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Received: 18 June 2022 / Accepted: 5 October 2022 /
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract
We present new constraint qualification conditions for nonlinear semidefinite programming
that extend some of the constant rank-type conditions from nonlinear programming. As an
application of these conditions, we provide a unified global convergence proof of a class of
algorithms to stationary points without assuming neither uniqueness of the Lagrange multi-
plier nor boundedness of the Lagrange multipliers set. This class of algorithms includes, for
instance, general forms of augmented Lagrangian, sequential quadratic programming, and
interior point methods. In particular, we do not assume boundedness of the dual sequence
generated by the algorithm. The weaker sequential condition we present is shown to be
strictly weaker than Robinson’s condition while still implying metric subregularity.
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1 Introduction

Constraint qualification (CQ) conditions play a crucial role in optimization. They permit
to establish first- and second-order necessary optimality conditions for local minima and
support the convergence theory of many practical algorithms (see, for instance, a unified
convergence analysis for a whole class of algorithms by Andreani et al. [9, Thm. 6]). Some
of the well-known CQs in nonlinear programming (NLP) are the constant-rank constraint
qualification (CRCQ), introduced by Janin [22], and the constant positive linear depen-
dence (CPLD) condition. The latter was first conceptualized by Qi and Wei [27], and then
proved to be a constraint qualification by Andreani et al. [12]. Moreover, it has been a
source of inspiration for other authors to define even weaker constraint qualifications for
NLP, such as the constant rank of the subspace component (CRSC) [10], and the relaxed
versions of CRCQ [24] and CPLD [9]. Our interest in constant rank-type conditions is moti-
vated, mainly, by their applications towards obtaining global convergence results of iterative
algorithms to stationary points without relying on boundedness or uniqueness of Lagrange
multipliers. However, several other applications that we do not pursue in this paper may be
expected to be extended to the conic context, such as the computation of the derivative of
the value function [22, 25] and the validity of strong second-order necessary optimality con-
ditions that do not rely on the whole set of Lagrange multipliers [1]. Besides, their ability of
dealing with redundant constraints, up to some extent, gives modellers some degree of free-
dom without losing regularity or convergence guarantees on algorithms. For instance, the
standard NLP trick of replacing one nondegenerate equality constraint by two inequalities of
opposite sign does not violate CRCQ, while violating the standard Mangasarian-Fromovitz
CQ (MFCQ).

Constant-rank type CQs have been proposed in conic programming only very recently.
The first extension of CRCQ to nonlinear second-order cone programming (NSOCP)
appeared in [33], but it was shown to be incorrect in [2]. A second proposal [8], which
encompasses also nonlinear semidefinite programming (NSDP) problems, consists of trans-
forming some of the conic constraints into NLP constraints via a reduction function,
whenever it was possible, and then demanding constant linear dependence of the reduced
constraints, locally. This was considered by the authors a naive extension, since it basically
avoids the main difficulties that are expected from a conic framework. What both these
works have in common is that they somehow neglected the conic structure of the problem.

In a recent article [5], we introduced weak notions of regularity for nonlinear semidefi-
nite programming (NSDP) that were defined in terms of the eigenvectors of the constraints
– therein called weak-nondegeneracy and weak-Robinson’s CQ. These conditions take into
consideration only the diagonal entries of some particular transformation of the matrix
constraint. Noteworthy, weak-nondegeneracy happens to be equivalent to the linear inde-
pendence CQ (LICQ) when an NLP constraint is modeled as a structurally diagonal matrix
constraint, unlike the standard nondegeneracy condition [31], which in turn is considered
the usual extension of LICQ to NSDP. Moreover, the proof technique we employed in [5]
induces a direct application in the convergence theory of an external penalty method. In this
paper, we use these conditions to derive our extension proposals for CRCQ and CPLD to
NSDP. These CQs are called, in this paper, as weak-CRCQ and weak-CPLD, respectively.

However, to provide support for algorithms other than the external penalty method, we
present stronger variants of these conditions, called sequential-CRCQ and sequential-CPLD
(abbreviated as seq-CRCQ and seq-CPLD, respectively), by incorporating perturbations
in their definitions. This makes them robust and easily connectible with algorithms that
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keep track of approximate Lagrange multipliers, but also more exigent. Nevertheless, seq-
CRCQ is still strictly weaker than nondegeneracy, and independent of Robinson’s CQ,
while seq-CPLD is strictly weaker than Robinson’s CQ. On the other hand, weak-CRCQ
is strictly weaker than seq-CRCQ, while weak-CPLD is strictly weaker than weak-CRCQ
and seq-CPLD. Moreover, we show that seq-CPLD implies the metric subregularity CQ.
The global convergence results obtained under seq-CPLD, strictly weaker than Robinson’s
CQ, are the best results known by the authors for the augmented Lagrangian, sequential
quadratic programming, and interior point methods discussed in this paper. In particular, we
do not assume boundedness of the dual sequence, which is a somewhat stringent but usually
employed assumption on the behavior of these algorithms.

The content of this paper is organized as follows: Section 2 introduces notation and some
well-known theorems and definitions that will be useful in the sequel. Our main results
for NSDP are presented in Sections 3 and 4. Indeed, Section 3 is devoted to the study of
weak-CRCQ and weak-CPLD and their properties, which in turn need to invoke weak-
nondegeneracy and weak-Robinson’s CQ as a motivation. Section 4 studies seq-CRCQ and
seq-CPLD – the main CQs of this paper – and some algorithms supported by them. In
Section 5, we discuss the relationship between seq-CPLD and the metric subregularity CQ.
Lastly, some final remarks are given in Section 6. To abbreviate the paper, we will focus on
weak- and seq-CPLD since the extensions of CRCQ follow analogously.

2 A Nonlinear Semidefinite Programming Review

In this section, denotes the linear space of all real symmetric matrices equipped
with the inner product defined as

.
trace 1 for all

, and is the cone of all positive semidefinite matrices in . Additionally, for every
and every 0, we denote by

.
the open

ball centered at with radius with respect to the Frobenius norm
.

, and
its closure will be denoted by cl .

