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A SEQUENTIAL OPTIMALITY CONDITION RELATED TO THE
QUASI-NORMALITY CONSTRAINT QUALIFICATION AND

ITS ALGORITHMIC CONSEQUENCES\ast 
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Abstract. In the present paper, we prove that the augmented Lagrangian method converges to
KKT points under the quasi-normality constraint qualification, which is associated with the external
penalty theory. An interesting consequence is that the Lagrange multiplier estimates computed by
the method remain bounded in the presence of the quasi-normality condition. In order to establish
a more general convergence result, a new sequential optimality condition for smooth constrained
optimization, called PAKKT, is defined. The new condition takes into account the sign of the dual
sequence, constituting an adequate sequential counterpart to the (enhanced) Fritz John necessary op-
timality conditions proposed by Hestenes, and later extensively treated by Bertsekas. PAKKT points
are substantially better than points obtained by the classical approximate KKT (AKKT) condition,
which has been used to establish theoretical convergence results for several methods. In particular,
we present a simple problem with complementarity constraints such that all its feasible points are
AKKT, while only the solutions and a pathological point are PAKKT. This shows the efficiency of
the methods that reach PAKKT points, particularly the augmented Lagrangian algorithm, in such
problems. We also provide the appropriate strict constraint qualification associated with the PAKKT
sequential optimality condition, called PAKKT-regular, and we prove that it is strictly weaker than
both quasi-normality and the cone continuity property. PAKKT-regular connects both branches of
these independent constraint qualifications, generalizing all previous theoretical convergence results
for the augmented Lagrangian method in the literature.
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1. Introduction. We will consider the general constrained nonlinear problem

(P) min
x

f(x) subject to x \in X,

where f : \BbbR n \rightarrow \BbbR and X is the feasible set composed of equality and inequality
constraints of the form

X = \{ x | h(x) = 0, g(x) \leq 0\} ,
with h : \BbbR n \rightarrow \BbbR m and g : \BbbR n \rightarrow \BbbR p. We assume that the functions f , h, and g are
continuously differentiable in \BbbR n. Given x\ast \in X we denote the set of active inequality
constraints at x\ast by Ig(x

\ast ) = \{ j \in \{ 1, . . . , p\} | gj(x\ast ) = 0\} .
Several of the more traditional nonlinear programming methods are iterative:

given an iterate xk, they try to find a better approximation xk+1 of the solution.
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In this paper we consider the augmented Lagrangian method, a popular technique
in constrained optimization. The classical augmented Lagrangian method uses an
iterative sequence of subproblems that are considerably easier to solve. In each sub-
problem, with a fixed penalty parameter \rho > 0 and Lagrange multiplier estimates
\lambda \in \BbbR m and \mu \in \BbbR p, \mu \geq 0, an augmented Lagrangian function is approximately
minimized. Once the approximate solution is found, the penalty parameter \rho and
the multiplier estimates are updated, and a new iteration starts. Specifically, we con-
sider the Powell--Hestenes--Rockafellar (PHR) augmented Lagrangian function that,
for problem (P), takes the form

(1) L\rho (x, \lambda , \mu ) = f(x) +
\rho 

2

\left(  m\sum 
i=1

\biggl( 
hi(x) +

\lambda i

\rho 

\biggr) 2

+

p\sum 
j=1

max

\biggl\{ 
0, gj(x) +

\mu j

\rho 

\biggr\} 2
\right)  ,

where x \in \BbbR n, \rho > 0, \lambda \in \BbbR m, and \mu \in \BbbR p, \mu \geq 0. This is the most widely used
augmented Lagrangian function in practical implementations (see [14] for a numerical
comparison between several of them). However, other functions were also employed;
see, for example, [11, 18] and references therein. The choice of (1) is justified by its
intrinsic relation to the external penalty theory, where quasi-normality, a very general
constraint qualification proposed by Hestenes [22], plays an important role. This is
the central issue in this work.

In the last few years, special attention has been devoted to so-called sequential
optimality conditions for nonlinear constrained optimization (see, for example, [3, 7,
9, 8, 15, 25]). They are related to the stopping criteria of algorithms, and aim to unify
their theoretical convergence results. In particular, they have been used to study the
convergence of the augmented Lagrangian method (see [15] and references therein).
An important feature of sequential optimality conditions is that they are necessary
for optimality: a local minimizer of (P) verifies such a condition independently of
the fulfillment of any constraint qualification. One of the most popular sequential
optimality conditions is the approximate Karush--Kuhn--Tucker (AKKT) condition,
defined in [3]. We say that x\ast \in X satisfies the AKKT condition if there are sequences
\{ xk\} \subset \BbbR n, \{ \lambda k\} \subset \BbbR m, and \{ \mu k\} \subset \BbbR p, \mu k \geq 0, such that

lim
k\rightarrow \infty 

xk = x\ast ,(2a)

lim
k\rightarrow \infty 

\| \nabla xL(x
k, \lambda k, \mu k)\| = 0,(2b)

lim
k\rightarrow \infty 

\| min\{  - g(xk), \mu k\} \| = 0,(2c)

where L(\cdot ) is the usual Lagrangian function associated with (P). Such kinds of points
x\ast will be called AKKT points and \{ xk\} an AKKT sequence.

