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Abstract. Many variational inequality problems (VIPs) can be reduced, by a compactifica-
tion procedure, to a VIP on the canonical simplex. Reformulations of this problem are studied,
including smooth reformulations with simple constraints and unconstrained reformulations based
on the penalized Fischer–Burmeister function. It is proved that bounded level set results hold for
these reformulations under quite general assumptions on the operator. Therefore, it can be guaran-
teed that minimization algorithms generate bounded sequences and, under monotonicity conditions,
these algorithms necessarily find solutions of the original problem. Some numerical experiments are
presented.
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1. Introduction. We are interested in reformulations of variational inequality
problems (VIPs) where the domain is a simplex. The main motivation is that varia-
tional inequalities on generalized (perhaps unbounded) boxes can be reduced to the
simplex case if one knows appropriate lower bounds for each variable and a bound for
the sum of the variables. The reformulations of the VIP on a simplex do not have, in
principle, bounded variables. However, we will be able to show, for some reformula-
tions, that the objective function has bounded level sets. It is worth mentioning that
reformulations of complementarity problems do not have, in general, bounded level
sets, unless suitable restrictions are imposed on the problem. Therefore, when one
applies a general solver to such a reformulation, the risk of divergence exists, even
when one knows that stationary points are solutions of the VIP.

The following example will clarify the compactification strategy. Suppose that we
want to solve the nonlinear system of equations

F (x) = 0,(1.1)

where F : R
n → R

n has continuous first derivatives. Usually, globally convergent
algorithms for solving (1.1) rely on the unconstrained minimization problem

Minimize ‖F (x)‖2
2.(1.2)

See [12, 38, 41]. (Obviously, (1.1) is a variational inequality problem where the domain
is R

n.) Most algorithms (for example, globalizations of Newton’s method) have the
property that every limit point of the iterates is stationary, that is,

∇‖F (x)‖2
2 ≡ 2F ′(x)TF (x) = 0.(1.3)
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The most obvious drawbacks of this approach are
(1) The algorithm might converge to a stationary point that is not a solution

(F ′(x) being singular in this case).
(2) Limit points of the generated sequence might not exist at all.

With the aim of guaranteeing the existence of limit points (and, in fact, avoiding
possible overflows in the computer calculation), artificial bounds are frequently added
to (1.2). In this case, the globalization procedure must use techniques of bound-
constrained minimization [7, 10, 18, 19, 31, 36] and the limit points will be stationary
points of the bound-constrained problem. Unfortunately, if an artificial constraint is
active at the limit point, the limit point might not be a stationary point of (1.2) and,
hence, also not a solution of (1.1). This usually happens when the sequence generated
by the unconstrained algorithm applied to (1.2) tends to infinity.

In [5] it has been suggested that a better way in which the domain of (1.1) can be
compactified is to consider the variational inequality problem defined by F (x) on the
domain defined by the artificial bounds. In that paper it was proved that, under suit-
able conditions, any stationary point of a smooth reformulation (with bounded level
sets) of the variational inequality problem must be a solution of (1.1). Therefore, the
results in [5] represent sufficient conditions under which neither of the two objections
just exposed is problematic.

The discussion above can be repeated, with minor modifications, if the original
problem is a complementarity problem instead of a nonlinear system. See [2, 3, 4, 5,
13, 24, 34, 35].

The main drawback of the approach of [5] is that the reformulation of the original
problem requires 2n additional variables. In [4, 14] a different reformulation with
the same triplicating property can be found. In the present research, we introduce
reformulations with n+3 additional variables having similar properties as those proved
in [5]. The idea, as we mentioned above, is to consider first the variational inequality
problem on a smaller simplicial region.

This paper is organized as follows. In section 2 we explain how a variational
inequality problem on a generalized box can be reduced to a VIP in which the domain
is a simplex. In section 3 we define smooth reformulations of the VIP on the simplex,
for which the level sets are bounded and, under suitable conditions, stationary points
coincide with solutions of the variational inequality problem. In section 4 we repeat
the work of section 3 with respect to an unconstrained reformulation that uses the
penalized Fischer–Burmeister [8] function. See, also, [11, 14, 16, 17, 23, 27, 29, 30]. In
section 5 we present numerical experiments. Conclusions are given in section 6.

2. Reduction to the simplex form. The fact that, under certain conditions,
the solution of a restricted variational inequality problem is a solution of the original
one seems to be known by many researchers, although the result is not easily found
in the literature. The argument is as follows.

Consider the variational inequality problem V IP (F,Ω), which consists of finding
x ∈ Ω such that

〈F (x), z − x〉 ≥ 0 ∀z ∈ Ω,(2.1)

where F : R
n → R

n and Ω is closed and convex. Let B ⊂ R
n be closed and convex

too. Denote by B′ the set of interior points of B. Define Ωsmall = Ω∩B and consider
the variational inequality problem defined by

〈F (x), z − x〉 ≥ 0 ∀z ∈ Ωsmall.(2.2)
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Clearly, any solution of (2.1) that belongs to Ωsmall will be a solution of (2.2). Let
us show that, under certain conditions, every solution of (2.2) is a solution of (2.1).
Denote by Ssmall the set of solutions of (2.2). Essentially, the proof of the following
theorem is that given (under slightly stronger hypotheses) in [45].