We consider the NSDP problem in standard (dual) form:

Minimize

subject to 0
(NSDP)

where and are continuously differentiable functions, and is
the partial order induced by ; that is, if, and only if, .

Equality constraints are omitted in (NSDP) for simplicity of notation, but our definitions
and results are flexible regarding inclusion of such constraints, which should be done in the
same way as in [8]. Moreover, throughout the whole paper, we will denote the feasible set
of (NSDP) by .

Let us recall that the orthogonal projection of an element onto , which is
defined as

.
argmin

is a Lipschitz continuous function of with modulus 1. Furthermore, since is self-dual,
every has a Moreau decomposition [26, Prop. 1] in the form
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with 0, and a spectral decomposition in the form

1 1 1 (1)

where 1 are arbitrarily chosen orthonormal eigenvectors asso-
ciated with the eigenvalues 1 , respectively. In turn, these eigenvalues
are assumed to be arranged in non-increasing order. Equivalently, we can write (1) as

, where is an orthogonal matrix whose -th column is , and
.

Diag 1 is a matrix whose diagonal entries are 1 and
the remaining entries are zero.

A convenient property of the orthogonal projection onto is that, for every ,
we have

1 1 1

where
.

max 0 .
Given a sequence of sets , recall its outer limit (or upper limit) in the sense of

Painlevé-Kuratowski (cf. [29, Def. 4.1] or [15, Def. 2.52]), defined as

Lim sup
.

which is the collection of all cluster points of sequences such that for
every . The notation means that is an infinite subset of the set of natural
numbers .

We denote the Jacobian of at a given point by , and the adjoint operator
of will be denoted by . Moreover, the -th partial derivative of at will be
denoted by , and the gradient of at will be written as , for every .

2.1 Classical Optimality Conditions and Constraint Qualifications

As usual in continuous optimization, we drive our attention towards local solutions of
(NSDP) that satisfy the so-called Karush-Kuhn-Tucker (KKT) conditions, defined as
follows:

Definition 1 We say that the Karush-Kuhn-Tucker conditions hold at when there
exists some 0 such that

0 and 0

where
.

is the Lagrangian function of (NSDP). The matrix
is called a Lagrange multiplier associated with , and the set of all Lagrange multipliers
associated with will be denoted by .

Of course, not every local minimizer satisfies the KKT conditions in the absence of a CQ.
In order to recall some classical CQs, it is necessary to use the (Bouligand) tangent cone to

at a point 0. This object can be characterized in terms of any matrix ,
whose columns form an orthonormal basis of Ker , as follows (e.g., [15, Ex. 2.65]):

0 (2)
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where denotes the rank of . So, its lineality space, defined as the largest linear space
contained in , is computed as follows:

lin 0 . (3)

The latter is a direct consequence of the identity lin , satisfied for any closed
convex cone .

One of the most recognized constraint qualifications in NSDP is the nondegener-
acy (or transversality) condition introduced by Shapiro and Fan [31], which can be
characterized [15, Eq. 4.172] at a point when the following relation is satisfied:

Im lin .

If is a local solution of (NSDP) that satisfies nondegeneracy, then is a singleton,
but the converse is not necessarily true unless rank rank holds for some

[15, Prop. 4.75]. This last condition is known as strict complementarity in this
NSDP framework. By (2) it is possible to characterize nondegeneracy at by means of any
given matrix with orthonormal columns that span Ker . Indeed, following [15, Sec.
4.6.1], nondegeneracy holds at if, and only if, either Ker 0 or the linear mapping

given by
.

(4)

is surjective, which is in turn equivalent to saying that the vectors

.
1 1 (5)

are linearly independent [30, Prop. 6], where denotes the -th column of and is the
rank of .

Another widespread constraint qualification is Robinson’s CQ [28], which can be
characterized at by the existence of some such that

int (6)

where int stands for the topological interior of . It is known (e.g., [15, Props. 3.9 and
3.17]) that when is a local solution of (NSDP), then is nonempty and compact if,
and only if, Robinson’s CQ holds at .

Given the properties and characterizations recalled above, the nondegeneracy condition
is typically considered the natural extension of LICQ from NLP to NSDP, while Robinson’s
CQ is considered the extension of MFCQ.

2.2 A Sequential Optimality Condition Connected to the External Penalty Method

If we do not assume any CQ, every local minimizer of (NSDP) can still be proved to satisfy
at least a sequential type of optimality condition that is deeply connected to the classical
external penalty method. Namely:

Theorem 1 Let be a local minimizer of (NSDP), and let . Then, there
exists some , such that for each , is a local minimizer of the
regularized penalized function

. 1

2
2
2 2

2.
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Proof See [11, Thm. 2]. For a more general proof, see the first part of the proof of [4, Thm.
2].

Note that Theorem 1 provides a sequence such that each satisfies, with
an error 0 , the first-order optimality condition of the unconstrained minimization
problem

Minimize
2

2

so characterizes an output sequence of an external penalty method. Moreover, the
sequence , where

.

for every , consists of approximate Lagrange multipliers for , in the sense that
0 and complementarity and feasibility are approximately fulfilled, in view

of Moreau’s decomposition – indeed, note that 0 and 0,
with 0, for every .

These sequences will suffice to obtain the results of the first part of this paper (Section 3),
but in order to extend their scope to a larger class of iterative algorithms, in Section 4, we
will need a more general sequential optimality condition, which will be presented later on.

2.3 Reviewing Constant Rank-Type Constraint Qualifications for NLP

This section is meant to be a brief review of the main results regarding the classical nonlinear
programming problem:

Minimize

subject to 1 0 0
(NLP)

where 1 are continuously differentiable functions.
As far as we know, the first constant rank-type constraint qualification was introduced

by Janin [22], to obtain directional derivatives for the optimal value function of a perturbed
NLP problem. Janin’s condition is defined as follows:

Definition 2 Let . The constant rank constraint qualification for (NLP) (CRCQ)
holds at if there exists a neighborhood of such that, for every subset
1 0 , the rank of the family remains constant for all .