Of course, when it is proved that an AKKT point is in fact a KKT point under
a certain constraint qualification (CQ), all the algorithms that reach AKKT points,
such as the augmented Lagrangian method [15], have their theoretical convergence
automatically established with the same CQ (this is exactly what we mean when we
say that a sequential optimality condition unifies convergence results). In the last
few years, it has been proved that AKKT points are stationary points under different
constraint qualifications such as constant positive linear dependence (CPLD) [6, 27],
relaxed constant positive linear dependence (RCPLD) [4] and the constant positive
generator (CPG) [5]. Finally, it was shown that the cone continuity property (CCP)
(also called the AKKT-regular CQ [9]) is the least stringent constraint qualification
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with this property [8]. All these CQs deal with rank and/or positive linear dependence
assumptions. Pseudonormality and quasi-normality CQs [22, 12], on the contrary,
have a different nature. They impose a control on the multipliers around the point of
interest. In this paper we define a new constraint qualification, called PAKKT-regular,
that unifies both types of such CQs. In other words, we prove that PAKKT-regular
is strictly weaker than both quasi-normality and CCP; see Figure 4. The interest in
this new CQ is that it is associated with the convergence of a practical augmented
Lagrangian method, as we will discuss later.

Despite the clear similarities between the PHR augmented Lagrangian and the
pure external penalty methods, an interesting topic that is still unsolved is the con-
vergence of the augmented Lagrangian method under the quasi-normality CQ. The
authors of [8] show that CCP has no relation to quasi-normality or, in particular,
that there are examples where quasi-normality and the AKKT condition hold but
KKT does not. In this sense, it is not possible to answer the proposed question using
only the AKKT condition. Indeed, it is surprising to note that the PHR augmented
Lagrangian method, which uses the quadratic penalty-like function (1), naturally gen-
erates AKKT points, but it is not trivial to understand how it handles the sign of the
multipliers, as performed by the external penalty method, which generates multiplier
estimates with the same sign as their corresponding constraints.

In the present paper we address the previous question by proving that the PHR
augmented Lagrangian method converges under the new PAKKT-regular CQ (and,
consequently, under quasi-normality). To the best of our knowledge, this is the first
time it has been proved that a practical algorithm converges under quasi-normality.
In particular, we show that their feasible accumulation points are in fact stronger
than AKKT points. We call these points positive approximate Karush--Kuhn--Tucker
(PAKKT), for which PAKKT-regular is the least stringent associated constraint qual-
ification that ensures KKT. More generally, the theoretical convergence of every
method that generate AKKT points can be improved if we are able to show that
the method actually generates PAKKT points. As an illustration, let us consider the
problem

(3) min
x

(x1  - 1)2 + (x2  - 1)2 subject to x1, x2 \geq 0, x1x2 \leq 0,

for which (1, 0) and (0, 1) are the unique solutions. We affirm that every feasible
point \=x is AKKT. In fact, we can suppose without loss of generality that \=x2 = 0.
If \=x1 > 0, then it is straightforward to verify that \=x is an AKKT point with the
sequences defined by xk = (\=x1, 2(1 - \=x1)/k) and \mu k = (0, k\=x1  - 2, k) for all k \geq 2/\=x1.
If \=x1 = 0, it is sufficient to take xk = (2/k, 2/k) and \mu k = (0, 0, k) for all k \geq 1.
However, only (1, 0), (0, 1), and (0, 0) are PAKKT points because, in particular, all
feasible points, excluding the origin, satisfy the quasi-normality CQ. Thus, while
a pure ``AKKT method"" may reach any point, a method that ensures convergence
to PAKKT points will avoid most of the undesirable ones. Problem (3) belongs
to the class of mathematical programs with complementarity constraints (MPCCs).
We make further comments about these problems in subsection 4.1, revisiting and
extending previously known results about the convergence of augmented Lagrangian
methods [10, 23]. Furthermore, we prove that the sequence of Lagrange multiplier
estimates generated by the method applied to the general problem (P) is bounded
whenever the quasi-normality condition holds at the accumulation point. This is
particularly true for MPCCs under the so-called MPCC--quasi-normality CQ.
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The key to defining the PAKKT condition is to take into account the sign of
Lagrange multipliers as in the Fritz John necessary conditions described in [12] (see
also [22]). Specifically, we rely on the following result.