Theorem 2.1. Assume that the set of solutions of (2.1) is closed. Assume,
moreover, that for every solution x of (2.2) there exists a sequence {xk} ⊂ B′∩Ssmall

such that limxk = x. Then, every solution of (2.2) solves (2.1).
Proof. Let x be a solution of (2.2). Let {xk} ⊂ B′ ∩ Ssmall be the sequence

(convergent to x) that is mentioned in the hypothesis. Let z ∈ Ω. Since xk ∈ B′ and
Ω is convex, there exists t > 0 such that xk + t(z − xk) ∈ Ωsmall. Therefore, since
xk solves (2.2), 〈F (xk), t(z − xk)〉 ≥ 0. So, 〈F (xk), z − xk〉 ≥ 0. Since z and k are
arbitrary, this means that xk solves (2.1) for all k. But the set of solutions of (2.1) is
closed, so x also solves (2.1).

Now, we consider the problem V IP (F,Ω1), where

Ω1 = {x ∈ R
n | xi ≥ 0 ∀ i ∈ I}(2.3)

and I ⊂ {1, . . . , n}. Nonlinear complementarity problems (NCPs) and nonlinear sys-
tems are particular cases of V IP (F,Ω1), where I = {1, . . . , n} and I = ∅, respectively.

Define

Ω2 =

{
x ∈ R

n | x ≥ � and

n∑
i=1

xi ≤ M

}
,

where � ∈ R
n, �i = 0 for all i ∈ I, and

∑n
i=1 �i < M . Clearly, Ω2 ⊂ Ω1. We denote by

S2 the set of solutions of V IP (F,Ω2). The application of Theorem 2.1 to V IP (F,Ω1)
is given in the following theorem.

Theorem 2.2. Suppose that F is continuous on Ω1, S2 is convex, and there
exists x̄ ∈ S2 such that

∑n
i=1 x̄i < M and x̄i > �i for all i /∈ I. Then, any solution of

V IP (F,Ω2) solves V IP (F,Ω1).
Proof. Since F is continuous, the set of solutions of V IP (F,Ω1) is closed. Let

x ∈ S2. By the convexity of S2, we have that [x̄, x) ⊂ S2. Moreover, for all y ∈ [x̄, x),
we have that

∑n
i=1 yi < M and yi > �i, i /∈ I. Therefore, the hypothesis of Theo-

rem 2.1 holds for the sequence defined by xk = x+ 1
k (x̄−x). This implies the desired

result.
Defining G1 : R

n+1 → R
n+1 by

G1(y, xn+1) = (F (y), 0) ∀ y ∈ R
n, xn+1 ∈ R,(2.4)

Ω3 =

{
x ∈ R

n+1 |
n+1∑
i=1

xi = M and xi ≥ �i, i = 1, . . . , n + 1

}
,

and �n+1 = 0, it is easy to see that solving V IP (G1,Ω3) is equivalent to solving
V IP (F,Ω2). Finally, after a suitable change of variables, we can consider that M = 1
and �i = 0 for all i = 1, . . . , n + 1, so that the original problem is reduced to a
variational inequality problem on the canonical simplex.

3. Bounded smooth reformulations. The discussion in section 2 justifies the
study of the problem V IP (G,S), where G : R

m → R
m and

S =

{
x ∈ R

m | x ≥ 0 and

m∑
i=1

xi = 1

}
.
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According to [1, 22] (see, also, [2, 3, 4, 15, 20, 21, 32]) we define the following
reformulation for V IP (G,S):

Minimize Φ1(x, v, λ) subject to x ≥ 0, v ≥ 0,(3.1)

where

Φ1(x, v, λ) = ρ0‖G(x) + 1λ− v‖2
2 + ρ1

(
m∑
i=1

xi − 1

)2

+ 〈x, v〉2,

x, v ∈ R
m, λ ∈ R, 1 = (1, . . . , 1) ∈ R

m, ρ0, ρ1 > 0.
Let us prove that Φ1(x, v, λ) has bounded level sets on the set x ≥ 0, v ≥ 0. From

now on, we denote R
n
+ = {x ∈ R

n | x ≥ 0}.
Theorem 3.1. Assume that G is continuous on R

m
+ . Then, for all θ ∈ (0, ρ1),

the set

L1 = {(x, v, λ) ∈ R
2m+1 | x ≥ 0, v ≥ 0, Φ1(x, v, λ) ≤ θ}

is bounded.
Proof. Assume that

(xk, vk, λk) ∈ L1 ∀ k = 0, 1, 2, . . . .

Since (
∑m

i=1 xk
i −1)2 ≤ θ and xk ≥ 0 for all k = 0, 1, 2, . . . , we have that the sequence

{xk} is bounded. Therefore, by the continuity of G, the sequence {G(xk)} is also
bounded.

Since ρ0‖G(xk) + 1λk − vk‖2
2 ≤ θ for all k = 0, 1, 2, . . . and {G(xk)} is bounded,

we have that {λk − vki } is bounded for all i = 1, . . . ,m. Therefore, if {vki } is bounded
for some i ∈ {1, . . . ,m}, λk is also bounded, implying that vki is bounded for all
i = 1, . . . ,m.

Now, if there exists j ∈ {1, . . . ,m} such that {vkj } is unbounded, we can extract a

subsequence such that vkj → ∞. For the same subsequence, λk → ∞ and, so, vki → ∞
for all i = 1, . . . ,m. Let us call, for this subsequence, vk = (vk1 , . . . , v

k
m).

