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Abstract In this work we introduce a relaxed version of the constant positive linear
dependence constraint qualification (CPLD) that we call RCPLD. This development
is inspired by a recent generalization of the constant rank constraint qualification by
Minchenko and Stakhovski that was called RCRCQ. We show that RCPLD is enough
to ensure the convergence of an augmented Lagrangian algorithm and that it asserts
the validity of an error bound. We also provide proofs and counter-examples that show
the relations of RCRCQ and RCPLD with other known constraint qualifications. In
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particular, RCPLD is strictly weaker than CPLD and RCRCQ, while still stronger
than Abadie’s constraint qualification. We also verify that the second order necessary
optimality condition holds under RCRCQ.

Keywords Nonlinear programming · Constraint qualifications ·
Augmented Lagrangian · Error bound property

Mathematics Subject Classification (2000) 90C30 · 49K99 · 65K05

1 Introduction

In this paper, we consider the nonlinear programming problem

Minimize f (x), subject to x ∈ Ω, (1)

where Ω = {x ∈ R
n | h(x) = 0, g(x) ≤ 0}, f : R

n → R, h : R
n → R

m and g :
R

n → R
p are continuously differentiable functions. For each feasible point x ∈ Ω , we

define the set of active inequality constraints A(x) = { j | g j (x) = 0, j = 1, . . . , p}.
We say that a constraint qualification holds at a feasible point x ∈ Ω if whenever

x is a local minimum of (1) for a given objective function f , then the KKT condition
holds. That is, there exist Lagrange multipliers λ ∈ R

m and μi ≥ 0 for every i ∈ A(x)

such that

∇ f (x) +
m∑

i=1

λi∇hi (x) +
∑

i∈A(x)

μi∇gi (x) = 0.

Even though the definition above may suggest that the validity of a constraint qual-
ification depends on the objective functions, this is not the case. Actually, a constraint
qualification is a property of an analytical description of the feasible set that ensures
that the first order conic approximation of the feasible set at x captures its geometrical
structure. The presence of a constraint qualification is then fundamental to derive (ana-
lytical) characterizations of the solutions to optimization and variational problems, as
well as properties related to duality and sensitivity. It is widely used in the development
and analysis of computational methods. See, for example, the discussion in [24].

The most common constraint qualification is the linear independence con-
straint qualification (LICQ). It requires the linear independence of the gradients({∇hi (x)}m

i=1, {∇gi (x)}i∈A(x)

)
. A weaker condition is the Mangasarian–Fromovitz

constraint qualification (MFCQ), which requires only positive-linear independence1

of such gradients [17,22].
Next, we define the constant rank constraint qualification of Janin (CRCQ, [15]),

which is also weaker than LICQ.

1 The pair of families
(
{vi }m

i=1, {vi }p
i=m+1

)
is said to be positive-linearly dependent if {vi }p

i=1 is linearly

dependent with non-negative scalars associated to the second family of vectors. Otherwise we say that the
pair of families is positive-linearly independent.
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A relaxed constant positive linear dependence constraint 257

Definition 1 (CRCQ) We say that the constant rank constraint qualification (CRCQ)
holds at a feasible point x ∈ Ω if there exists a neighborhood N (x) of x such
that for every I ⊂ {1, . . . , m} and every J ⊂ A(x), the family of gradients
({∇hi (y)}i∈I , {∇gi (y)}i∈J ) has the same rank for every y ∈ N (x).

In [18], Minchenko and Stakhovski provide a relaxed form of the CRCQ, which
they called relaxed constant rank constraint qualification (RCRCQ). Instead of requir-
ing that the rank of every subset of equality and active inequality gradients remains
constant in a neighborhood of a feasible point, they only require constant rank of sub-
sets consisting of all equality gradients and any subset of active inequality gradients.
The authors proved that this is still a constraint qualification, and they used it to prove
an error bound property.

It is well known that CRCQ can be equivalently stated as a constant linear depen-
dence condition, that is: for every I ⊂ {1, . . . , m} and every J ⊂ A(x), whenever
({∇hi (x)}i∈I , {∇gi (x)}i∈J ) is linearly dependent, we must have ({∇hi (y)}i∈I ,

{∇gi (y)}i∈J ) linearly dependent for every y ∈ N (x), for some neighborhood N (x)

of x .
This motivates the definition of the constant positive linear dependence constraint

qualification (CPLD, [6,21]), which is weaker than MFCQ and CRCQ.

Definition 2 (CPLD) We say that the constant positive linear dependence con-
straint qualification (CPLD) holds at a feasible point x ∈ Ω if there exists a
neighborhood N (x) of x such that for every I ⊂ {1, . . . , m} and every J⊂A(x),
whenever ({∇hi (x)}i∈I , {∇gi (x)}i∈J ) is positive-linearly dependent, then
({∇hi (y)}i∈I , {∇gi (y)}i∈J ) is linearly dependent for every y ∈ N (x).

It can be proved (see [23]) that the CPLD condition can be equivalently stated
at a feasible point x ∈ Ω as: for every subset I ⊂ {1, . . . , m} and J ⊂ A(x),
whenever ({∇hi (x)}i∈I , {∇gi (x)}i∈J ) is positive-linearly dependent, we have that
({∇hi (y)}i∈I , {∇gi (y)}i∈J ) is positive-linearly dependent for every y in some neigh-
borhood of x . That is, requiring that the gradients are positive-linearly dependent in a
neighborhood instead of the apparently weaker requirement of linear dependence, is
in fact the same thing. This result guarantees that CPLD is stable in the sense that if a
feasible point x ∈ Ω satisfies CPLD, then every feasible point in some neighborhood
of x will also satisfy CPLD.

In this work we will introduce a relaxed version of the CPLD, that we call RCPLD.
This relaxation will keep many properties of the CPLD such as the convergence of an
augmented Lagrangian method [2,3,9], the existence of an error bound [16,18], and
stability. We provide proofs and counter-examples that give a complete picture of the
relationship of RCRCQ and RCPLD with other well known constraint qualifications.