Theorem 1.1 (see [12, Proposition 3.3.5]). Let x\ast be a local minimizer of prob-
lem (P). Then there are \sigma \in \BbbR +, \lambda \in \BbbR m, and \mu \in \BbbR p, \mu \geq 0, such that

1. \sigma \nabla f(x\ast ) +
\sum m

i=1 \lambda i\nabla hi(x
\ast ) +

\sum p
j=1 \mu j\nabla gj(x\ast ) = 0,

2. (\sigma , \lambda , \mu ) \not = 0,
3. in every neighborhood \scrB (x\ast ) of x\ast there is an x \in \scrB (x\ast ) such that \lambda ihi(x) > 0

for all i with \lambda i \not = 0 and \mu jgj(x) > 0 for all j with \mu j > 0.

We will refer to Theorem 1.1 as the enhanced Fritz John (necessary) conditions.
We call a point x\ast that fulfills all the three items of Theorem 1.1 an enhanced Fritz
John (EFJ) point. We note that an EFJ point is a KKT point whenever \sigma > 0.
Conditions 1 and 2 symbolize the classical Fritz John result about stationary points.
Condition 3 stands for the existence of sequences which connect the sign of the mul-
tiplier with the sign of the associated constraint in a neighborhood of the stationary
point. Enhanced Fritz John conditions were used previously to generalize some clas-
sical results [13, 31].

This paper is organized as follows. In section 2 we describe the new sequen-
tial optimality condition PAKKT and its associated strict constraint qualification
PAKKT-regular. In section 3 we establish the relationship between PAKKT and
other sequential optimality conditions in the literature. Relations of PAKKT-regular
with other known constraint qualifications are included in section 3. In section 4
we present the global convergence of the augmented Lagrangian method using the
PAKKT-regular CQ. The strength of the PAKKT condition is discussed in subsec-
tion 4.1, and the boundedness of the dual sequences generated by the augmented
Lagrangian method is treated in subsection 4.2. Conclusions and lines for future
research are given in section 5.

Notation.
\bullet \BbbR + = \{ t \in \BbbR | t \geq 0\} , \| \cdot \| denotes an arbitrary vector norm, \| \cdot \| \infty the
supremum norm, and \| \cdot \| 2 the Euclidean norm.

\bullet vi is the ith component of the vector v.
\bullet For all y \in \BbbR n, y+ = (max\{ 0, y1\} , . . . ,max\{ 0, yn\} ).
\bullet If K = \{ k0, k1, k2, . . .\} \subset \BbbN (kj+1 > kj), we write limk\in K yk = limj\rightarrow \infty ykj .
In particular, limk y

k = limk\in \BbbN yk.
\bullet If \{ \gamma k\} \subset \BbbR , \gamma k > 0, and \gamma k \rightarrow 0, we write \gamma \downarrow 0.
\bullet We define the ``sign function"" sgn a, putting sgn a = 1 if a > 0 and sgn a =  - 1
if a < 0. We have sgn (a \cdot b) = sgn a \cdot sgn b.

2. The positive approximate Karush--Kuhn--Tucker condition. In this
section we define the positive approximate Karush--Kuhn--Tucker condition and we
show that it is a genuine necessary optimality condition.

Definition 2.1. We say that x\ast \in X is a positive approximate KKT (PAKKT)
point if there are sequences \{ xk\} \subset \BbbR n, \{ \lambda k\} \subset \BbbR m, and \{ \mu k\} \subset \BbbR p

+ such that

lim
k

xk = x\ast ,(4)

lim
k
\| \nabla xL(x

k, \lambda k, \mu k)\| = 0,(5)

lim
k
\| min\{  - g(xk), \mu k\} \| = 0,(6)
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\lambda k
i hi(x

k) > 0 if lim
k

| \lambda k
i | 

\delta k
> 0,(7)

\mu k
j gj(x

k) > 0 if lim
k

\mu k
j

\delta k
> 0,(8)

where \delta k = \| (1, \lambda k, \mu k)\| \infty . In this case, \{ xk\} is called a PAKKT sequence.

Expressions (4)--(6) are related to the KKT conditions, and they are used in the
approximate KKT (AKKT) optimality condition presented in the introduction. Ex-
pressions (7) and (8) aim to control the sign of Lagrange multipliers, justifying the
name of our new condition. They are related to the enhanced Fritz John necessary op-
timality conditions described in the introduction (Theorem 1.1). We will see that (7)
and (8) give an adequate counterpart for the third item of Theorem 1.1 in the sequen-
tial case. As always | \lambda k

i | /\delta k, \mu k
j /\delta k \in [0, 1], and we can suppose, taking a subsequence

if necessary, that these limits exist. It is important to note that item 3 of Theorem 1.1
is sufficient for complementary slackness, but the sequential counterpart (7) and (8)
is not. The next example shows that the complementary slackness at the limit x\ast 

may fail without condition (6) if \{ \delta k\} is unbounded.
Example 1. Let us consider the problem

min
x
 - x1 + x2 subject to x2

2 = 0, x1  - 1 \leq 0,

for which

\nabla xL(x, \lambda , \mu ) =

\biggl[ 
 - 1
1

\biggr] 
+ \lambda 

\biggl[ 
0

2x2

\biggr] 
+ \mu 

\biggl[ 
1
0

\biggr] 
.

