With this in mind, we compared the scores obtained by each algorithm as a function of the
best score obtained. In other words, we want to compare the scores of different algorithms as a
function of the presumed protein similarity.

Figure 2(d) shows the percentage of cases in which each method was able to obtain the
best score (up to a relative precision of 1073) as a function of the best score obtained for each
problem. The best-Structal scores in the z—axis are normalized dividing by the number of atoms
of the smallest protein being compared, so that normalized scores are between 0 and 20.

We observe that, for bad alignments, the Structal strategy is able to obtain the best scores
in the greatest number of cases, followed by DP methods and NB methods. However, for best-
scores greater than only 2.5, DP-LS and DP-Trust methods obtain the best alignments more
frequently. For best-scores greater than 10 the best alignments are obtained by DP-Newton
methods in more than 80% of the problems and, for best-scores greater than 13 this percentage
goes to more than 98%. Non-bijective algorithms fail to obtain the best scores for medium to
bad alignments. However, for best-scores greater than 14, these methods also obtain the best
alignments, because the bijectivity of the best correspondence is automatically satisfied.

Figure 2(e) shows how close to the best score each method gets. The figure shows the average
score obtained by each method relative to the best score obtained, as a function of the overall
alignment quality. We can see, now, that the Structal Method obtains scores which are, on
average, better than the ones obtained by NB methods. However, as shown in (Figure 2(d)),
NB-methods obtain better scores than Structal for good alignments.

5 Final remarks

Protein Alignment is an challenging area for rigorous continuous Optimization. There is a
lot of space for the development of algorithms with well established convergent theories that,
presumably, converge to local optimizers, and many times to global ones. We feel that line-
search and Trust-Region methods for (1) are rather satisfactory, but different alternatives should
be mentioned. In [1], problems like (1) were reformulated as smooth nonlinear programming
problems with complementarity constraints. This reformulation should be exploited in future
works.
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In this paper we showed that the trust region approach has some advantages over the line-
search algorithm in terms of robustness, at least when one deals with DP-methods. We con-
jecture that the advantages of trust region methods over line-search methods may be more
impressive in other structural alignment problems. In particular, preliminary results for align-
ments in which we allow internal rotations of the objects (see [4]) suggest that, in those cases,
pure Newton directions are not so effective and restricted trust region steps could help. Further
research is expected with respect to flexible alignments [25, 38, 43] in the near future.

In the experiments reported here, we always used the Structal score and we mentioned the
fact that the Structal Method iteration maximizes this score at its first phase and minimizes
the sum of squared distances (RMSD) for the selected bijection at its second phase. This second
phase minimization admits an analytical solution [19]. Our approach here has been to maintain
the first phase (and the Structal Score) changing the second phase to preserve coherence. The
opposite choice is possible. We may preserve the Procrustes second phase, employing, at the
first phase, a different score. An entirely compatible score with the Procrustes second phase
may be defined by:

P.—D 2
S(D,®) = QOZmax [O, 1-— <’ i dEQq)(k))H) ] — 10 x gaps,
where D, ®, )" and gaps are as in (3) and dp is a threshold distance. If the distance between
two Ca atoms (associated by ®) exceeds dp, its contribution to this score is zero. Maximizing
this score is equivalent to minimize the RMSD for the atoms for which d; is less than dy. Three
methods based on different dy values are also available in the LovoAlign software package.

We conjecture that the Low Order Value Optimization methodology may be employed in
connection to alignment and protein classification in a number of different related problems:
conservation of residues in columns of a multiple sequence alignment [27], percentage identity
[32], SVM detection of distant structural relationships [31], protein-protein interfacial residual
identification [24], prediction of subcellular localization [21], three-dimensional enzyme modeling
[39], determination of score coefficients [20], hierarchical clustering [12] and many others.
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