We will use the following notation:

– ‖ · ‖ = ‖ · ‖2,
– |J | denotes the number of elements of the finite set J ,
– span{vi }m

i=1 denotes the subspace generated by the vectors v1, . . . , vm .
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2 Relaxed constant rank constraint qualification

We study the relaxed constant rank constraint qualification of Minchenko and
Stakhovski (RCRCQ, [18]).

Definition 3 (RCRCQ) We say that the relaxed constant rank constraint qualification
(RCRCQ) holds at a feasible point x ∈ Ω if there exists a neighborhood N (x) of x
such that for every J ⊂ A(x), the family of gradients

({∇hi (y)}m
i=1, {∇gi (y)}i∈J

)
has

the same rank for every y ∈ N (x).

Compared to original CRCQ this relaxation treats the set of equality constraints
as a whole, without the need to impose restrictions on all their subsets. In [18], the
authors proved that RCRCQ is still a constraint qualification, by showing that it implies
Abadie’s constraint qualification [1]. They also showed that RCRCQ is strictly weaker
than CRCQ. In the case of only equality constraints, this condition was independently
formulated in [4]. The RCRCQ has also been studied in the context of parametric
problems in [16].

Since CRCQ is equivalent to the fact that for every subset of equality and active
inequality gradients, linearly dependent vectors remain linearly dependent on some
neighborhood, one could conjecture that a similar equivalence holds true for RCRCQ,
considering only subsets that contain every equality gradient. But this is not the case.
Consider the equality constraints h1(x1, x2) = x1, h2(x1, x2) = x1 and the inequality
constraint g1(x1, x2) = x2

2 at the feasible point x = (0, 0). RCRCQ does not hold
since the gradients {∇h1(y),∇h2(y),∇g1(y)} have rank one at y = x and rank two
for y arbitrarily close to x with y2 	= 0, but subsets that contain both equality gradients
are linearly dependent on every neighborhood of x .

We will provide a reformulation of RCRCQ in terms of constant linear depen-
dence. We must keep the condition that the rank of the equality constraint gradients
{∇hi (y)}m

i=1 is constant for every y in some neighborhood N (x) of x . The key point is
that in this situation, we may choose a subset I ⊂ {1, . . . , m} such that {∇hi (x)}i∈I is
a basis for span{∇hi (x)}m

i=1, thus, since linearly independent vectors remain linearly
independent in a neighborhood, and the rank is the same, we have that {∇hi (y)}i∈I

is a basis for span{∇hi (y)}m
i=1 for every y in some neighborhood N (x) of x . The

reformulation requires that for every J ⊂ A(x), linear dependence is maintained
in a neighborhood of x whenever ({∇hi (x)}i∈I , {∇gi (x)}i∈J ) is linearly dependent.
Notice that when ({∇hi (x)}i∈I , {∇gi (x)}i∈J ) is linearly dependent, there must exist
an index j ∈ J such that ∇g j (x) is a linear combination of the remaining gradients,
otherwise this would contradict the linear independence of {∇hi (x)}i∈I .

Theorem 1 Let I ⊂ {1, . . . , m} be an index set such that {∇hi (x)}i∈I is a basis for
span{∇hi (x)}m

i=1. A feasible point x ∈ Ω satisfies RCRCQ if, and only if, there exists
a neighborhood N (x) of x such that

– {∇hi (y)}m
i=1 has the same rank for every y ∈ N (x),

– For every J ⊂ A(x), if ({∇hi (x)}i∈I , {∇gi (x)}i∈J ) is linearly dependent, then
({∇hi (y)}i∈I , {∇gi (y)}i∈J ) is linearly dependent for every y ∈ N (x).
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Proof Let x ∈ Ω satisfy RCRCQ. The first claim follows by taking J = ∅ in the
definition of RCRCQ. Let J ⊂ A(x) be such that ({∇hi (x)}i∈I , {∇gi (x)}i∈J ) is line-
arly dependent. Since the gradients corresponding to the set I generate the remaining
equality constraint gradients in a neighborhood, using RCRCQ we have that the rank
of ({∇hi (y)}i∈I , {∇gi (y)}i∈J ) is constant for every y in some neighborhood N (x)

of x , therefore, this set must be linearly dependent for y ∈ N (x).
To prove the converse let J ⊂ A(x). Choose Ĵ ⊂ J in such a way that({∇hi (x)}i∈I , {∇gi (x)}i∈ Ĵ

)
is a basis for ({∇hi (x)}i∈I , {∇gi (x)}i∈J ). The case

Ĵ = J is trivial. Now let j ∈ J\ Ĵ . As
(
{∇hi (x)}i∈I , {∇gi (x)}i∈ Ĵ∪{ j}

)
is lin-

early dependent, it must remain linearly dependent in N (x). Hence the rank of
({∇hi (y)}i∈I , {∇gi (y)}i∈J ) is not greater than |I | + | Ĵ |. The result now follows from
the fact that the rank cannot decrease in a neighborhood. �

Next we provide counter-examples to show where RCRCQ fits among other well
known constraint qualifications. The following counter-example shows that MFCQ
does not imply RCRCQ.

Counter-example 1 Consider the inequality constraints g1(x1, x2) = −x2 and
g2(x1, x2) = x2

1 − x2 at the feasible point x = (0, 0). Clearly, MFCQ holds. RCRCQ
does not hold since {∇g1(y),∇g2(y)} has rank one at y = x and rank two for y
arbitrarily close to x with y1 	= 0.

We say that quasinormality (see [8,14]) holds at a feasible point x ∈ Ω if whenever∑m
i=1 λi∇hi (x) + ∑

i∈A(x) μi∇gi (x) = 0 for some λ ∈ R
m and μi ≥ 0 for every i ,

there is no sequence yk → x such that for every k, λi hi (yk) > 0 when λi 	= 0 and
gi (yk) > 0 when μi > 0. The following counter-example shows that RCRCQ does
not imply the quasinormality constraint qualification.