The point x\ast = (0, 0) satisfies (4), (5), (7), and (8) with, for example, the sequences
defined by xk = (0, - 1/k), \lambda k = k/2, and \mu k = 1 for all k \geq 1. In fact, we have
xk \rightarrow (0, 0), \nabla xL(x

k, \lambda k, \mu k) = 0, \lambda k(xk
2)

2 = 1/(2k) > 0 with limk | \lambda k| /\delta k = 1, and
limk \mu 

k/\delta k = 0. But, taking a subsequence if necessary, any sequence satisfying (4),
(5), (7), and (8) is such that | \lambda k| \rightarrow \infty and \mu k \rightarrow 1. Thus limk \mu 

k/\delta k = 0, but
min\{  - (xk

1  - 1), \mu k\} \rightarrow 1.

Theorem 2.2. PAKKT is a necessary optimality condition.

Proof. Let x\ast be a local minimizer of (P). Then x\ast is the unique global minimizer
of the problem

min
x

f(x) + 1/2\| x - x\ast \| 22 subject to h(x) = 0, g(x) \leq 0, \| x - x\ast \| \leq \alpha 

for a certain \alpha > 0. Let xk be a global minimizer of the penalized problem

min
x

f(x) + 1/2\| x - x\ast \| 22 +
\rho k
2

\bigl[ 
\| h(x)\| 22 + \| g(x)+\| 22

\bigr] 
subject to \| x - x\ast \| \leq \alpha ,

\rho k > 0, which exists by the continuity of the objective function and compactness of
the feasible set. We suppose that \rho k \rightarrow \infty . From the external penalty theory, xk \rightarrow x\ast 

and thus (4) is satisfied. We have \| xk  - x\ast \| < \alpha for all k sufficiently large (let us say
for all k \in K), and from the optimality conditions of the penalized problem we obtain

lim
k\in K
\nabla xL(x

k, \lambda k, \mu k) = lim
k\in K

\bigl[ 
\nabla f(xk) +\nabla h(xk)\lambda k +\nabla g(xk)\mu k

\bigr] 
=  - lim

k\in K
(xk - x\ast ) = 0,

where, for each k \in K,

\lambda k = \rho kh(x
k) and \mu k = \rho kg(x

k)+ \geq 0.
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Therefore (5) and (6) are satisfied. If \mu k
i > 0, k \in K, then gi(x

k) > 0 and hence
\mu k
i gi(x

k) = \rho k[gi(x
k)]2 > 0. Analogously, if \lambda k

i \not = 0, k \in K, then hi(x
k) \not = 0 and

hence \lambda k
i hi(x

k) = \rho k[hi(x
k)]2 > 0. Thus (7) and (8) are fulfilled, independently of

the limits of the dual sequences.

We say that SCQ is a strict constraint qualification for the sequential optimality
condition A if

A + SCQ implies KKT
(see [15]). Since all sequential optimality conditions are satisfied in any local minimizer
independently of the fulfillment of CQs, an SCQ is in fact a constraint qualification.
The reciprocal is not true. For instance, Abadie's CQ [1] or quasi-normality [22] are
CQs that are not SCQs for the AKKT sequential optimality condition. On the other
hand, the strict constraint qualification SCQ provides a measure of the quality of the
sequential optimality condition A. Specifically, A is better as far as SCQ is less strin-
gent (weaker). In [8], the authors presented the weakest strict constraint qualification
associated with AKKT, called the cone continuity property (CCP). Recently [9], CCP
was renamed as ``AKKT-regular"" and the weakest SCQs related to the SAKKT [21],
CAKKT [7], and AGP [25] conditions were established.

In this section, we provide the weakest SCQ for the PAKKT condition, which
we call PAKKT-regular. For this purpose, we define for each x\ast \in X and x \in \BbbR n,
\alpha , \beta \geq 0, the set

K+(x, \alpha , \beta )

=

\left\{     
m\sum 
i=1

\lambda i\nabla hi(x) +
\sum 

j\in Ig(x\ast )

\mu j\nabla gj(x)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\lambda ihi(x) \geq \alpha if | \lambda i| > \beta \| (1, \lambda , \mu )\| \infty ,

\mu jgj(x) \geq \alpha if \mu j > \beta \| (1, \lambda , \mu )\| \infty ,

\lambda \in \BbbR m, \mu j \in \BbbR +, j \in Ig(x
\ast )

\right\}     .

Note that the KKT conditions for (P) can be written as  - \nabla f(x\ast ) \in K+(x
\ast , 0, 0).