But 〈xk, vk〉2 ≤ θ for all k = 0, 1, 2, . . .. Therefore, since xk ≥ 0 for all k, we have
that

lim
k→∞

xk = 0.

Hence,

lim
k→∞

ρ1

(
m∑
i=1

xk
i − 1

)2

= ρ1.

Thus, for k large enough, Φ1(x
k, vk, λk) > θ and, so, (xk, vk, λk) /∈ L1. This means

that the assumption on the unboundedness of vki is not possible. This completes the
proof.

It is easy to find (x0, v0, λ0) such that Φ1(x
0, v0, λ0) < ρ1. For example, take

x0 ≥ 0 such that
∑m

i=1 x0
i = 1, arbitrarily choosing λ0 ∈ R and v0 ≥ 0. Therefore,

Φ1(x
0, v0, λ0) = ρ0‖G(x0) + 1λ0 − v0‖2

2 + 〈x0, v0〉2
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and, so, the condition Φ1(x
0, v0, λ0) < ρ1 holds if we choose

ρ1 > ρ0‖G(x0) + 1λ0 − v0‖2
2 + 〈x0, v0〉2.

Theorem 3.1 implies that, with the proper choice of x0, ρ0, and ρ1, any reasonable
iterative minimization algorithm for solving (3.1) necessarily produces a sequence that
has limit points. In fact, the sequence generated by such an algorithm will satisfy

Φ1(x
k, vk, λk) ≤ Φ1(x

0, v0, λ0) ∀ k = 0, 1, 2, . . . ;

so, by Theorem 3.1, (xk, vk, λk) will be bounded. Moreover, for most iterative min-
imization algorithms, limit points are stationary (KKT) points of the minimization
problem. This guarantees that stationary points of problem (3.1) will be necessarily
found. It remains to relate the stationary points of (3.1) to the solutions of V IP (G,S).
This is done in the following theorem.

Theorem 3.2. If G is monotone and has continuous first derivatives, all the
stationary points of (3.1) are solutions of V IP (G,S).

Proof. Since S is bounded, this result follows from Theorem 4 of [22]. See also
[1, 20].

It is easy to see that G1, defined by (2.4), is monotone if and only if F is monotone.
Therefore, stationary points of (3.1) define (after changing variables) solutions of
V IP (F,Ω2). Under the interiority hypothesis of Theorem 2.2, these are also solutions
of V IP (F,Ω1).

An interesting consequence of the results of this section comes from analyzing the
nonlinear system F (x) = 0, where F is monotone (see [43]) but ‖F (x)‖2

2 has stationary
points or even local minimizers that are not solutions of the system. Essentially, in
this section it has been proved that if one selects adequate artificial bounds � and
M and the reformulation (3.1) is applied, there is no risk of convergence to spurious
stationary points of the squared norm of F .

We finish this section considering a different smooth reformulation of V IP (G,S).
See [37]. Consider the minimization problem

Minimize Φ2(x, v, λ) subject to x ≥ 0, v ≥ 0,(3.2)

where

Φ2(x, v, λ) = ρ0‖G(x) + 1λ− v‖2
2 + ρ1

(
m∑
i=1

xi − 1

)2

+

m∑
i=1

(xivi)
2.

As in the case of (3.1) it is easy to see that solutions of V IP (G,S) correspond to global
solutions of (3.2) for which the objective function vanishes. Moreover, the following
results can be proved using the same techniques of Theorem 3.1 and Theorem 3.2.
Finally, an initial bounded level set can be obtained choosing ρ1 similarly to above.

Theorem 3.3. Assume that G is continuous on R
m
+ . Then, for all θ ∈ (0, ρ1),

the set

L2 ≡ {(x, v, λ) ∈ R
2m+1 | x ≥ 0, v ≥ 0, Φ2(x, v, λ) ≤ θ}

is bounded.
Theorem 3.4. If G is monotone and has continuous first derivatives, all the

stationary points of (3.2) are solutions of V IP (G,S).
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Remark. The compactification procedure is essential to guarantee that stationary
points of smooth reformulations are solutions of the associated monotone NCPs. For
example, consider the NCP defined by F : R

1 → R
1, where

F (x) =




−1 if x ≤ 1,
−1 + 2

3 (x− 1)2 if 1 ≤ x ≤ 2,

1− 4
3e

−x+2 if x ≥ 2.

(3.3)

Clearly, F is monotone and the unique solution of the associated NCP is 2 + ln 4
3 .

The optimization problem associated with the smooth reformulations (without
compactification) is to minimize Φ(x, z) = (F (x) − z)2 + (xz)2 subject to x, z ≥ 0.
This problem has, besides the global solution, the stationary point (0, 0), which is not
a solution of the NCP. Moreover, since Φ(k, 1

k2 ) ≤ 1 for all k = 3, 4, . . . , the level set

{(x, z) | Φ(x, z) ≤ 1, x ≥ 0, z ≥ 0}

is not bounded.

4. Penalized Fischer–Burmeister reformulation. The Fischer–Burmeister
function, defined by

ϕ(a, b) = a + b−
√

a2 + b2 ∀ a, b ∈ R,(4.1)

has been used in many reformulations of complementarity and variational inequality
problems [11, 14, 16, 17, 23, 27, 29, 30, 42]. Its main property is that ϕ(a, b) = 0 if
and only if a ≥ 0, b ≥ 0, and ab = 0.