Counter-example 2 Consider the equality constraint h1(x1, x2)=−(x1 +1)2−x2
2 +1

and the inequality constraints g1(x1, x2) = x2
1 + (x2 + 1)2 − 1, g2(x1, x2) = −x2,

at the feasible point x = (0, 0). Quasinormality does not hold, since we can write

∇g1(x) + 2∇g2(x) = 0 and by taking yk =
(√

1 − (1 − 1
k )2 + 1

k ,− 1
k

)
we have

g1(yk) > 0 and g2(yk) > 0 for every k. RCRCQ holds since there is a neigh-
borhood N (x) of x such that for every y ∈ N (x), {∇h1(y)} has rank one and
{∇h1(y),∇g1(y)}, {∇h1(y),∇g2(y)}, {∇h1(y),∇g1(y),∇g2(y)} have rank two.

In Fig. 1 we show relations of RCRCQ with other well known constraint qual-
ifications, where pseudonormality appears in [8]. It holds at a feasible point x∈Ω

if whenever
∑m

i=1 λi∇hi (x) + ∑
i∈A(x) μi∇gi (x) = 0 for some λ ∈ R

m and
μi ≥ 0 for every i , then there is no sequence yk → x such that

∑m
i=1 λi hi (yk) +∑

i∈A(x) μi gi (yk) > 0 for every k. The proof that RCRCQ implies Abadie’s constraint
qualification [1] has been done in [18].

If the problem data is twice continuously differentiable there is the notion of sec-
ond order necessary optimality conditions. Such conditions are usually associated to
special constraint qualifications as their definitions assume the existence of special
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Lagrange multipliers. As it was mentioned in [4], a second order optimality condition
can be weak or strong depending on the tangent cone used to analyze the curvature of
the Lagrangian function.

We say that the second order necessary optimality condition holds at a feasible
point x ∈ Ω when there exist Lagrange multipliers λ ∈ R

m, μi ≥ 0 ∀i ∈ A(x),
satisfying the KKT condition for which

dT

(
∇2 f (x) +

m∑

i=1

λi∇2hi (x) +
p∑

i=1

μi∇2gi (x)

)
d ≥ 0, (2)

for all directions d ∈ R
n in the critical cone:

V1(x) = {d ∈ R
n : ∇hi (x)T d = 0, i = 1, . . . , m,

∇g j (x)T d = 0, j ∈ A+(x),

∇g j (x)T d ≤ 0, j ∈ A0(x)}

where

A+(x) = { j ∈ A(x) : μ j > 0}, A0(x) = { j ∈ A(x) : μ j = 0}.

Analogously, we say that the weak second order necessary optimality condition
holds if there exists a Lagrange multiplier vector such that (2) holds for all directions
d ∈ R

n in the following smaller cone:

V2(x) = {d ∈ R
n : ∇hi (x)T d = 0, i = 1, . . . , m,∇g j (x)T d = 0, j ∈ A(x)}.

MFCQ

CPLDPseudonormality

Quasinormality

Abadie

CRCQ

LICQ

RCRCQ

Fig. 1 Complete diagram showing relations of RCRCQ with other well known constraint qualifications,
where an arrow between two constraint qualifications means that one is strictly stronger than the other
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A relaxed constant positive linear dependence constraint 261

In [4], the authors proved that CRCQ is enough to ensure that any local solution not
only verifies KKT but also verifies the second order necessary condition. Moreover,
the counter-example defined in [7] shows that MFCQ is not even enough to ensure
the weak second order necessary condition. Considering Fig. 1, it is still possible that
RCRCQ can assert one of the second order necessary conditions above. Actually, it
is easy to see, from the Remark 3.2 in [4], that the RCRCQ implies the second order
necessary condition. In fact, it was shown in [4] that under RCRCQ, if x is a local
solution of (1) then (2) holds for all d ∈ V1(x) and for every Lagrange multiplier
vector.

3 Relaxed constant positive linear dependence constraint qualification

In [21], Qi and Wei proposed a relaxation of CRCQ, the constant positive linear depen-
dence condition (CPLD), taking in consideration the positive sign of the multipliers
associated to inequality constraints in the KKT condition. They used this condition to
prove convergence of a sequential quadratic programming method.

In [6], it has been proved that CPLD is in fact a constraint qualification, and in
[2,3], the authors proved convergence of an augmented Lagrangian method under
CPLD. We now propose a relaxation of CPLD in a way similar to RCRCQ that we
call relaxed CPLD (RCPLD). The definition is motivated by Theorem 1, considering
only positive-linearly dependent gradients, as in the definition of CPLD.

Definition 4 (RCPLD) Let I ⊂ {1, . . . , m} be such that {∇hi (x)}i∈I is a basis for
span{∇hi (x)}m

i=1. We say that the relaxed constant positive linear dependence con-
straint qualification (RCPLD) holds at a feasible point x ∈ Ω if there exists a neigh-
borhood N (x) of x such that

– {∇hi (y)}m
i=1 has the same rank for every y ∈ N (x).

– For every J ⊂ A(x), if ({∇hi (x)}i∈I , {∇gi (x)}i∈J ) is positive-linearly dependent,
then ({∇hi (y)}i∈I , {∇gi (y)}i∈J ) is linearly dependent for every y ∈ N (x).

Observe that the definition of the RCPLD does not depend on the specific choice of
the index set that selects the basis for span{∇hi (x)}m

i=1. That is, if I, I ′ ⊂ {1, . . . , m}
are index sets of two bases for this space, then the assumption that {∇hi (y)}m

i=1 has
the same rank for all y ∈ N (x) implies that ({∇hi (y)}i∈I ′ , {∇gi (y)}i∈J ) is (positive-)
linearly dependent if, and only if, ({∇hi (y)}i∈I , {∇gi (y)}i∈J ) has the same property.