As noticed by Qi and Wei [27] it is possible to rephrase Definition 2 in terms of the “con-
stant linear dependence” of for every . That is, CRCQ holds at if, and only
if, there exists a neighborhood of such that, for every 1 0 ,
if is linearly dependent, then remains linearly dependent for every

. Based on this characterization, Qi and Wei proposed a relaxed version of CRCQ,
called constant positive linear dependence (CPLD) condition, to obtain improved global
convergence results for a sequential quadratic programming method, but this was only
proven to be a constraint qualification a few years later, in [12]. To properly present CPLD,
recall that a family of vectors of is said to be positively linearly independent
when

0 0 0 .
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Next, we recall the CPLD constraint qualification:

Definition 3 Let . The constant positive linear dependence condition for (NLP)
(CPLD) holds at if there exists a neighborhood of such that, for every
1 0 , if the family is positively linearly dependent, then

remains linearly dependent for all .

Clearly, CPLD is implied by CRCQ, which is in turn implied by LICQ and is independent
of MFCQ. Moreover, CPLD is implied by MFCQ, and all those implications are strict [12,
22]. To prove the main results of this paper (Theorems 2 and 5), we shall take inspiration
in [9], where the authors employ Theorem 1 together with the well-known Carathéodory’s
Lemma:

Lemma 1 (Exercise B.1.7 of [13]) Let 1 , and let 1 be arbi-
trary. Then, there exist some 1 and some scalars with , such that

is linearly independent,

1

and 0, for all .

If one considers equality constraints in (NSDP) separately, one should employ an adapted
version of Carathéodory’s Lemma that fixes a particular subset of vectors, which can be
found in [9, Lem. 2]. In our current setting, Lemma 1 will suffice as is.

3 Weak Constant Rank Constraint Qualifications for NSDP

The main purpose of this section is to present an extension of the CPLD condition for NSDP,
but to do so we first need to know how CRCQ looks like in NSDP, which is a challenging
problem on its own. Based on the relation between LICQ and CRCQ in NLP, the most
natural candidate for CRCQ in NSDP consists of demanding every subset of

1

to remain with constant rank (or constant linear dependent) in a neighborhood of . How-
ever, this candidate cannot be a CQ, as shown in the following counterexample, adapted
from [2, Eq. 2]:

Example 1 Consider the problem to minimize
.

subject to

. 2

2 0.

For this problem,
.

0 is the only feasible point and, therefore, the unique global minimizer
of the problem. Since 0, the columns of the matrix

.
2 form an orthonormal

basis of Ker (the whole space 2). For this choice of , we have

11 22 1 and 12 1 2 .

Since they are all bounded away from zero, the rank of every subset of 1
2 remains constant for every around . However, Note that does not satisfy the
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KKT conditions because any
. 11 12

12 22
would necessarily be a solution of

the system

11 0

22 0

11 22
2
12 0

11 2 12 22 1

which has no solution.

Besides, it is well known that even if is affine, not all local minimizers of (NSDP)
satisfy the KKT conditions, but in this case every subfamily of 1

remains with constant rank for every .
What Example 1 tells us is that 2 may be a bad choice of . In fact, let us choose

a different , namely, denote the columns of by 1
.

and 2
.

, and take
1 2 and 1 2. This election of happens to diagonalize for

every , but it follows that

11 1 2 1 2 2

22 1 2 1 2 2 1

12 1 2 0

and the rank of 11 does not remain constant in a neighborhood of 0.
In light of our previous work [5], the situation presented above is not surprising. Therein,

we already noted that identifying the “good” matrices allows us to obtain relaxed versions
of nondegeneracy and Robinson’s CQ for NSDP. This identification can also be used to
extend constant-rank type conditions to NSDP and is the starting point for the results we
will present.

For the sake of completeness, let us quickly summarize a discussion raised in [5] before
presenting the results of this paper. Consider a feasible point and denote by the
rank of . Observe that 1 for every close enough to .
Thus, when , define the set

. Diag 1 (7)

which consists of all matrices whose columns are orthonormal eigenvectors associated with
the smallest eigenvalues of , which is well defined whenever 1 .
In (7), Diag 1 denotes the diagonal matrix whose diagonal entries are

1 . By convention,
.

when . By construction,
is nonempty provided and is close enough to . In particular, in this situation,

is the set of all matrices with orthonormal columns that span Ker .
We showed, in [5, Prop. 3.2], that nondegeneracy can be equivalently stated as the linear

independence of the smaller family, 1 , as long as this holds for all
instead of a fixed one. Similarly, Robinson’s CQ can be translated as the positive

linear independence of the family 1 for every [5, Prop.
5.1]. This characterization suggested a weak form of nondegeneracy (and Robinson’s CQ)
that takes into account only a particular subset of instead of the whole set, which
reads as follows:
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Definition 4 (Def. 3.2 and Def. 5.1 of [5]) Let and let be the rank of . We say
that satisfies:

Weak-nondegeneracy condition for NSDP if either or, for each sequence
, there exists some Lim sup 1 such that the family

1 is linearly independent;
Weak-Robinson’s CQ condition for NSDP if either or, for each sequence

, there exists some Lim sup such that the family

1 is positively linearly independent.

Note that, in general, Lim sup , but the reverse inclusion
is not always true, meaning is not necessarily continuous at as a set-valued
mapping. It then follows that weak-nondegeneracy is indeed a strictly weaker CQ than non-
degeneracy [5, Ex. 3.1]. Moreover, in contrast with nondegeneracy, weak-nondegeneracy
happens to fully recover LICQ when is a structurally diagonal matrix constraint in
the form

.
Diag 1 [5, Prop. 3.3]. Similarly, weak-Robinson’s CQ is

implied by Robinson’s CQ and coincides with MFCQ when is diagonal.