The penalized Fischer–Burmeister (PFB) function has been introduced recently
in [8]. It is defined by

ψµ(a, b) = ϕ(a, b) + µa+b+,(4.2)

where µ ≥ 0, c+ = max{c, 0}, and ϕ is the Fischer–Burmeister function (4.1). Related
functions have been proposed in [30, 33].

Based on this function, Chen, Chen, and Kanzow [8] introduced a new method for
solving NCPs for which an excellent practical performance has been reported. These
authors proved a bounded level set result (if µ > 0) under the condition that F is a
monotone function with a strictly feasible point or that F is an R0-function (see [9]).

Similarly to (3.1), we define the following reformulation of V IP (G,S):

Minimize Φ3(x, v, λ),(4.3)

where

Φ3(x, v, λ) = ρ0‖G(x) + 1λ− v‖2
2 + ρ1

(
m∑
i=1

xi − 1

)2

+

m∑
i=1

ψµ(xi, vi)
2

and ρ0, ρ1, and 1 are as in (3.1). As in the previously defined reformulations, the
objective function of (4.3) vanishes if and only if x is a solution of V IP (G,S).

If G is differentiable, the objective function Φ3 is once (but not twice) continu-
ously differentiable. Boundedness of the level sets associated with Fischer–Burmeister
(µ = 0) reformulations of complementarity problems has been proved in [29] under
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restrictive conditions on F . Here we will prove bounded level set results that hold
assuming only continuity of G.

Theorem 4.1. Assume that G is continuous on R
m, µ = 0, and θ ∈ (0, 1/m) is

such that

ρ1(
√
θm− 1)2 > θ.(4.4)

Then, the set

L3 = {(x, v, λ) ∈ R
2m+1 | Φ3(x, v, λ) ≤ θ}(4.5)

is bounded.
Proof. Suppose that {(xk, vk, λk)} ∈ L3 for all k = 0, 1, 2, . . .. Let us suppose, by

contradiction, that this sequence is not bounded.
Since Φ3(x

k, vk, λk) ≤ θ, we have that

ϕ(xk
i , v

k
i )

2 ≤ θ ∀ k = 0, 1, 2, . . . .

So,

−ϕ(xk
i , v

k
i ) ≤

√
θ ∀ k = 0, 1, 2, . . . .

By an elementary property of the Fischer–Burmeister function, this implies that

xk
i ≥ −

√
θ and vki ≥ −

√
θ ∀ k = 0, 1, 2, . . . .

So, xk ≥ (−√
θ, . . . ,−√

θ) and (
∑m

i=1 xk
i − 1)2 ≤ θ/ρ1 for all k = 0, 1, 2, . . .. This

implies that {xk} is bounded.
By the continuity of G, {G(xk)} is also bounded. Therefore, since {‖G(xk)+1λk−

vk‖2
2} is obviously bounded and vki ≥ −√

θ ∀ k = 0, 1, 2, . . . , the unboundedness of
{(xk, vk, λk)} implies that there exists a subsequence such that (after relabeling)

lim
k→∞

vki = ∞ ∀ i = 1, . . . ,m.(4.6)

But the sequence {xk} is bounded, so it has a convergent subsequence. Therefore, we
can ensure that for a suitable subsequence (4.6) holds. So, after a new relabeling,

lim
k→∞

xk
i = ai ∀ i = 1, . . . ,m.(4.7)

By an elementary property of (4.1), (4.6) and (4.7) imply that

lim
k→∞

ϕ(xk
i , v

k
i ) = ai

for some ai ≥ −√
θ, i = 1, . . . ,m. Thus

lim
k→∞

m∑
i=1

ϕ(xk
i , v

k
i )

2 =

m∑
i=1

a2
i .

Since
∑m

i=1 ϕ(xk
i , v

k
i )

2 ≤ θ for all k, this implies that

m∑
i=1

a2
i ≤ θ.



REFORMULATION OF VIPs 885

Hence,

m∑
i=1

ai ≤
√
θm.

But, by (4.4),
√
θm < 1, so

ρ1

(
m∑
i=1

ai − 1

)2

≥ ρ1(
√
θm− 1)2.

Therefore, by (4.4),

ρ1

(
m∑
i=1

ai − 1

)2

> θ.

This implies that, for k large enough,

ρ1

(
m∑
i=1

xk
i − 1

)2

> θ,

and, so,

Φ3(x
k, vk, λk) > θ.

This contradicts the fact that (xk, vk, λk) ∈ L3.
As in the case of Φ1 and Φ2, with a suitable choice of ρ0, we can ensure that

Φ3(x
0, v0, λ0) < θ,(4.8)

where θ satisfies (4.4). In fact, we take x0 ≥ 0 such that
∑m

i=1 x0
i = 1 and v0 = 0.

Then, Φ3(x
0, v0, λ0) = ρ0‖G(x0)+1λ0−v0‖2

2 and condition (4.8) holds if ρ0 is chosen
to be sufficiently small.