Given a multifunction \Gamma : \BbbR s \rightrightarrows \BbbR q, the sequential Painlev\'e--Kuratowski ou-
ter/upper limit of \Gamma (z) as z \rightarrow z\ast is denoted by

(9) lim sup
z\rightarrow z\ast 

\Gamma (z) = \{ y\ast \in \BbbR q | \exists (zk, yk)\rightarrow (z\ast , y\ast ) with yk \in \Gamma (zk)\} 

(see [28]). We say that \Gamma is outer semi-continuous at z\ast if lim supz\rightarrow z\ast \Gamma (z) \subset \Gamma (z\ast ).
We define the PAKKT-regular condition, which imposes an outer semi-continuity--like
condition on the multifunction (x, \alpha , \beta ) \in \BbbR n\times \BbbR +\times \BbbR + \rightrightarrows K+(x, \alpha , \beta ). Analogously
to (9), we consider the following set:

lim sup
x\rightarrow x\ast , \alpha \downarrow 0, \beta \downarrow 0

K+(x, \alpha , \beta )

= \{ y\ast \in \BbbR n | \exists (xk, yk)\rightarrow (x\ast , y\ast ), \alpha k \downarrow 0, \beta k \downarrow 0 with yk \in K+(x
k, \alpha k, \beta k)\} .

Definition 2.3. We say that x\ast \in X satisfies the PAKKT-regular condition if

lim sup
x\rightarrow x\ast , \alpha \downarrow 0, \beta \downarrow 0

K+(x, \alpha , \beta ) \subset K+(x
\ast , 0, 0).

Next we prove the main result of this section, which guarantees that PAKKT-
regular is the weakest SCQ for the PAKKT sequential optimality condition.

Theorem 2.4. If x\ast is a PAKKT point that fulfills the PAKKT-regular condition,
then x\ast is a KKT point. Conversely, if for every continuously differentiable function
f the PAKKT point x\ast is also KKT, then x\ast satisfies the PAKKT-regular condition.
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Proof. If x\ast is a PAKKT point, there are sequences \{ xk\} \subset \BbbR n, \{ \lambda k\} \subset \BbbR m, and
\{ \mu k\} \subset \BbbR p

+, k \geq 1, such that xk \rightarrow x\ast , (6)--(8) hold, and \nabla f(xk) + \omega k \rightarrow 0, where

\omega k =

m\sum 
i=1

\lambda k
i\nabla hi(x

k) +

p\sum 
j=1

\mu k
j\nabla gj(xk).

By (6) we can suppose without loss of generality that \mu k
j = 0 whenever j /\in Ig(x

\ast ).

As in the PAKKT definition, we consider \delta k = \| (1, \lambda k, \mu k)\| \infty . Let us define the sets
I+ = \{ i \in \{ 1, . . . ,m\} | limk | \lambda k

i | /\delta k > 0\} and J+ = \{ j \in Ig(x
\ast ) | limk \mu 

k
j /\delta k > 0\} , and

for each k we take

\alpha k = min

\biggl\{ 
1

k
, min
i\in I+
\{ \lambda k

i hi(x
k)\} , min

j\in J+

\{ \mu k
j gj(x

k)\} 
\biggr\} 

and

\beta k = max

\Biggl\{ 
1

k
, max

i/\in I+

| \lambda k
i | 

\delta k
, max
j /\in J+

\mu k
j

\delta k

\Biggr\} 
+

1

k
.

We note that \alpha k \downarrow 0, \beta k \downarrow 0, and \omega k \in K+(x
k, \alpha k, \beta k) for all k large enough. As x\ast 

fulfills the PAKKT-regular condition, we have

 - \nabla f(x\ast ) = lim
k

\omega k \in lim sup
k

K+(x
k, \alpha k, \beta k) \subset lim sup

x\rightarrow x\ast , \alpha \downarrow 0, \beta \downarrow 0
K+(x, \alpha , \beta )

\subset K+(x
\ast , 0, 0),

that is, x\ast is a KKT point. This proves the first statement.
Now let us show the converse. Let w\ast \in lim supx\rightarrow x\ast , \alpha \downarrow 0, \beta \downarrow 0 K+(x, \alpha , \beta ). Then

there are sequences \{ xk\} \subset \BbbR n, \{ \omega k\} \subset \BbbR n, \{ \alpha k\} \subset \BbbR , and \{ \beta k\} \subset \BbbR such that
xk \rightarrow x\ast , \omega k \rightarrow \omega \ast , \alpha k \downarrow 0, \beta k \downarrow 0, and \omega k \in K+(x

k, \alpha k, \beta k) for all k. Furthermore,

for each k there are \lambda k \in \BbbR m and \mu k \in \BbbR | Ig(x\ast )| 
+ such that

(10) \omega k =

m\sum 
i=1

\lambda k
i\nabla hi(x

k) +
\sum 

j\in Ig(x\ast )

\mu k
j\nabla gj(xk).