Clearly, Theorem 1 shows that RCRCQ implies RCPLD. To prove that CPLD
implies RCPLD we only need to show that the rank of the equality constraint gra-
dients is constant in a neighborhood. This follows from the fact that constant linear
dependence for every subset of gradients is equivalent to constant rank of all such sets.

An important tool to deal with positive-linearly dependent vectors (in particular,
to deal with CPLD or RCPLD) is Carathéodory’s Lemma [8, Exercise B.1.7]. We
will state here a similar result that will be suitable to study the RCPLD. This result
can be seen as a corollary of Carathéodory’s Lemma, but we include a full proof for
completeness.
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Lemma 1 If x = ∑m+p
i=1 αivi with vi ∈ R

n for every i, {vi }m
i=1 linearly independent

and αi 	= 0 for every i = m +1, . . . , m + p, then there exist J ⊂ {m +1, . . . , m + p}
and scalars ᾱi for every i ∈ {1, . . . , m} ∪ J such that

• x = ∑
i∈{1,...,m}∪J ᾱivi ,

• αi ᾱi > 0 for every i ∈ J ,
• {vi }i∈{1,...,m}∪J is linearly independent.

Proof We assume that {vi }m+p
i=1 is linearly dependent, otherwise the result follows triv-

ially. Then, there exists β ∈ R
m+p, such that

∑m+p
i=m+1 |βi | > 0 and

∑m+p
i=1 βivi = 0.

Thus, we may write x = ∑m+p
i=1 (αi − γβi )vi , for every γ ∈ R. Choosing γ 	= 0

as the number of smallest modulus such that αi − γβi = 0 for at least one index
i ∈ {m + 1, . . . , m + p}, we are able to write the linear combination x with at least
one less vector vi , for some i ∈ {m + 1, . . . , m + p}. We may repeat this procedure
until the vectors are linearly independent. �

We point out that we can obtain bounds |ᾱi | ≤ 2p−1|αi |,∀i = m + 1, . . . , m + p
in the same way it is done in [12]. This may be useful, in particular, for applications
to interior point methods.

We now prove that RCPLD is a constraint qualification. We will need a definition
from [5]:

Definition 5 (AKKT) We say that x ∈ Ω satisfies the Approximate-KKT condition
(AKKT) if there exist sequences xk → x, {λk} ⊂ R

m, {μk} ⊂ R
p, μk ≥ 0 such that

∇ f (xk) +
m∑

i=1

λk
i ∇hi (xk) +

∑

i∈A(x)

μk
i ∇gi (xk) → 0.

Observe that small, but equivalent, variations of this definition have appeared in
the literature before, for example in [21] or even implicitly in [8] in the proof that
each local minimizer of (1) is a Fritz-John point. However, we will use the version
described above as it is better suited for our purposes.

Note that the definition of AKKT also depends on the objective function f , thus,
it is a property of the optimization problem, rather than only of the constraint set. In
Theorem 2.3 of [5] (with I = ∅), the authors proved that every local minimizer fulfills
the AKKT condition (a simpler proof, specific for the case I = ∅, can be found in
[13]). To prove that RCPLD is a constraint qualification, we need only to show that if
RCPLD holds at a feasible point x such that AKKT also holds, then x is a KKT point.

Theorem 2 Let x ∈ Ω be such that RCPLD and AKKT hold. Then x is a KKT point.

Proof From the definition of AKKT, there exist sequences εk → 0, xk → x, λk ∈
R

m, μk
j ≥ 0,∀ j ∈ A(x), such that

∇ f (xk) +
m∑

i=1

λk
i ∇hi (xk) +

∑

j∈A(x)

μk
j∇g j (xk) = εk, for every k.
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Consider an index subset I ⊂ {1, . . . , m} such that {∇hi (x)}i∈I is a basis for
span{∇hi (x)}m

i=1. Then {∇hi (xk)}i∈I is linearly independent for sufficiently large k.
Since the rank of equality constraint gradients is constant, we have that {∇hi (xk)}i∈I

is a basis for span{∇hi (xk)}m
i=1 for sufficiently large k. Thus, there exists a sequence

{λ̄k} ⊂ R
|I | such that

∑m
i=1 λk

i ∇hi (xk) = ∑
i∈I λ̄k

i ∇hi (xk), and we may write

∇ f (xk) +
∑

i∈I

λ̄k
i ∇hi (xk) +

∑

j∈A(x)

μk
j∇g j (xk) = εk .

We apply Lemma 1 to obtain subsets Jk ⊂ A(x) and multipliers λ̃k ∈ R
|I | and

μ̃k
j ≥ 0,∀ j ∈ Jk such that

∇ f (xk) +
∑

i∈I

λ̃k
i ∇hi (xk) +

∑

j∈Jk

μ̃k
j∇g j (xk) = εk,

and
({∇hi (xk)}i∈I , {∇gi (xk)}i∈Jk

)
is linearly independent. We will consider a sub-

sequence such that Jk is the same set J for every k (this can be done since there
are finitely many possible sets Jk). Define Mk = max{|λ̃k

i |,∀i ∈ I, μ̃k
j ,∀ j ∈ J }. If

there is a subsequence such that Mk → +∞, we may take a subsequence such that(
λ̃k ,μ̃k

)

Mk
→ (λ, μ) 	= 0, μ ≥ 0. Dividing by Mk and taking limits we have

∑

i∈I

λi∇hi (x) +
∑

j∈J

μ j∇g j (x) = 0,

which contradicts RCPLD. Hence, we have that {Mk} is a bounded sequence. Taking
limits for a suitable subsequence such that λk → λ and μk → μ ≥ 0 we have

∇ f (x) +
m∑

i=1

λi∇hi (x) +
∑

j∈J

μ j∇g j (x) = 0,

which proves that x is a KKT point. �

Corollary 1 RCPLD is a constraint qualification.

Theorem 2 is also important to ensure the convergence of an augmented Lagrangian
algorithm as we discuss in the next section.