3.1 Weak-CRCQ andWeak-CPLD

A straightforward relaxation of weak-nondegeneracy and weak-Robinson’s CQ, likewise
NLP, leads to our first extension proposal of CRCQ and CPLD, respectively, to NSDP:

Definition 5 (weak-CRCQ and weak-CPLD) Let and let be the rank of . We
say that satisfies the:

Weak constant rank constraint qualification for NSDP (weak-CRCQ) if either
or, for each sequence , there exists some Lim sup

such that, for every subset 1 : if the family is lin-
early dependent, then remains linearly dependent, for all large
enough.
Weak constant positive linear dependence constraint qualification for NSDP (weak-
CPLD) if either or, for each sequence , there exists some

Lim sup such that, for every 1 : if the fam-
ily is positively linearly dependent, then the family
remains linearly dependent, for all large enough.

For both definitions, , and is a sequence converging to and such that
for every , as required by the Painlevé-Kuratowski outer limit.

Observe that if weak-nondegeneracy holds at , then weak-CRCQ is vacuously true
(because there is no linearly dependent family of vector when
1 ), and weak-CRCQ in turn implies weak-CPLD. Similarly, weak-Robinson’s

CQ implies weak-CPLD as well. However, Robinson’s CQ and its weak variant are both
independent of weak-CRCQ. In fact, the next example shows that weak-CRCQ is not
implied by either (weak-)Robinson’s CQ or weak-CPLD.

1Without further mention, we will endow with a norm, which can be the Frobenius norm or a
column-wise maximum norm, for instance.
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Example 2 Let us consider the constraint

. 2 1
2
2

2
2

2
2 2 1

2
2

0

and note that, for every orthogonal matrix in the form

.

we have

11
2

2 2
2

and 22
2

2 2
2

.

Then, at 0, we have 11 22 2 0 , so they are linearly dependent,
but positively linearly independent for all . However, choosing any sequence

0 such that 2 0 for all , it follows that the eigenvalues of :

1 2 1 2

2
and 2 2 1

are simple, with associated orthonormal eigenvectors

1
1

2

1

2
and 2

1

2

1

2

respectively, for every . Then, the only sequence such that

for every , up to sign, is given by 1 2 and 1 2. However,
keep in mind that , 1 2 , is invariant to the sign of the columns of , so

22 2 0 and 11 2 4 2 are linearly independent for all large
. Therefore, we conclude that (weak-)Robinson’s CQ holds at , and consequently weak-

CPLD also holds, but weak-CRCQ does not hold at .

Conversely, we show with another counterexample, that weak-CRCQ does not imply
(weak-)Robinson’s CQ, and neither does weak-CPLD.

Example 3 Let us consider the constraint

. 2

2 0

and the point 0. Take any sequence such that 0 for every , and
consider two subsequences of it, indexed by and , such that 0 for every ,
and 0 for every . Then, for every , we have that:

1
2 1 and 2

2 1

are simple, with associated orthonormal eigenvectors uniquely determined (up to sign) by

1
1

1

1 2 1
1 2

1

2

1 2 1
1
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where

1
. 1 2 1

2

1 and 2
. 1 2 1

2

1.

Moreover, one can verify that whenever is an infinite set,

lim 1 1 0 and lim 2 0 1 .

Then, we have that for all Lim sup , the vectors

11 1 and 22 1

are positively linearly dependent. In addition, since 1 and 2 1, the vectors

11
1

2
4 2 1 2

1
2

and

22
2

2
4 2 1 2

2
2

are nonzero and have opposite signs; and thus, remain positively linearly dependent, for all
large .

For the indices the order of 1 and 2 is swapped, together
with their respective eigenvectors, and we have lim 1 0 1 and
lim 2 1 0 . Hence, for all Lim sup , the vectors

11 1 and 22 1

are also positively linearly dependent. The order of 11 and 22 is also
swapped, so they remain positively linearly dependent for all large .

By the above reasoning, observe that any sequence , such that 0 for
every , shows that (weak-)Robinson’s CQ fails at . Moreover, if 0 for infinitely
many indices, we may simply take 2 for every , and then 11

11 1 and 22 22 1 are positively linearly dependent for
every . This completes checking that weak-CPLD and weak-CRCQ both hold at ,
while (weak-)Robinson’s CQ does not.

Just as it happens in NLP, the weak-CPLD condition is strictly weaker than (weak-
)Robinson’s CQ, and also weaker than weak-CRCQ, which are in turn, independent.
Nevertheless, we will show next that weak-CPLD is still sufficient for the existence of
Lagrange multipliers at all local solutions of (NSDP). To do so, we get inspiration from
the proof of [12, Thm. 3.1]), originally presented for NLP, and the proof of [5, Thm. 3.2].
That is, we analyse the sequence from Theorem 1 in terms of the spectral decomposi-
tion of its approximate Lagrange multiplier candidates, under weak-CPLD. Then, we use
Carathéodory’s Lemma 1 to construct a bounded sequence from it, that converges to a
Lagrange multiplier. As an intermediary step, we also obtain a convergence result of the
external penalty method to KKT points under weak-CPLD, a fact that is emphasized in
the statement of the next theorem. The above statements regarding existence of Lagrange
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multipliers and convergence of the external penalty are also true for weak-CRCQ. In fact,
because it is understood that almost all properties of weak-CPLD that we study in this paper
are naturally carried over to weak-CRCQ, we shall omit the latter from this point onwards
to avoid redundancy.

Theorem 2 Let and be such that

0.

If satisfies weak-CPLD, then satisfies the KKT conditions. In particular, every local
minimizer of (NSDP) that satisfies weak-CPLD also satisfies the KKT conditions.

Proof Let
.

, for every . Recall that we assume

1 , for every , and denote by the rank of
Ker . Note that when is large enough, say greater than some 0, we necessarily have

1 0 for all 1 . Let , and
be such that for every , as described in Definition 5.

Then, for each greater than 0, the spectral decomposition of is given by

1

where
.

0 and denotes the -th column of , for every

1 . Since 0, we have

1

0 (8)

but note that

1

...

1

...

so we can rewrite (8) as

1

0.