We define f(x) =  - (\omega \ast )tx. If limk | \lambda k
i | /\delta k > 0, then | \lambda k

i | > \beta k\delta k for all k sufficiently
large (the same happens with \mu ). In other words, the control over the sign of the multi-
pliers performed by (7) and (8) is encapsulated in the expression \omega k \in K+(x

k, \alpha k, \beta k).
Therefore, as \nabla f(xk) +\omega k =  - \omega \ast +\omega k \rightarrow 0, we conclude that x\ast is a PAKKT point.
By hypothesis, x\ast is a KKT point, and hence limk \omega 

k =  - \nabla f(x\ast ) \in K+(x
\ast , 0, 0).

This concludes the proof.

As a consequence of Theorems 2.2 and 2.4, it follows that any minimizer of (P)
satisfying the PAKKT-regular condition is a KKT point. Equivalently, we obtain the
next result.

Corollary 2.5. PAKKT-regular is a constraint qualification.

As expected, every KKT point is a PAKKT point (see Lemma 2.6 below). How-
ever, an observation must be taken into account: consider, for example, the two
constraints g1(x) = x \leq 0, g2(x) =  - x \leq 0, and the constant objective function
f(x) = 1. The origin is a KKT point with multipliers \mu 1 = \mu 2 = 1. In this case,
any point x \not = 0 near the origin satisfies \mu 1g1(x) < 0 or \mu 2g2(x) < 0. In order words,
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this situation is not suitable for the PAKKT condition. But note that the Lagrange
multipliers are not unique in this example. Fortunately, a KKT point always admits
Lagrange multipliers with adequate signs for the PAKKT condition.

Lemma 2.6. Every KKT point is a PAKKT point.

Proof. Let x\ast be a KKT point with associated multipliers \lambda and \mu . We will show
that there is a PAKKT sequence associated with x\ast . In fact, let us consider the sets
I and J of indexes of nonzero multipliers \lambda i and \mu j , respectively. If I = J = \emptyset , then
a PAKKT sequence is simply xk = x\ast with \lambda k = 0 and \mu k = 0 for all k. We then
suppose that at least one of the sets I and J are nonempty. By [4, Lemma 1] there
are sets \scrI \subset I, \scrJ \subset J , and vectors \^\lambda \scrI , \^\mu \scrJ such that

\nabla f(x\ast ) +
\sum 
i\in \scrI 

\^\lambda i\nabla hi(x
\ast ) +

\sum 
j\in \scrJ 

\^\mu j\nabla gj(x\ast ) = 0,

\^\lambda i \not = 0 for all i \in \scrI , \^\mu j > 0 for all j \in \scrJ , and the set of corresponding gradients

\{ \nabla hi(x
\ast ),\nabla gj(x\ast ) | i \in \scrI , j \in \scrJ \} 

is linearly independent. In particular, taking \^\lambda i = 0, i \not \in \scrI , and \^\mu j = 0, j \not \in \scrJ , the
vectors \^\lambda and \^\mu are KKT multipliers for x\ast . We then define the constant sequences

\lambda k = \^\lambda and \mu k = \^\mu 

for all k. Note that the only multipliers that are taken into account in expressions (7)
and (8) are those with indexes in \scrI and \scrJ .

Now, we will show that there exists a (PAKKT) sequence \{ xk\} , converging to x\ast ,

such that (7) and (8) are satisfied for \{ \lambda k = \^\lambda \} and \{ \mu k = \^\mu \} . To do this, we consider
for \gamma > 0, i \in \scrI , and j \in \scrJ the sets

\scrH \gamma 
i =

\left\{       y \in \BbbR n\setminus \{ x\ast \} 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\nabla hi(x

\ast )t
y  - x\ast 

\| y  - x\ast \| 2
\geq \gamma if \^\lambda i > 0,

\nabla hi(x
\ast )t

y  - x\ast 

\| y  - x\ast \| 2
\leq  - \gamma if \^\lambda i < 0

\right\}       
and

\scrG \gamma j =

\biggl\{ 
y \in \BbbR n\setminus \{ x\ast \} 

\bigm| \bigm| \bigm| \bigm| \nabla gj(x\ast )t
y  - x\ast 

\| y  - x\ast \| 2
\geq \gamma 

\biggr\} 
.

Note that these sets are nonempty for all \gamma > 0 small enough, since \nabla gj(x\ast )+x\ast \in \scrG \gamma j
for all 0 < \gamma \leq \| \nabla gj(x\ast )\| 2 (analogously for \scrH \gamma 

i ). We affirm that for each j \in \scrJ and
\gamma > 0 there is an open ball \scrB j(x\ast ) with radius \omega j(\gamma ) > 0, centered at x\ast , such that

(11) gj(y) > 0 \forall y \in \scrG \gamma j \cap \scrB j(x
\ast ).