Given a new constraint qualification, it is important to know its relation with other
well known constraint qualifications. In particular, we would like to know if RCPLD
can still guarantee that the tangent cone is polyhedral. In the following theorem we
prove that this is the case by showing that RCPLD implies Abadie’s constraint quali-
fication.
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Let us consider the feasible set Ω and x ∈ Ω . We define the (upper) tangent cone
of Ω at x as (see for example [8,11,14,24]):

TΩ(x) = {0} ∪
{

d ∈ R
n : ∃{xk} ⊂ Ω, xk 	= x, xk → x and

xk − x

‖xk − x‖ → d

‖d‖
}

.

(3)

We define also the linearization cone at x as:

VΩ(x) = {d ∈ R
n : ∇hi (x)T d = 0, i = 1, . . . , m; ∇g j (x)T d ≤ 0, j ∈ A(x)}. (4)

We say that Abadie’s constraint qualification [1] holds at a feasible point x ∈ Ω if
TΩ(x) = VΩ(x).

Theorem 3 Let x ∈ Ω be such that RCPLD holds. Then x satisfies Abadie’s
constraint qualification.

Proof The inclusion TΩ(x) ⊂ VΩ(x) holds without any constraint qualification for
every feasible point x ∈ Ω .

The proof that VΩ(x) ⊂ TΩ(x) analyzes first a simplified variation of the feasible
set considered in [8,14]. Let us define the set of indexes

Ĵ = {i ∈ A(x) : ∇gi (x)T d = 0, ∀d ∈ VΩ(x)}.

Now, define

X̂ = {x ∈ R
n : hi (x) = 0, i = 1, . . . , m; g j (x) ≤ 0, j ∈ Ĵ }.

In the degenerate case, where there are no equalities and the set Ĵ is empty, we have
X̂ = R

n by convention. In this case, every point of X̂ verifies RCPLD and Abadie’s
CQ.

By the definition of RCPLD, if a feasible point x ∈ Ω verifies the RCPLD then it
verifies the RCPLD as a point in X̂ . Using this simplified set, let us prove first that x
verifies Abadie’s CQ as a point in X̂ .

We have that TX̂ (x) ⊂ VX̂ (x) always holds. Let us take a direction d ∈ VX̂ (x). Let
ε > 0, k > 0 and let y(t, k) be the minimizer of the function

H(y, t, k) = ‖y − x − td‖2 + tk

⎛

⎝
m∑

i=1

hi (y)2 +
∑

i∈ Ĵ

max{0, gi (y)}2

⎞

⎠

subject to ‖y − x‖ ≤ ε.
We have that, for t ≥ 0,

‖y(t, k) − x − td‖2 ≤ H(y(t, k), t, k) ≤ H(x, t, k) = t2‖d‖2, (5)
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and analogously

0 ≤ k

⎛

⎝
m∑

i=1

hi (y(t, k))2 +
∑

i∈ Ĵ

max{0, gi (y(t, k))}2

⎞

⎠ ≤ t‖d‖2. (6)

By (5) we have

‖y(t, k) − x‖ ≤ 2t‖d‖. (7)

Thus, for each t > 0, we have that the sequence {y(t, k)}k is a bounded sequence
and there exists y(t), t > 0 such that, taking a subsequence if necessary, we have

y(t, k) → y(t). (8)

Then, taking limits in (6) and by continuity:

0 ≤
⎛

⎝
m∑

i=1

hi (y(t))2 +
∑

i∈ Ĵ

max{0, gi (y(t))}2

⎞

⎠ ≤ lim
k→∞

t

k
‖d‖2 = 0.

This implies that y(t) ∈ X̂ for all t > 0.

From (7) we have that y(t) → x as t → 0. Moreover, we can select a sequence of
positive numbers tr with tr → 0 such that the limit

d0 = lim
r→∞

y(tr ) − x

tr

exists. Since y(t) ∈ X̂ for all t > 0 we obtain that d0 ∈ TX̂ (x) ⊂ VX̂ (x).
Let us consider r0 large enough such that, by (7), ‖y(tr , k) − x‖ < ε,∀r ≥ r0,∀k.

By the definition of y(t, k) we have that, for r ≥ r0,∇y H(y(tr , k), tr , k) = 0, then

y(tr , k) − x − tr d

tr

+k

⎛

⎝
m∑

i=1

hi (y(tr , k))∇hi (y(tr , k)) +
∑

i∈ Ĵ

max{0, gi (y(tr , k))}∇gi (y(tr , k))

⎞

⎠ = 0.

By the definition of RCPLD, we may take a subset I ⊂ {1, . . . , m} such that
{∇hi (y(tr , k))}i∈I is a basis for span{∇hi (y(tr , k))}m

i=1 for sufficiently large k. Thus,
there exists a sequence {λk(r)} ⊂ R

m such that
∑m

i=1 khi (y(tr , k))∇hi (y(tr , k)) =∑
i∈I λk

i (r)∇hi (y(tr , k)). By applying Lemma 1, we have that there are subsets

Jk(r) ⊂ Ĵ and multipliers λ̄k
i (r),∀i ∈ I and μ̄k

i (r) ≥ 0,∀i ∈ Jk(r) such that

y(tr , k) − x − tr d

tr
+

∑

i∈I

λ̄k
i (r)∇hi (y(tr , k)) +

∑

i∈Jk (r)

μ̄k
i (r)∇gi (y(tr , k)) = 0 (9)
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and

({∇hi (y(tr , k))}i∈I , {∇gi (y(tr , k))}i∈Jk (r)

)
is linearly independent. (10)

We will consider a subsequence such that Jk(r) is the same set J (r) (this can be done
since there are finitely many possible sets Jk(r)).

Denote,

Mk(r) =
√

1 +
∑

i∈I

(λ̄k
i (r))2 +

∑

i∈J (r)

(μ̄k
i (r))2.