Using Carathéodory’s Lemma 1 for the family 1 , for each fixed

, we obtain some 1 such that is linearly independent
and

1

(9)

where 0 for every and every . By the pigeonhole principle, we can
assume is the same, say equal to , for infinitely many . Without loss of generality,
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let us say that this holds for all . We claim that the sequences are all bounded.
In order to prove this, suppose that

.
max

is unbounded with , divide (9) by and note that on a subsequence implies
that the vectors , , are positively linearly dependent. On the other hand, the
vectors , , are linearly independent for all large , which contradicts weak-
CPLD. Finally, note that every collection of limit points of their respective
sequences , generates a Lagrange multiplier associated with , which is

.

. Here, is the eigenvector associated with the -th
eigenvalue of (see (1)). Thus, is a KKT point.

The second part of the statement of the theorem follows from Theorem 1.

Back to Example 1, observe that weak-CPLD does not hold at 0, as expected.
Indeed, for any sequence 0 such that 0 for all , the matrix has
only simple eigenvalues, for all large , so is unique up to sign. Without
loss of generality, we can assume

. 1

2

1 1
1 1

and then we have 11 2 0, which is linearly independent for all while

11 0 is positively linearly dependent. Thus weak-CPLD as in Definition 5 is not
satisfied.

Remark 1 In [8], we presented a different extension proposal of CPLD to NSDP problems
with multiple constraints, which is weaker than Robinson’s CQ for a single constraint as
in (NSDP) only when the zero eigenvalue of is simple. We called this definition the
“naive extension of CPLD”. We remark that Definition 5 coincides with the naive exten-
sion of CPLD when zero is a simple eigenvalue of , which makes Definition 5 an
improvement of it, or a “non-naive variant” of it.

The phrasing of Theorem 2 was chosen to draw the reader’s attention to the fact that it is,
essentially, a convergence proof of the external penalty method to KKT points, under weak-
CPLD. To obtain a more general convergence result, in the next section we introduce new
constant rank-type CQs for NSDP that support every algorithm that converges with a more
general type of sequential optimality condition. Then, we prove some properties of these
new conditions, and we compare them with weak-CPLD and weak-CRCQ.

4 Stronger Sequential-Type Constant Rank CQs for NSDP and Global
Convergence of Algorithms

The so-called Approximate Karush-Kuhn-Tucker (AKKT) condition, which was brought
from NLP to NSDP by Andreani et al. [11], is a general purpose sequential optimality con-
dition that encompasses, for instance, Theorem 1. Such a notion has been recently refined
and generalized to optimization problems in Banach spaces [16] and also problems with
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geometric constraints [23]. Let us recall one (the most convenient for this paper) of its many
characterizations.2

Definition 6 (Def. 4 of [4]) We say that a point satisfies the AKKT condition
when there exist sequences and , and perturbation sequences

and , such that:

1. , for every ;
2. 0 and 0, for every ;
3. 0 and 0.

Note that is a sequence of approximate Lagrange multipliers of , in the sense
that is an exact Lagrange multiplier, at , for the perturbed problem

Minimize

subject to 0.

The main goal in enlarging the class of approximate Lagrange multipliers and pertur-
bations as in Definition 6 instead of considering only the ones given by Theorem 1, is to
capture the output sequences of a larger class of iterative algorithms. In the next two subsec-
tions, we illustrate the previous statement. What is remarkable is that the proof of Theorem 2
can still be somewhat conducted considering this more general class of sequences, arriving
at strong global convergence results for such algorithms (Theorem 5).

4.1 Example 1: A Safeguarded Augmented LagrangianMethod

Let us briefly recall a variant of the Powell-Hestenes-Rockafellar augmented Lagrangian
algorithm that employs a safeguarding technique, which is the direct generalization of the
one studied in [14]. The variant we use is also a generalization of [9, Pg. 13] and [11, Alg.
1], for instance.

For an arbitrary penalty parameter 0 and a safeguarded multiplier 0, we define
as the Augmented Lagrangian function of (NSDP), which is given by

.
2

2
1

2

2
.

Since it will be useful in the convergence proof, we compute the gradient of at below:

. (10)

Now, we state the algorithm:

2Definition 6 coincides with the AKKT condition presented in [11, Def. 3.1]. See, for instance, [4, Prop. 4].
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Algorithm 1 Safeguarded augmented Lagrangian method.

By the definition of projection we have that if, and only if,

and 0, which means that 0 if, and only if, the
pair is primal-dual feasible and complementary. Moreover, note that Algorithm 1
does not necessarily keep a record of the approximate multiplier sequence associated with

, which is

.
. (12)

These are usually computed, however, in several practical implementations of it, where
1 is chosen as the projection of onto . Also, with these multipliers at hand, it is very

easy to prove that any feasible limit point of must satisfy the AKKT condition:

Theorem 3 Fix any choice of parameters in Algorithm 1 and let be the output

sequence generated by it. If has a convergent subsequence , then:

1. The point is stationary for the problem of minimizing 1
2

2;
2. If is feasible, then satisfies the AKKT condition.

Proof Let 0, , 1, 0 1 , and 1 0 be given

as required by Algorithm 1. Moreover, let and be computed as in Step 2.
For simplicity, let us also assume that .

1. This part of the proof is standard; see, for instance, [4, Prop. 4.3];

Page 15 of 27 3



R. Andreani et al.

2. Define as in (12) and take
.

for all , where is as given in
(11). Then, it follows from Step 1 that 0. We also
have

for every , which yields 0 for every . If , then

recall that remains bounded and thus by definition and

0 because is assumed to be feasible; on the other hand, if remains

bounded, then 0 due to Step 2-a. Therefore, 0 and satisfies the AKKT
condition.

Note that when is set as zero for every , then Algorithm 1 reduces to the external
penalty method, meaning Theorem 3 also covers this method.

4.2 Example 2: A Sequential Quadratic ProgrammingMethod

Next, we recall Correa and Ramı́rez’s [17] sequential quadratic programming (SQP)
method:

Algorithm 2 General SQP method.

The SQP algorithm generates AKKT sequences as well, as it can be seen in the following
proposition:
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Proposition 4 Assume that Step 1 of Algorithm 2 is always well defined. If there is an
infinite subset such that lim 0 and is bounded, then any limit
point of satisfies the AKKT condition.