Remark. The classical Fischer–Burmeister reformulation of the NCP defined by
(3.3) consists of minimizing Φ(x) ≡ (

√
x2 + F (x)2−x−F (x))2. Since Φ(k) ≤ 1 for all

k = 3, 4, 5, . . ., this function fails to have bounded level sets. Of course, the level sets
F (x) ≤ α are bounded if α > 0 is small enough, but it is not possible to predict for
which point x0 the level set {x ∈ R | Φ(x) ≤ Φ(x0)} is bounded. Of course, a rather
trivial way to obtain examples where the level sets of all classical reformulations of the
monotone NCP are not bounded is to consider problems with an unbounded solution
set. Finally, in the absence of monotonicity, examples of unbounded level sets are easy
to obtain for all the classical reformulations.

Theorem 4.2. Assume that G is continuous on R
m. If µ > 0, for all θ ∈ (0, ρ1),

the set L3, defined in (4.5), is bounded.
Proof. Suppose that (xk, vk, λk) ∈ L3 for all k = 0, 1, 2, . . .. Therefore,

ψµ(x
k
i , v

k
i )

2 ≤ θ ∀ i = 1, . . . ,m, k = 0, 1, 2, . . . .

So, by (4.2),

−ϕ(xk
i , v

k
i ) ≤

√
θ ∀ i = 1, . . . ,m, k = 0, 1, 2, . . . .
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This implies, as in Theorem 4.1, that

xk
i ≥ −

√
θ ∀ i = 1, . . . ,m, k = 0, 1, 2, . . . .

So, since ρ1(
∑m

i=1 xk
i − 1)2 ≤ θ for all k = 0, 1, 2, . . ., we have that {xk} is bounded.

By the continuity of G, {G(xk)} is bounded and, so, {λk − vki } is bounded for all
i = 1, . . . ,m. As in previous boundedness theorems, we only need to prove that the
assumption vki → ∞ for all i = 1, . . . ,m leads to a contradiction. In fact, if vki → ∞
for all i = 1, . . . ,m we have, as in Theorem 4.1, that, for a suitable subsequence, {xk

i }
is convergent and {ϕ(xk

i , v
k
i )} is bounded. Assume, for a moment, that there exists

i ∈ {1, . . . ,m} and ε > 0 such that

xk
i ≥ ε

for an infinite set of indices. This implies that xk
i v

k
i → ∞ and, so, the sequence is not

contained in L3. Therefore,

lim
k→∞

xk ≤ 0.

This implies that

lim
k→∞

ρ1

(
m∑
i=1

xk
i − 1

)2

≥ ρ1.

This is impossible, since (xk, vk, λk) ∈ L3. So, the proof is complete.
Clearly, an initial estimate that belongs to a bounded level set can be chosen as

we did in the smooth reformulations studied in section 3.
The following theorem is a sufficiency result for the reformulation (4.3) that cor-

responds to Theorem 3.2 and Theorem 3.4 of section 3.
Theorem 4.3. If G is monotone and has continuous first derivatives, all the

stationary points of (4.3) are solutions of V IP (G,S).
Proof. The case µ = 0 follows from a straightforward generalization of Theo-

rem 2.4 of [28]. In the case µ > 0, use Proposition 3.3 of [8] to generalize Theorem 2.4
of [28]. Then, generalize this result as in the case µ = 0.

5. Preliminary numerical experience. We solved some VIPs on the simplex
S using the reformulations studied in this paper. Our objective here is to get a prelim-
inary idea of the comparative behavior of different reformulations. The first problem
considered was

〈G(x), z − x〉 ≥ 0 ∀ z ∈ S,

where G : R
m → R

m was given by G(x) = Ax− c, A was the 10× 10 Hilbert matrix
([A]i,j = 1

i+j−1 ), and the entries of ci were chosen randomly in [0, 2]. In Table 5.1 we
recall the different reformulations studied in this paper.

To solve the optimization problems associated with different reformulations, we
used the general purpose algorithm SPG given in [6]. This is a very simple algorithm
that generally outperforms conjugate gradient methods in the unconstrained case (see
[40]) and is comparable to good large-scale bound-constrained solvers when simple
constraints are present. Of course, this algorithm does not take into account the
structure of the problems at all and, so, can be very inefficient in many cases, but it
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Table 5.1
Reformulations and optimization problems.

Reformulation Objective Complementarity Feasible
function term region

Smooth 1 Φ1 〈x, v〉2 R
m
+ × R

m
+ × R

Smooth 2 Φ2
∑m

i=1
(xivi)

2
R
m
+ × R

m
+ × R

PFB Φ3
∑m

i=1
ψµ(xi, vi)

2
R
m × R

m × R

Table 5.2
Comparison of reformulations.

Reformulation Successful executions Best in
Smooth 1 (3.1) 4 1 problem
Smooth 2 (3.2) 3 0 problems
PFB (4.3), µ = 0 7 3 problems
PFB (4.3), µ = 0.1 6 3 problems
PFB (4.3), µ = 1.0 8 1 problem
PFB (4.3), µ = 10. 4 0 problems

is useful when the goal is to compare reformulations as we do in this case. In this first
set of experiments we used a modest computer environment (Pentium with 90 MHZ)
and the code was written in (double precision) Fortran 77.

The convergence criterion used to terminate the execution of SPG was

‖P (z −∇Φi(z))− z‖ ≤ 10−6,

where z = (x, v, λ) and P is the projection on the feasible region. As an initial ap-
proximation we took xi = uniformly random between 0 and 1 and then divided each
coordinate by

∑m
i=1 xi. We also took v = 0 and λ = 0. In order to ensure bounded

level sets we chose ρ0 = 1 and ρ1 = max{1, 1.1‖G(x0)‖2
2}.