In fact, by the smoothness of function gj , we can write

gj(y) = gj(x
\ast ) +\nabla gj(x\ast )t(y  - x\ast ) + rj(y  - x\ast ),

where rj(y  - x\ast )/\| y  - x\ast \| 2 \rightarrow 0 when y \rightarrow x\ast . As j \in \scrJ \subset Ig(x
\ast ), it follows that

gj(y)

\| y  - x\ast \| 2
= \nabla gj(x\ast )t

y  - x\ast 

\| y  - x\ast \| 2
+

rj(y  - x\ast )

\| y  - x\ast \| 2
\geq \gamma 

2
> 0
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for all y \in \scrG j close to x\ast . Analogously, for each i \in \scrI and \gamma > 0, there is an open ball
\scrB i(x\ast ) with radius \omega i(\gamma ) > 0, centered at x\ast , such that

(12) hi(y)

\biggl\{ 
> 0 if \^\lambda i > 0,

< 0 if \^\lambda i < 0
\forall y \in \scrH \gamma 

i \cap \scrB i(x
\ast ).

Finally, it is sufficient to show that for some \gamma > 0, the intersection

(13)

\Biggl( \bigcap 
i\in \scrI 
\scrH \gamma 

i

\Biggr) 
\cap 

\left(  \bigcap 
j\in \scrJ 
\scrG \gamma j

\right)  
contains points arbitrarily close to x\ast , since in this case any sequence \{ xk\} in this
intersection converging to x\ast will be a PAKKT sequence associated with the constant
sequences \{ \lambda k = \^\lambda \} and \{ \mu k = \^\mu \} , by (11) and (12) (or taking a subsequence of \{ xk\} 
with k large enough if necessary); see Figure 1. Let us consider the set

X \prime = \{ x | hi(x) \geq 0, hl(x) \leq 0, gj(x) \geq 0, i \in \scrI +, l \in \scrI  - , j \in \scrJ \} ,

where \scrI + = \{ i \in \scrI | \^\lambda i > 0\} and \scrI  - = \{ i \in \scrI | \^\lambda i < 0\} . With respect to X \prime , the linear
independence constraint qualification holds at x\ast and therefore the Mangasarian--
Fromovitz CQ also holds at x\ast . Thus, there is a unitary d such that

\nabla hi(x
\ast )td > 0, \nabla hl(x

\ast )td < 0, \nabla gj(x\ast )td > 0, i \in \scrI +, l \in \scrI  - , j \in \scrJ .

Taking

\gamma = min
\bigl\{ 
\nabla hi(x

\ast )td,  - \nabla hl(x
\ast )td, \nabla gj(x\ast )td | i \in \scrI +, l \in \scrI  - , j \in \scrJ 

\bigr\} 
> 0

and y \in \BbbR n such that d = (y  - x\ast )/\| y  - x\ast \| 2, we conclude that this y belongs to
the intersection (13). Since such a y can be taken arbitrarily close to x\ast , the proof is
complete.

g2(x) \leq 0g1(x) \leq 0

g3(x) \leq 0

\nabla g2(x\ast )
\nabla g1(x\ast )

 - \nabla f(x\ast )

\scrG \gamma 1 \cap \scrG 
\gamma 
2

x\ast 

xk

Fig. 1. Geometry for Lemma 2.6. The constraint g3(x) \leq 0 is redundant, and the gradients
of the other active constraints at x\ast are linearly independent. The sequence \{ xk\} belongs to the set
\scrG \gamma 
1 \cap \scrG \gamma 

2 and converges to x\ast from the outside of the feasible set.
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3. Relations.

3.1. Relations with other sequential optimality conditions. In this sub-
section, we establish the relations between the PAKKT condition and other sequential
optimality conditions in the literature. In addition to the AKKT condition presented
in the introduction, we consider the following ones.

\bullet We say that x\ast \in X is a complementary approximate KKT (CAKKT) [7]
point if there are sequences \{ xk\} \subset \BbbR n, \{ \lambda k\} \subset \BbbR m, and \{ \mu k\} \subset \BbbR p

+ such
that (4), (5) hold and, for all i = 1, . . . ,m and j = 1, . . . , p,

lim
k

\lambda k
i hi(x

k) = 0 and lim
k

\mu k
j gj(x

k) = 0.

In this case, \{ xk\} is called a CAKKT sequence.
\bullet For each x \in \BbbR n, let us consider the linear approximation of the feasible set

X of (P) at x,

\Omega (x) =

\left\{     z \in \BbbR n

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
gj(x) +\nabla gj(x)t(z  - x) \leq 0 if gj(x) < 0,

\nabla gj(x)t(z  - x) \leq 0 if gj(x) \geq 0,

\nabla h(x)t(z  - x) = 0

\right\}     .