Proof By the KKT conditions for (Lin-QP), there exists some 0 such that

0 (14)

0. (15)

Set
.

for every and since 0, we obtain that lim 0
and lim 0. Moreover, since is feasible, 0. Thus, satisfies the
AKKT condition.

The hypothesis on the convergence of a subsequence of to zero, directly or
indirectly, is somewhat common regarding some types of SQP methods, as well as the
boundedness of – see, for instance, [10, 17, 27]. Moreover, the constant rank condi-
tion that will be presented in the next section ensures that (Lin-QP) is well defined as long
as 0 is feasible for all such that is sufficiently close to (see Remark 3 for a
discussion).

4.3 Sequential Constant Rank CQs for NSDP

Inspired by the AKKT condition, we are led to introduce a small perturbation in weak-
CPLD and weak-CRCQ, which makes them stronger, but also brings some useful properties
in return. At first, we present it in a form that resembles Definition 5, for comparison
purposes. Later, for convenience, we will provide a characterization of it without sequences.

Definition 7 (seq-CRCQ and seq-CPLD) Let and let be the rank of . We say
that satisfies the

1. Sequential CRCQ condition for NSDP (seq-CRCQ) if or, for all sequences
and with 0, there exists

Lim sup such that, for every subset 1 : if the
family is linearly dependent, then remains linearly
dependent, for all large enough.

2. Sequential CPLD condition for NSDP (seq-CPLD) if or, for all sequences
and with 0, there exists

Lim sup such that, for every subset 1 : if
is positively linearly dependent, then remains linearly

dependent, for all large enough.

For both definitions, , and is a sequence converging to and such that
for every , as required by the Painlevé-Kuratowski outer limit.

Note that the only difference between Definitions 5 and 7 is the perturbation matrix
0. In particular, set

.
0 for every to see that seq-CRCQ and seq-CPLD imply

weak-CRCQ and weak-CPLD, respectively. Moreover, both implications are strict, as we
can see in the following example:
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Example 4 Consider the constraint

. 0
0

0

at the point 0, so in this case 0. For every sequence , we have

1 0
0 1

0 1
1 0

for every such that , whereas if , then is the set of all
orthogonal 2 2 matrices. Let us assume without loss of generality that 0, thus we
may take 2 for every to see that both, weak-CRCQ and weak-CPLD, hold at

, since

11 1 and 22 1

are nonzero and (positively) linearly dependent for every .
On the other hand, take

. 2 1
2

1

1 3 1
2

with , 0, and note that the eigenvectors of

2
2

4 3 1

1
2

2 3

1 1
1 1

0
0 2

1 1
1 1

are uniquely determined up to sign. Then, because , 1 2 , is invariant to
the sign of the columns of , we can assume without loss of generality that any

has the form

1

1 1 2

1 1
1 1

for every . Then, for any sequence such that for
every , we have

11 1 1 2 and 22 1 2 1

which are both nonzero, but if is a limit point of , then 11 22
0. Thus, neither seq-CRCQ nor seq-CPLD hold at .

Furthermore, since nondegeneracy can be characterized as the linear independence of
, 1 , for every [5, Prop. 3.2], we observe that it

implies seq-CRCQ (see also Remark 2 at the end of this section), but this implication is also
strict. Let us show this with a counterexample.

Example 5 We analyse the constraint

. 0
0

0
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at the point
.

0. For any and any arbitrary orthogonal matrix 2 2, note that
has the form

if det 1 or if det 1 (16)

where 2 2 1. In both cases, we have

11 22
2 2 1.

That is, 11 and 22 are nonzero and linearly dependent, regardless of
and . Thus, seq-CRCQ holds at , although nondegeneracy does not. Note that weak-
nondegeneracy also fails at , in this example.

In Example 2, we verify that Robinson’s CQ does not imply seq-CRCQ; because other-
wise, it would also imply weak-CRCQ, contradicting the example. As for the converse, the
counterexample below shows that seq-CRCQ does not imply Robinson’s CQ either.

Example 6 Consider the constraint

. 1 2

2 1
0.

Clearly, the only feasible point is 0. Then, due to the linearity of , it is immediate
to see that Robinson’s CQ does not hold at 0. On the other hand, for any 2 and
any orthogonal matrix 2 2, note that regardless of the form of as in (16), we have

11 0, 22 0, and

11 22 .

Thus, seq-CRCQ holds at 0; see also the characterization of Proposition 6.

The same argument that is used to verify that nondegeneracy implies seq-CRCQ can also
be adapted to show that Robinson’s CQ implies seq-CPLD in view of [5, Prop. 5.1]. Then,
Example 6 tells us that seq-CPLD is actually strictly weaker than Robinson’s CQ.

Next, we will show that seq-CPLD (and, consequently, seq-CRCQ) is enough to establish
equivalence between AKKT and KKT with a small adaptation of the proof of Theorem 2.
Note that in view of Theorem 1, any condition that establishes that an AKKT point is also
a KKT point is, in particular, a CQ; in addition, such a CQ necessarily supports the global
convergence of any algorithm supported by AKKT to KKT points. This includes the algo-
rithms presented in Sections 4.1 and 4.2, and Yamashita, Yabe, and Harada’s primal-dual
interior point method for NSDP [32] – for details on the latter, see [3]. We should also stress
that this convergence result neither assumes compactness of the Lagrange multiplier set nor
that it is a singleton.

Theorem 5 Let be an AKKT point that satisfies seq-CPLD. Then, satisfies the
KKT conditions.

Proof Let , , and 0 be the AKKT sequences

from Definition 6. Let be the rank of and recall that 0 implies
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that and are simultaneously diagonalizable by some orthogonal matrix
.

1 , such that

0

1

1

and because all terms above are nonnegative it follows that, for every 1 , the
product 1 is equal to zero. Also, because 0 for

every 1 , then 0 and 1 0 for every such and

all large enough.
Hence, assuming without loss of generality that the columns of are ordered accord-

ingly to the eigenvalues of , the spectral decomposition of can be represented in the
format

1

.

Defining 1 for every , we obtain

1

0.