We solved 10 problems with different random generations of c and the initial
x. We considered that the execution was successful if the solution was obtained in
less than 25 seconds. In general, successful executions used less than 5 seconds for
all the formulations. In Table 5.2, we show the number of successful executions and
the number of times each reformulation was the best, in terms of execution time.
In all the successful cases, the solutions were obtained with the same precision. In
two problems, all the reformulations failed. We considered that there was not a “best
reformulation” in these two cases.

Both in the condensed Table 5.2, and looking in detail at the experiments, the
behavior of “Smooth 2” appears to be similar to PFB with µ = 10. This is not
surprising, since a large µ in ψµ(a, b) gives more weight to the multiplicative term ab
in the positive orthant and “Smooth 2” only uses this term.

The penalty parameter µ in the function ψµ(a, b) affects the measure of “lack
of complementarity” in the positive orthant (a ≥ 0, b ≥ 0) in the following way: If
µ ≈ 0, then ψµ(a, b) ≈ ϕ(a, b) and, so, ψµ(ε,M) is “approximately independent”
of M if ε > 0 is small and M is large. This comes from limM→∞ ϕ(ε,M) = ε. In
other words, ϕ(ε,M) ≈ min{ε,M}. On the other hand, if µ is large or if we are
using “Smooth 2,” the measure of lack of complementarity tends quickly to ∞ if one
of the variables tends to infinity and the other is kept fixed. Whether it is better to
consider that (ε,M) is almost complementary or not is a problem-dependent question.
However, at the beginning of iterative processes, it is dubious that the variable that
corresponds to the smaller complementary variable will be zero at the solution and,
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so, it seems convenient to try to reduce both. This decision corresponds to “µ large”
in the PFB reformulation.

The “Smooth 1” reformulation is “more global” in the sense that the influence of
the lack of complementarity of the pair (xj , vj) depends on the lack of complementarity
of the other pairs. In fact, since

∂

∂vj

(
m∑
i=1

xivi

)2

= 2

(
m∑
i=1

xivi

)
xj and

∂

∂xj

(
m∑
i=1

xivi

)2

= 2

(
m∑
i=1

xivi

)
vj ,

the contribution of the jth lack of complementarity to the gradient of the objective
function grows with the deviation from complementarity of the remaining pairs. In
other words, “Smooth 1” will try a large step toward zero on the variable vj not only
when xj and xjvj are large but also when some of the products xivi (for i �= j) are
large.

The small number of experiments described above encouraged us to define a
Newton-type algorithm that uses Φ3 as the objective function, with the aim of com-
paring more systematically different choices of µ. Observe that finding a zero value of
Φ3 is equivalent to solving the (2m + 1)× (2m + 1) nonlinear system

H(z) = 0,

where z = (x, v, λ) and

H(z) =

(
G(x)− v + λ1,

√
ρ1

(
m∑
i=1

xi − 1

)
, ψµ(x1, v1), . . . , ψµ(xm, vm)

)
.

If G is smooth, H is smooth except when xivi = 0 for some i. (However, Φ3 is smooth
for all z.) Therefore, the Newtonian direction

d(z) = −B(z)−1H(z),(5.1)

where B(z) ∈ ∂BG(z), is well defined whenever a nonsingular element of ∂BG(z)
can be found. See [39]. This allows us to define a nonmonotone safeguarded Newton-
gradient algorithm along the lines of [11, 25]. From now on, we write Φ(z) = Φ3(x, v, λ)
for the sake of simplicity.

Assume that γ ∈ (0, 1), β1, β2 > 0, α ∈ (0, 1/2), ν ∈ {0, 1, 2, . . .} are given inde-
pendently of k. Suppose that the iterate zk has been computed for some k ≥ 0. Then,
if ∇Φ(zk) �= 0, the iterate zk+1 is computed as follows.

Algorithm 5.1 (nonmonotone safeguarded Newton-gradient).
Step 1. If d(zk) (given by (5.1)) exists and, in addition,

〈d(zk),∇Φ(zk)〉 ≤ −γ‖d(zk)‖2‖∇Φ(zk)‖2(5.2)

and

β1‖∇Φ(zk)‖2 ≤ ‖d(zk)‖2 ≤ β2‖∇Φ(zk)‖2,(5.3)

define dk = d(zk). Otherwise, define dk = −∇Φ(zk).
Step 2. Starting with t = 1 and using classical safeguarded backtracking (see

[11, 12]), compute tk > 0 such that
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Φ(zk + tkd
k) ≤ Φ̃k + αtk〈dk,∇Φ(zk)〉,(5.4)

where

Φ̃k = max{Φ(zk), . . . ,Φ(zτ )}

and τ = max{0, k − ν} (see [25]).
Define zk+1 = zk + tkd

k. Using slight modifications of the results of [11] and
[25] we can prove that every limit point of a sequence generated by this algorithm
is stationary. Since we have proved that, choosing the appropriate initial point and
ρ1, the generated sequences are bounded, it turns out that stationary points are
necessarily found, in the limit, by Algorithm 5.1.