Then, dividing (9) by Mk(r) and taking limit when k → ∞ for k in an appropriate sub-
sequence we have that there are scalars μ0(r), λi (r), i ∈ I, μ j (r), j ∈ J (r), μ j (r) ≥
0 not all equal to zero such that

μ0(r)

(
y(tr ) − x

tr
− d

)
+

∑

i∈I

λi (r)∇hi (y(tr ))

+
∑

i∈J (r)

μi (r)∇gi (y(tr )) = 0, for tr > 0. (11)

Let us consider a subsequence such that J (r) is the same set J . Using that
‖(μ0(r), λi (r), μi (r))‖ = 1 and taking limit when r → ∞ for r in an appropriate
subsequence in (11) we have that there are scalars μ0, λi , i ∈ I, μ j , j ∈ J, μ j ≥ 0
not all equal to zero such that

μ0(d0 − d) +
∑

i∈I

λi∇hi (x) +
∑

i∈J

μi∇gi (x) = 0. (12)

If μ0 = 0, then we have that ({∇hi (x)}i∈I , {∇gi (x)}i∈J ) is positive-linearly depen-
dent, hence, since (10) holds, this contradicts RCPLD. Consequently, it must be μ0 >

0. Given d̂ ∈ VX̂ (x), let us prove that ∇g j (x)T d̂ = 0 for every j ∈ Ĵ . From the

definition of VX̂ (x) we have that ∇g j (x)T d̂ ≤ 0 for every j ∈ Ĵ , and from the defi-

nition of Ĵ , for every i ∈ A(x)\ Ĵ there exists di ∈ VΩ(x) such that ∇gi (x)T di < 0.
Defining d̄ = ∑

i∈A(x)\ Ĵ di , we have that

∇gi (x)T d̄ < 0 for every i ∈ A(x)\ Ĵ ,

and

∇g j (x)T d̄ = 0 for every j ∈ Ĵ .

Thus, for sufficiently large α > 0 we have

∇gi (x)T (d̂ + αd̄) = ∇gi (x)T d̂ + α∇gi (x)T d̄ < 0 for every i ∈ A(x)\ Ĵ ,
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and

∇g j (x)T (d̂ + αd̄) = ∇g j (x)T d̂ ≤ 0 for every j ∈ Ĵ .

Hence d̂ + αd̄ ∈ VΩ(x), which implies that for all j ∈ Ĵ ,∇g j (x)T (d̂ + αd̄) =
∇g j (x)T d̂ = 0 as we wanted to prove. Thus, multiplying (12) by d, d0 ∈ VX̂ (x), we
obtain that

dT
0 (d − d0) = 0 = dT (d − d0),

which implies that d = d0 ∈ TX̂ (x).

We have proved that a feasible point x that verifies RCPLD as a point in X̂ verifies
Abadie’s as a point in X̂ .

Now we have to prove that this implies that x verifies Abadie’s CQ as a point in Ω .
Let us define the set ṼΩ(x) = {d ∈ R

n : ∇hi (x)T d = 0, i =1, . . . , m; ∇g j (x)T d =
0, j ∈ Ĵ ; ∇g j (x)T d < 0, j ∈ A(x)\ Ĵ }.

Since x verifies that TX̂ (x) = VX̂ (x) and ṼΩ(x) ⊂ VX̂ (x) it is not hard to prove
that ṼΩ(x) ⊂ TΩ(x). In general, TΩ(x) is a closed cone, thus, VΩ(x) = cl(ṼΩ(x)) ⊂
TΩ(x), where cl(·) denotes the closure operator. Thus, we have that x verifies Abadie’s
CQ as a point in Ω as we wanted to prove. �

Note that Corollary 1 is also an immediate consequence of the above result. How-
ever, we derived it after Theorem 2 to emphasize the alternative technique to prove that
a constraint qualification holds by showing that AKKT together with the candidate
condition implies KKT. This strategy is specially appealing here as it is essential to
derive the convergence of the augmented Lagrangian algorithm as we do in Sect. 4.

We will now provide some counter-examples to completely state the relation
of RCPLD with respect to other known constraint qualifications. We observe that
since MFCQ implies RCPLD, Counter-example 1 shows that RCPLD does not imply
RCRCQ.

The following counter-example shows that pseudonormality does not imply
RCPLD.

Counter-example 3 Consider the inequality constraints g1(x1, x2) = −x1 and
g2(x1, x2) = x1 − x2

1 x2
2 , at the feasible point x = (0, 0). RCPLD does not hold

since (∅, {∇g1(y),∇g2(y)}) is positive-linearly dependent at y = x but linearly
independent for y arbitrarily close to x . Pseudonormality holds, since we can write
μ∇g1(x) + μ∇g2(x) = 0 for every μ > 0, but μg1(y1, y2) + μg2(y1, y2) =
−μy2

1 y2
2 ≤ 0 for every y.

Since RCRCQ does not imply quasinormality and RCRCQ implies RCPLD, we
have that RCPLD does not imply quasinormality. In Fig. 2 we show a complete diagram
picturing the relations of RCPLD with other constraint qualifications.

Observe that since MFCQ implies RCPLD and the example from [7] shows that
MFCQ does not imply the weak second order necessary condition, it follows imme-
diately that RCPLD does not imply such condition either.
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CPLDPseudonormality

Quasinormality

Abadie

RCPLD

MFCQ

LICQ

CRCQ

RCRCQ

Fig. 2 Complete diagram showing relations of RCPLD with other well known constraint qualifications,
where an arrow between two constraint qualifications means that one is strictly stronger than the other

We finish this section by proving that RCPLD can be equivalently stated requiring
only positive-linear dependence in a neighborhood. This proves that RCPLD is stable
in the sense that if it holds at a given feasible point, then it must hold at every feasible
point of some neighborhood.

Theorem 4 Let I ⊂ {1, . . . , m} be an index set such that {∇hi (x)}i∈I is a basis for
span{∇hi (x)}m

i=1. A feasible point x ∈ Ω satisfies RCPLD if, and only if, there exists
a neighborhood N (x) of x such that

– {∇hi (y)}m
i=1 has the same rank for every y ∈ N (x),

– For every J ⊂ A(x), if ({∇hi (x)}i∈I , {∇gi (x)}i∈J ) is positive-linearly depen-
dent, then ({∇hi (y)}i∈I , {∇gi (y)}i∈J ) is positive-linearly dependent for every y ∈
N (x).