Also, for each , construct

.
(17)

where

. Diag 1 0

0 Diag 1
.

Note that and that the smallest eigenvalues of are simple, if
, meaning their associated eigenvectors are unique up to sign, when is large enough.

Consequently, is invariant to the choice of , for all such , and
every 1 . Define

.
for every and the rest of this

proof follows the exact same lines as the proof of Theorem 2.

Remark 2 The “perturbed versions” of weak-nondegeneracy and weak-Robinson’s CQ, in
the sense of Definition 7, are nondegeneracy and Robinson’s CQ, respectively. In other
words, nondegeneracy (respectively, Robinson’s CQ) holds at if, and only if, for
every sequence and every such that 0, there is some

Lim sup such that 1 is (positively)
linearly independent, where rank . For more details, see [5, Rem. 3.1].

We end this section with a characterization of seq-CRCQ and seq-CPLD without
sequences, which may be better suited for other applications.

Proposition 6 Let and let be the rank of .
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seq-CRCQ holds at if, and only if, or, for every , there exists
some neighborhood of such that for all 1 , we have that
if the family is linearly dependent, then remains linearly
dependent for every such that has orthonormal columns;
seq-CPLD holds at if, and only if, or, for every , there exists
some neighborhood of such that for all 1 , we have that if
the family is positively linearly dependent, then remains
linearly dependent for every such that has orthonormal columns.

Proof We will prove only the first statement since the second one follows analogously. Let
satisfy seq-CRCQ; by contradiction: suppose that there exists some , some

1 , and some sequence such that
is linearly dependent, but is linearly independent for every large .
Let be a matrix whose columns are orthogonal eigenvectors associated with
the largest eigenvalues of , define

.
, and consider as in (17). Set

.
and note that is invariant to when

is large, provided that . This contradicts seq-CRCQ.
Conversely, let and 0 be any sequences, and let 1

be any subset. For each , pick any and consider the sequence
, which is bounded. Let and be arbitrary, as long as , so

. Then, by hypothesis, there exists a neighborhood of such that if
is linearly dependent, then is also linearly dependent for all

large enough , since for all such .

5 Relationship withMetric Subregularity CQ

Besides convergence of algortihms, the CQs we present also have implications towards sta-
bility and error analysis. We make this link by means of establishing a relationship between
seq-CPLD (and seq-CRCQ) and the so-called metric subregularity CQ (also known as the
error bound CQ in NLP), defined in our SDP framework as follows:

Definition 8 (e.g., Def. 1.1 of [19]) We say that a feasible point of (NSDP) satisfies the
metric subregularity CQ when there exists some 0 and a neighborhood of such that

dist

for every . That is, when the set-valued mapping that maps
is metrically subregular at 0 graph . Here dist denotes the distance

between and , and graph is the graph of .

The metric subregularity CQ is implied by Robinson’s CQ, which in turn coincides
with a similar condition called metric regularity CQ, and it has relevant implications on
the stability analysis of optimization problems – for details, we refer to Ioffe’s survey [20,
21]. Besides, there are several works addressing the relationship between constant rank
constraint qualifications and the metric subregularity CQ in NLP, such as Minchenko and
Stakhovski [24], Andreani et al. [9], and others.

We will use a sufficient condition for metric subregularity CQ to hold, originally pro-
posed by Minchenko and Stakhovski [24, Thm. 2] for NLP problems. We made a simple
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extension of it to NSDP, which seems not to have been done before in the literature.
It is worth mentioning, nevertheless, that the proof we present is essentially the same
as the original one, with some minor adaptations to the NSDP context via Moreau’s
decomposition.

Proposition 7 Let and assume that is twice continuously differentiable around .
For every given , let denote the set of Lagrange multipliers of the problem of
minimizing subject to 0, . If there exist numbers 0 and 0
such that cl 0 for every , then satisfies metric
subregularity CQ.

Proof Let and be as described in the hypothesis. Following the proof of [24, Thm. 2],
note that if int , then it trivially satisfies metric subregularity CQ, so we will assume
that bd . Let 0 0 be such that

4

0

2 0

for all and all cl 0 2 , where 2 is the second-order derivative
of at and 2 is its adjoint as a linear operator 2 . Let

0 2 be such that . Although may not be well-defined as a function
of , we will use the notation to denote an arbitrary minimizer of subject
to 0. Then, by definition, we have that 0 2, so

0 2 and, therefore, 0. Let
be defined as

.

and note that
2

and

2 2 2 4

0

2 0

whenever and cl 0 2 . Thus, is convex with respect to its
first variable , for every cl 0 2 . Now let us fix an arbitrary

cl 0 , which is nonempty by hypothesis. Recall that, by definition of the set
, we have that is a Lagrange multiplier of the projection problem associated with

the point . Hence, 2 is a Lagrange multiplier of the problem:

Minimize
.

subject to 0 (18)

associated with the point , which is a local minimizer of since it is elementary to
check that for every , by the definition of projection, with
equality at . Writing the KKT conditions for problem (18) at with respect to
the Lagrange multiplier 2 cl 0 2 , we obtain

2
2 0 (19)
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with 2 0, which yields

2
2

2
(20)

after taking inner products of both sides of (19) with . The middle inequality
follows from the definition of adjoint and the convexity of in the first variable.
Taking Moreau’s decomposition for , we obtain from (20) that

2 2 2

because 0, which is self-dual, so 2 0; then

dist 2 2 .

Since was chosen arbitrarily, set
.

2 and we are done.

Now, to compare metric subregularity CQ with seq-CRCQ and seq-CPLD, we first need
to show that they are robust, in the sense they are preserved in a neighborhood of the point
of interest.

Proposition 8 If seq-CPLD holds at , then there exists a neighborhood of such that
seq-CPLD also holds for every . Moreover, the same property holds for seq-
CRCQ.