We wrote a double precision Fortran code implementing this algorithm for the
unconstrained minimization of Φ3. We chose γ = β1 = 1/β2 = α = 10−4 and ν = 9.
As initial point we took x0 = (1, 1/2, . . . , 1/m)/

∑m
i=1(1/i), v0 = 0, λ0 = 0. We ran

the algorithm for different choices of µ using problems defined by operators G(x) taken
from the nonlinear-system literature. Namely, we define the following problems.

Problem 1 (Hilbert). m = 100.
G(x) = Ax−c, where A is defined as the Hilbert matrix and c = (1, 1/2, . . . , 1/m).
Problem 2 (Broyden). m = 100.

[G(x)]1 = (3− 2x1)x1 − 2x2 + 1,

[G(x)]i = (3− 2xi)xi − xi−1 − 2xi+1 + 1, i = 2, . . . ,m− 1,

[G(x)]m = (3− 2xm)xm − xm−1.

Problem 3 (Rosenbrock). m = 20.

[G(x)]i = 10(xi+1 − x2
i ) if i is odd,

[G(x)]i = 1− xi−1 if i is even.

Problem 4 (Helical valley). m = 99.
For i = 1, . . . ,m/3,

[G(x)]3i = 10x3i+2 − 50

π
atan (x3i+1/3i)− 50 if x3i < 0,

[G(x)]3i = 10x3i+2 − 50

π
atan (x3i+1/3i) if x3i > 0,

[G(x)]3i+1 =
√

x2
3i + x2

3i+1,

and

[G(x)]3i+2 = x3i+2.

Problem 5 (Watson). m = 31.
For i = 1, . . . , 29,
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Table 5.3
Comparison of different penalty parameters in PFB.

Problem m µ ‖H(z)‖∞ It FE Changes Time

Hilbert 100 10−6 0.95E − 10 10 64 0 2.16
0.10 0.22E − 10 13 74 0 2.81
1.00 0.14E − 09 12 84 0 2.56
10.00 0.17E − 11 11 69 0 2.32
100.0 0.34E − 10 13 92 0 2.78

Broyden 100 10−6 0.42E − 09 4 5 0 0.82
0.10 0.42E − 09 4 5 0 0.82
1.00 0.42E − 09 4 5 0 0.82
10.00 0.42E − 09 4 5 0 0.82
100.0 0.42E − 09 4 5 0 0.82

Rosenbrock 20 10−6 0.48E − 09 3 4 0 < 0.1
0.10 0.48E − 09 3 4 0 < 0.1
1.00 0.48E − 09 3 4 0 < 0.1
10.00 0.48E − 09 3 4 0 < 0.1
100.0 0.48E − 09 3 4 0 < 0.1

Helical 99 10−6 0.36E − 14 122 2021 104 25.7
0.10 0.36E − 14 122 2025 105 26.3
1.00 0.13E − 11 122 1995 104 26.2
10.00 0.28E − 11 62 830 45 13.0
100.0 0.40E − 09 153 2594 134 32.6

Watson 31 10−6 0.10E − 09 35 197 1 0.1
0.10 0.10E − 09 35 197 1 0.1
1.00 0.10E − 09 35 197 1 0.1
10.00 0.10E − 09 35 197 1 0.1
100.0 0.10E − 09 35 197 1 0.1

Murty 100 10−6 0.44E − 15 176 561 1 25.6
0.10 0.77E − 10 150 397 1 31.3
1.00 0.26E − 09 173 491 1 35.9
10.00 0.80E − 12 166 511 1 34.4
100.0 0.16E − 11 165 493 1 34.2

[G(x)]i =

m∑
j=1

(j − 1)xj(i/29)
j−2 −


 m∑
j=1

xj(i/29)(i/29)
j−2




2

− 1,

[G(x)]30 = x1,

[G(x)]31 = x2 − x2
1 − 1.

Problem 6 (Murty). m = 100.
G(x) = Ax − c, where A is upper-triangular, [A]ij = 2 if i < j, [A]ii = 1 for all

i = 1, . . . ,m, and c = (1, . . . , 1).
The experiments that we report below were run in a SPARCstation Sun Ultra

1, with an UltraSPARC 64 bits processor, 167-MHz clock, and 128-MBytes of RAM
memory. The stopping criterion was ‖H(z)‖∞ ≤ 10−8. Besides number of iterations
(It), number of function evaluations (FE), and CPU time (in seconds), we report in
Table 5.3 the number of times the Newton direction needed to be replaced by the
gradient direction. In this preliminary implementation, the linear systems were solved
by Gaussian elimination, without taking advantage of their sparsity. Obviously, the
computer time must decrease dramatically if a sparse implementation is developed,
but the other indicators would not change.

We observe that in three problems (Broyden, Rosenbrock, and Watson) the be-
havior of the five penalty parameters is the same. In Hilbert and Murty the smallest
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Table 5.4
Algorithm 5.1 with Problem Hilbert, µ = 0.1.

Iteration k Evaluations ‖H(zk)‖2
0 1 1.1659909612460
1 7 1.1506050628261
2 19 1.1559111113737
3 31 1.1586923058790
4 39 1.1556372319450
5 46 1.1414773334813
6 51 1.1299367786945
7 56 1.1386723439549
8 62 1.1617009941393
9 66 1.0730683927287
10 70 0.98505951078780
11 72 0.67329707514733
12 73 4.2472036158979E − 03
13 74 2.6507263515338E − 11

µ was, marginally, the best. However, in Helical, “µ = 10” clearly outperformed the
other alternatives. Probably, very large values of µ should be discarded from practical
implementations (at least in well-scaled problems), but the best choice among “small”
values of µ seems to depend strongly on the problem characteristics.