Proof Let us take a feasible point x ∈ Ω that satisfies RCPLD and J ⊂ A(x)

such that ({∇hi (x)}i∈I , {∇gi (x)}i∈J ) is positive-linearly dependent. Thus, there are
λi ∈ R,∀i ∈ I, μi ≥ 0,∀i ∈ J,

∑
i∈J μi > 0 such that

∑
i∈I λi∇hi (x) +∑

i∈J μi∇gi (x) = 0. We can assume that μi > 0 for every i ∈ J . Since J 	= ∅,
taking j ∈ J we may write μ j∇g j (x) = ∑

i∈I −λi∇hi (x) + ∑
i∈J\{ j} −μi∇gi (x).

By Lemma 1, there exist J ′ ⊂ J\{ j} and λ̄i ∈ R,∀i ∈ I, μ̄i > 0,∀i ∈ J ′ such that

μ j∇g j (x) =
∑

i∈I

−λ̄i∇hi (x) +
∑

i∈J ′
−μ̄i∇gi (x) (13)

and

({∇hi (x)}i∈I , {∇gi (x)}i∈J ′) (14)

is linearly independent.
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Now, RCPLD ensures that Eq. (13) has a solution in λ̄ and μ̄ when we change x for y
in a neighborhood of x . As all the functions involved are continuous and (14) holds,
it follows from the pseudo-inverse formula that λ̄ and μ̄ will change continuously in
a neighborhood of x , in particular preserving μ̄i > 0 for every i ∈ J ′. �

4 Applications of RCPLD

We now show how to apply the RCPLD constraint qualification to obtain a stron-
ger convergence result for the general augmented Lagrangian method introduced in
[2,3]. We define the method with some small changes in the penalty parameter update
suggested in [9].

We consider the problem

Minimize f (x), subject to h(x) = 0, g(x) ≤ 0, h(x) = 0, g(x) ≤ 0, (15)

where f : R
n → R, h : R

n → R
m, g : R

n → R
p, h : R

n → R
m and g : R

n → R
p

are continuously differentiable functions. The lower-level constraints h(x) = 0 and
g(x) ≤ 0 are usually simple and we assume that a tailored optimization method can

cope with them. For example, in the algorithm implemented in ALGENCAN2 the
lower-level constraints define a box and a method that can solve minimization prob-
lems inside a box is used. Given ρ > 0, λ ∈ R

m, μ ∈ R
p, μ ≥ 0, x ∈ R

n we define
the augmented Lagrangian function

Lρ(x, λ, μ) = f (x) + ρ

2

(∥∥∥∥h(x) + λ

ρ

∥∥∥∥
2

+
∥∥∥∥max

{
0, g(x) + μ

ρ

}∥∥∥∥
2
)

. (16)

Algorithm Let εk ≥ 0, εk → 0, λ̄k ∈ [λmin, λmax ]m , μ̄k ∈ [0, μmax ]p for all k,

ρ1 > 0, τ ∈ (0, 1), η > 1.
For all k, compute xk ∈ R

n such that there exist vk ∈ R
m, wk ∈ R

p, wk ≥ 0
satisfying:

∥∥∥∥∥∥
∇xLρk (xk, λ̄k, μ̄k) +

m∑

i=1

vk
i ∇hi (xk) +

p∑

i=1

wk
i ∇g

i
(xk)

∥∥∥∥∥∥
≤ εk, (17)

‖h(xk)‖ ≤ εk, ‖ max{0, g(xk)}‖ ≤ εk, (18)

and

wk
i = 0 whenever g

i
(xk) < −εk . (19)

2 Freely available at http://www.ime.usp.br/~egbirgin/tango.
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We define, for all i = 1, . . . , p,

V k
i = max

{
gi (xk),

−μ̄k
i

ρk

}
. (20)

If k = 1 or

max{‖h(xk)‖, ‖V k‖} ≤ τ max{‖h(xk−1)‖, ‖V k−1‖} (21)

we define ρk+1 ≥ ρk . Else, we define ρk+1 ≥ ηρk .

Remark We can define the multiplier sequences {λ̄k} and {μ̄k} using for example the
first order update formula λ̄k+1

i = P[λmin ,λmax ](λ̄k
i + ρkhi (xk)), i = 1, . . . , m and

μ̄k+1
i = P[0,μmax ](μ̄k

i + ρk gi (xk)), i = 1, . . . , p, where PX (·) denotes the euclidean
projection in X .

The global convergence results for this variation of the augmented Lagrangian algo-
rithms presented in [2,3,9] are based on the fact that they converge to AKKT points.
This fact can be easily derived from the convergence proofs. Hence, any condition
that ensures that AKKT points are actually KKT points can be used to ensure that
the method converges to first order stationary points. In [2,3,9], the authors used the
CPLD constraint qualification, but we have just showed in Theorem 2 that RCPLD can
be used instead, weakening the required assumptions for convergence. In particular,
the convergence analysis of [2,3,9] combined with Theorem 2 produces the following:

Theorem 5 If x∗ is a limit point of a sequence generated by the Algorithm, then it is
feasible for the lower-level constraints, h(x) = 0, g(x) ≤ 0, and one of the following
holds:

– x∗ is a feasible point of (15).
– x∗ is a KKT point of the problem

Minimize ‖h(x)‖2 + ‖ max{0, g(x)}‖2, subject to h(x) = 0, g(x) ≤ 0. (22)

– RCPLD does not hold at x∗ as a feasible point for the lower-level constraints.

Theorem 6 If x∗ is a limit point of a sequence generated by the Algorithm such that
x∗ is feasible for (15), then one of the following holds:

1. x∗ is a KKT point of problem (15).
2. RCPLD does not hold at x∗ for the full set of constraints h(x)=0, g(x) ≤ 0, h(x)=

0, g(x) ≤ 0.