Proof If Ker 0 , the result follows trivially, so let us assume , where
is the rank of . Suppose that the statement of the theorem is false, then there exists
a sequence such that seq-CPLD does not hold at any . Let us denote
by the rank of , and note that we can assume, without loss of generality, that

for all (by the pigeonhole principle). Notice that in order to state seq-CPLD
at a point , we rely on the vectors defined in (5), which depend on the rank of ,
even though we evaluate these vector also at . Hence, when stating seq-CPLD at

, we make this dependence on the rank of explicit by using instead of
, which is used when stating seq-CPLD at . That is, since seq-CPLD does not hold

at , there exists some , some 1 , and some sequence

such that is positively linearly dependent,

but is linearly independent for every . We can assume that is

the same, say , for every , by the pigeonhole principle. For each large enough so that
is well-defined, let 1 be the orthonormal eigenvectors of

such that the following inclusion holds:

ext
.

1 .

Since ext ext for every , we can assume that ext for some
. Denote by the vectors defined by (5) at . Hence, since 1

(as a direct consequence of ), for each , it holds that

ext for all . Consequently, we have that ext is also positively

linearly dependent for every large , which implies that the same holds for .
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On the other hand, for each , let be the projection matrix onto the orthogonal
complement of the space spanned by the columns of and consider the extended matrix

ext
.

gramschmidt 1

where gramschmidt refers to the outcome of the Gram-Schmidt orthonormalization
procedure applied to the columns of . Notice that since 1 , for each

, it holds that ext for all .

Now, for each , let be such that lim and notice that

and ext is linearly independent for every

. Moreover, since ext ext , it follows (passing to a subsequence if

necessary) that ext for some whose first columns coin-

cide with those of . Consequently, , which is positively

linearly dependent, contradicting seq-CPLD.
The proof for seq-CRCQ is completely analogous.

Now, using Proposition 8, it is possible to prove that seq-CPLD (and seq-CRCQ) implies
metric subregularity CQ. We shall do this in the same style as Andreani et al. [9]:

Theorem 9 If seq-CPLD holds at and is twice differentiable around , then
satisfies metric subregularity CQ.

Proof Suppose that metric subregularity CQ does not hold at . In view of Proposition 7,
there exist sequences and , , such that
cl 0 for every .

Now let be such that for each and note that . Indeed,
even if is not uniquely defined, we have that dist 0
because and, thus, 0. By the
previous proposition, satisfies seq-CPLD for all large enough. Consequently, there
exists a sequence such that

0

and 0 for every , which implies that 0 for every
1 and every . Let be an arbitrary matrix that diagonalizes and let
be the part of it that corresponds to the smallest eigenvalues of . So

1

0. (21)

Again, by Caratheodory’ lemma (cf. Lemma 1) and the pigeonhole principle, we obtain
a set 1 such that is linearly independent and

1 for every where 0 for all
. Then, recall from the definition that , so . Let

.
max and divide (21) by to obtain that is linearly

dependent for every limit point of , which contradicts seq-CPLD at .
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Remark 3 A consequence of Theorem 5 together with [4, Lem. 3] is that the fulfilment of
seq-CPLD at a point implies that the set

.

is closed, where is the normal cone to at . Moreover, following the
discussion in [6, Rem. 5.1] we see that the closedness of is the weakest condition
that ensures existence of Lagrange multipliers for the solutions of (Lin-QP) for any fixed

. Combining these with Proposition 8 leads us to conclude that if seq-CPLD holds at a
solution , then is closed for every in a neighborhood of . Thus, if 0
is a feasible point (not necessarily a solution) of subproblem (Lin-QP) of Algorithm 2, then
its Step 1 is well-defined.

6 Conclusion

There are few constraint qualifications available for NSDP, and as far as we know, the use
of CQs in the global convergence of algorithms is somewhat limited to nondegeneracy and
Robinson’s CQ. In contrast, several constraint qualifications have been defined for NLP
over the past decades, mostly improving the global convergence of algorithms beyond the
case when the set of Lagrange multipliers is bounded. We are in a path to extend these CQs
to conic contexts, such as NSDP, that started in [8]. In fact, the results of this paper can
be considered a significant improvement of [8] based on our previous developments in [5].
Our main contribution is two-fold: first, we present a new weak CQ, called weak-CPLD,
which was used to prove global convergence of an external penalty method to station-
ary points. Then, by introducing certain perturbations in the definition of weak-CPLD, we
obtained a slightly stronger CQ, called seq-CPLD, that is also strictly weaker than Robin-
son’s CQ but can still be used to prove global convergence of a larger class of algorithms
(that encompasses, for instance, augmented Lagrangian, sequential quadratic programming,
and interior-point methods) to stationary points. Moreover, we showed that seq-CPLD, just
as Robinson’s CQ, has a property related with the ability to compute error bounds in the
vicinity of the points that satisfy it. Similar extensions of CRCQ with equally interesting
properties were also obtained along the way. We believe that several other applications of
constant rank CQs will appear in the literature, such as the computation of the derivative of
the value function of a parameterized NSDP problem and the computation of second-order
necessary optimality conditions. In NLP, constant rank CQs are used to define a strong
second-order necessary optimality condition that depends on a single Lagrange multiplier,
rather than on the full set of Lagrange multipliers, which we believe will be the case for
conic problems as well. After a first version of this paper appeared, this last objective has
been achieved with a different, more geometric, definition of CRCQ [6]. It is also the case
that constant rank conditions provide the adequate assumptions for guaranteeing global
convergence of algorithms to second-order stationary points, which has been only partially
considered in the conic programming literature in [18].

This paper leaves several interesting open questions that can be addressed in future
works, such as the use of weak-CRCQ and weak-CPLD in algorithms other than external
penalty methods, and the analysis of some stability properties under the conditions intro-
duced in this manuscript. Some interesting results based on this paper were obtained in the
context of second-order cone programming, where some applications of weak-CQs were
already obtained [7]. It is also worth recalling that although our conditions were defined
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Fig. 1 Relationship among the new constraint qualifications and some of the existing ones

by means of sequences, which seems appropriate when talking about convergence of algo-
rithms, we also provided characterizations of them without sequences, in a more classical
way, which should foster new applications.

The relationship among the CQs we presented in this paper, and existing ones, is summa-
rized in the following diagram, where (solid) arrows represent (strict) implications, existing
CQs are in blue boxes, and new CQs are in green boxes (Fig. 1).
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