The number of functional evaluations per iteration appears to be large in the prob-
lems Hilbert, Watson, and Murty. With the aim of understanding this phenomenon,
we ran some problems choosing the gradient direction in the first (5 or 10) iterations.
Running Hilbert with µ = 0.1 and 5 (first) gradient iterations, the computer time
decreased to 1.6 seconds and, with 10 (first) gradient iterations, to 1.1 seconds. We
found it instructive to show the detailed behavior of the algorithm in the ordinary
case and in the two modified cases. See Tables 5.4, 5.5, and 5.6. We observe that,
in fact, the first Newton iterations are not worthwhile in terms of the progress they
provide, whereas, of course, they are much more expensive than gradient iterations.
The quadratic convergence of Newton is quite evident in the last two iterations. We
also ran the algorithm using only gradient iterations, and we observed, as expected,
an extremely slow convergence behavior. In fact, convergence did not occur after 1000
iterations in this case.

The qualitative behavior described for Hilbert is essentially the same in the Wat-
son problem. In this case, with 10 initial gradient iterations, the computer time re-
duced to 0.18 seconds and even the number of iterations decreased. On the other
hand, the modification of the algorithm in the Murty problem did not cause mean-
ingful improvements. In this problem, the number of iterations increased moderately
and the computer time remained more or less the same.

Problem Helical is instructive in a different sense. In this case, the Newton di-
rection was rejected at most iterations and the algorithm behaves, essentially, as a
steepest descent method. We decided to modify the algorithmic parameters in order to
weaken the criterion of acceptance of the Newton direction at Step 1 of Algorithm 5.1.
Consequently, we chose γ = β1 = 1/β2 = 10−25 and ran the problem with these new
parameters. The results were quite impressive, showing how sensitive this type of
algorithm can be with respect to safeguarding constants. For µ = 0.1 the Newton
direction was never rejected, convergence occurred in 10 iterations with 18 function
evaluations and 1.9 seconds of CPU time. Similar improvements were obtained for the
other values of µ.
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Table 5.5
Algorithm 5.1 with Problem Hilbert, µ = 0.1 First 5 are gradient iterations.

Iteration k Evaluations ‖H(zk)‖2
0 1 1.1659909612460
1 9 1.0818877741731
2 17 1.0192301426184
3 24 1.0804586556667
4 32 0.98801773901278
5 40 0.91336945465545
6 41 0.46240603597402
7 45 0.78454888864694
8 46 0.86704125514515
9 47 0.93591242869472
10 54 1.0832676503144
11 55 1.2486098348917E − 06
12 56 9.6170809859694E − 14

Table 5.6
Algorithm 5.1 with Problem Hilbert, µ = 0.1. First 10 are gradient iterations.

Iteration k Evaluations ‖H(zk)‖2
0 1 1.1659909612460
1 9 1.0818877741731
2 17 1.0192301426184
3 24 1.0804586556667
4 32 0.98801773901278
5 40 0.91336945465545
6 48 0.85190911080106
7 55 1.1099440799153
8 63 0.97638264851556
9 71 0.87222456838420
10 79 0.78914420687610
11 80 0.29364275115164
12 81 0.95227479134610
13 82 1.0932851184041E − 02
14 83 1.9355846720355E − 09

6. Final remarks. We believe that the results presented in this paper have
a reasonably wide scope of applications. Consider the general variational inequality
problem defined by F1 on Ω, where F1 is smooth,

Ω = {x ∈ R
q | g(x) ≤ 0},

g = (g1, . . . , gp), and gi smooth and convex for all i = 1, . . . , p. Under a suitable
constraint qualification [26], this problem is equivalent to

F1(x) +

p∑
i=1

wi∇gi(x) = 0,

w ≥ 0, g(x) ≤ 0,

p∑
i=1

gi(x)wi = 0.

Defining n = p+q, z = (x,w), F (z) = (F1(x) +
∑p

i=1 wi∇gi(x),−g(x)), and I = {p+
1, . . . , p+q} we obtain a problem of type V IP (F,Ω1) (2.3). So, after compactification,
we obtain the VIP on the simplex.
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In this research we proved that, using several potentially useful reformulations, the
boundedness of the sequences generated by standard algorithms can be guaranteed,
so that limit points exist and sufficiency results can be applied.

Sufficiency results of the type “stationarity implies solution” usually depend on
“monotonicity-like” assumptions. However, one should not interpret that the reformu-
lations must be tried only when the monotonicity assumption is guaranteed to hold.
Optimization algorithms usually guarantee stationary points, but their practical effi-
ciency is linked to their ability to find global minimizers in a substantial number of
cases. This means that we can try to solve the reformulation in any situation, with the
hope that using good global strategies we will probably find solutions of the original
problem.

In [43, 44], Solodov and Svaiter presented Newton-like methods for solving mono-
tone nonlinear systems and monotone NCPs, respectively. Their convergence results
are very strong but, on the other hand, the monotonicity assumption seems to be more
essential for their algorithms than it is for the different reformulations presented here.
The conditions under which specific algorithms for reformulations enjoy the “true”
convergence properties of [43, 44] should be investigated.

Acknowledgments. We are indebted to two anonymous referees, whose com-
ments helped us to improve the paper.
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