Note that the above theorems are just a restatement of Theorem 3.1 from [9] with
RCPLD playing the role of CPLD as the required constraint qualification.

Finally, note that the convergence analysis of the augmented Lagrangian method
was recently extended to a version that does not require derivatives [10]. The conver-
gence results are also based on CPLD and can also be generalized using RCPLD.
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We now show that an error bound property holds under the RCPLD. This has been
previously done for RCRCQ and CPLD in [18], and alternatively for RCRCQ in
[16]. More recently such results were generalized by Minchenko and Tarakanov who
showed that quasinormality also implies an error bound [19]. However, such result is
not enough to show that RCPLD implies an error bound as RCPLD does not imply
quasinormality, see Fig. 2.

As mentioned in [20,24], a main motivation to study error bounds arise in practical
considerations in the analysis and implementation of iterative methods for solving
optimization and equilibrium problems. An error bound is an estimate of the distance
of a given point to the feasible set in terms of computable quantities measuring the
violation of the constraints and can play a central role in the analysis of algorithms.

Definition 6 [24] We say that an error bound holds around a point x ∈ Ω if there
exist α > 0 and a neighborhood N (x) of x such that for every y ∈ N (x)

min
z∈Ω

‖z − y‖ ≤ α max{‖h(y)‖, ‖ max{0, g(y)}‖}.

Note that, as all norms in R
n are equivalent, the choice of the Euclidean norm in

the above definition is not essential. Any norm can be used in its place. Finally, we
point out that when the error bound property holds then the tangent cone coincides
with the linearization cone, that is, Abadie’s CQ holds [24]. In this sense, the Theorem
below gives an alternative proof to Theorem 3 but requiring second derivatives of the
constraints.

Theorem 7 If x ∈ Ω satisfies RCPLD and the functions h and g defining Ω admit
second derivatives in a neighborhood of x, then x satisfies an error bound.

Proof If x is in the interior of Ω , then clearly the error bound property holds. We will
assume that x lies in the frontier of Ω . For a fixed y ∈ R

n , consider the problem

Minimize ‖z − y‖, subject to h(z) = 0, g(z) ≤ 0. (23)

In Theorem 2 of [18], the authors proved that if second derivatives are available,
then the error bound property holds at x ∈ Ω if, and only if, there exists a neighborhood
N (x) of x such that there exist Lagrange multipliers for problem (23) that lie in a fixed
compact set for all y ∈ N (x), y 	∈ Ω . Let us consider a sequence yk → x, yk 	∈ Ω

and let zk be a solution to (23) for y = yk . Since ‖zk − yk‖ ≤ ‖x − yk‖ we have also
zk → x . It is a consequence of Theorem 4 that the RCPLD condition is preserved in
a neighborhood, thus zk ∈ Ω also satisfies RCPLD for sufficiently large k. Hence,
there exist {λk} ⊂ R

m and {μk} ⊂ R
p, μk

i ≥ 0 such that

zk − yk

‖zk − yk‖ +
m∑

i=1

λk
i ∇hi (z

k) +
∑

i∈A(zk )

μk
i ∇gi (z

k) = 0,

for sufficiently large k, where A(zk) = {i ∈ {1, . . . , p} | gi (zk) = 0}. From the defi-
nition of RCPLD we have that there exist I ⊂ {1, . . . , m} and λ̃k

i for every i ∈ I such
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that {∇hi (zk)}i∈I is linearly independent and
∑m

i=1 λk
i ∇hi (zk) = ∑

i∈I λ̃k
i ∇hi (zk)

for sufficiently large k, hence, by Lemma 1, there exist Jk ⊂ A(zk), λ̄k
i for every i ∈ I

and μ̄k
i ≥ 0 for every i ∈ Jk such that:

zk − yk

‖zk − yk‖ +
∑

i∈I

λ̄k
i ∇hi (z

k) +
∑

i∈Jk

μ̄k
i ∇gi (z

k) = 0, (24)

and
(
{∇hi (z

k)}i∈I , {∇gi (z
k)}i∈Jk

)
(25)

is linearly independent. Let us consider a subsequence such that Jk is the same set
J for every k, where J ⊂ A(zk) ⊂ A(x). Define Mk = ‖(λ̄k, μ̄k)‖∞ and let us
assume by contradiction that {Mk} is unbounded. Taking a subsequence such that
(λ̄k ,μ̄k )

Mk
→ (λ, μ) 	= 0, μ ≥ 0, we may divide (24) by Mk and take limits for this

subsequence to obtain:

∑

i∈I

λ̄i∇hi (x) +
∑

i∈J

μ̄i∇gi (x) = 0.

Since RCPLD holds at x we have that
({∇hi (zk)}i∈I , {∇gi (zk)}i∈J

)
must be linearly

dependent for sufficiently large k, which contradicts (25). This concludes the proof.
�

5 Final remarks

We introduced a generalization of the RCRCQ constraint qualification called RCPLD.
We showed that this constraint qualification is strictly weaker than RCRCQ and CPLD.
The RCPLD shares with CPLD many of its important properties. In particular, it is
enough to ensure the convergence of an Augmented Lagrangian algorithm and the
presence of an error bound.

An interesting question that was not touched in this paper is whether it is possible
to extend the RCRCQ in a way that does not involve assumptions on the behavior of
the gradients of all subsets of the active inequality constraints. Such extension would
better fit the spirit of RCRCQ when the description of the feasible set does not have
any inequalities. In this case, the assumption of constant rank has to be fulfilled only
by the set of all gradients of the constraints.

Another question is whether RCPLD can still be weakened preserving the conver-
gence of augmented Lagrangian algorithms. It may be also interesting to investigate
its role in the convergence of other optimization methods, like sequential quadratic
programming or inexact-restoration, as well as in the convergence of the extension
of such methods to deal with variational inequalities. Finally, it may be valuable to
search for an alternative proof that RCPLD implies the validity of an error bound that
does not depend on the existence of second derivatives as required in Theorem 7.
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