We define the approximate gradient projection by d(x) = P\Omega (x)(x - \nabla f(x)) - x,
where PC(\cdot ) denotes the orthogonal projection onto the closed and convex set
C. We say that x\ast \in X is an approximate gradient projection (AGP) [25]
point if there is a sequence \{ xk\} \subset \BbbR n converging to x\ast such that d(xk)\rightarrow 0.

Both of the above conditions have been proved to be sequential optimality condi-
tions [7, 25]. Also, it is known that CAKKT is strictly stronger than AGP [7], which
in turn is strictly stronger than AKKT [3]. CAKKT sequences are generated by the
augmented Lagrangian method of the next section with an additional hypothesis that
the sum-of-squares infeasibility measure satisfies a generalized Lojasiewicz inequal-
ity (see [7] for details). On the other hand, AGP sequences are useful for analyzing
accumulation points of inexact restoration techniques [26].

Since the AKKT condition is exactly PAKKT without expressions (7) and (8),
the next result is trivial.

Theorem 3.1. Every PAKKT sequence is also an AKKT sequence. In particular,
every PAKKT point is an AKKT point.

Example 2 (a CAKKT point may not be PAKKT). Let us consider the problem

min
x

(x1  - 1)2

2
+

(x2 + 1)2

2
subject to x1x2 \leq 0,

for which

\nabla xL(x, \mu ) =

\biggl[ 
x1  - 1
x2 + 1

\biggr] 
+ \mu 

\biggl[ 
x2

x1

\biggr] 
.

The origin is a CAKKT point with the sequences defined by xk = ( - 1/k, 1/k) and
\mu k = k for all k \geq 1. Furthermore, any CAKKT sequence \{ xk\} converging to the
origin with associated \{ \mu k\} satisfies limk \mu 

kxk
1 =  - 1 and limk \mu 

kxk
2 = 1. Thus, for

all k sufficiently large we have sgn\mu k = 1, sgnxk
1 =  - 1, and sgnxk

2 = 1, and hence
sgn (\mu kxk

1x
k
2) =  - 1. That is, the origin is not a PAKKT point.
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Example 3 (a PAKKT point may not be AGP). Let us consider the problem

min
x

x2 subject to x2
1x2 = 0,  - x1 \leq 0.

The point (0, - 1) is PAKKT with the sequences defined by xk = (1/k, - 1), \lambda k =  - k2,
and \mu k = 2k for all k \geq 1. By straightforward calculations we obtain

\Omega (x1, x2) =

\Biggl\{ 
(z1, z2) \in \BbbR 2

\bigm| \bigm| \bigm| \bigm| \bigm| z1 \geq min\{ 0, x1\} ,
(2x1x2)z1 + (x2

1)z2 = 3x2
1x2

\Biggr\} 
.

Thus, given a sequence \{ xk\} converging to (0, - 1), the set \Omega (xk) tends to a vertical
semi-line on the y-axis if xk

1 \not = 0 or it is the semi-plane z1 \geq 0 otherwise. As xk  - 
\nabla f(xk) = (xk

1 , x
k
2  - 1)\rightarrow (0, - 2), we always have

\| d(xk)\| \infty = \| P\Omega (xk)(x
k  - \nabla f(xk)) - xk\| \infty \rightarrow 1.

Then (0, - 1) is not an AGP point.

In particular, as every CAKKT point is AGP (and thus AKKT), Example 2 also
shows that there exist AGP and AKKT points that are not PAKKT points. In the
same way, Example 3 implies that there exist PAKKT points that are not CAKKT.
Figure 2 summarizes the relationships between all sequential optimality conditions
discussed here.

PAKKT CAKKT

AGP

AKKT

Fig. 2. Relations between PAKKT and other sequential optimality conditions. An arrow be-
tween two sequential conditions means that one is strictly stronger than the other. Note that PAKKT
is independent of the AGP and CAKKT conditions.

3.2. Relations between PAKKT-regular and other known CQs. In sec-
tion 2, we demonstrated that PAKKT-regular is a constraint qualification (see Corol-
lary 2.5). Now we discuss the relationship between PAKKT-regular and other CQs
in the literature, giving an updated landscape of various CQs.

We already mentioned that the weakest strict constraint qualification for the
AKKT sequential optimality condition is the AKKT-regular CQ (also called the cone
continuity property, CCP) [8]. Defining the cone

K+(x, 0,\infty ) =

\left\{   
m\sum 
i=1

\lambda i\nabla hi(x) +
\sum 

j\in Ig(x\ast )

\mu j gj(x)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \lambda \in \BbbR m, \mu j \in \BbbR +, j \in Ig(x
\ast )

\right\}   ,

we say that x\ast \in X satisfies the AKKT-regular condition if the multifunction x \in 
\BbbR n \rightrightarrows K+(x, 0,\infty ) is outer semi-continuous at x\ast , that is, if

lim sup
x\rightarrow x\ast 

K+(x, 0,\infty ) \subset K+(x
\ast , 0,\infty ).
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Note that K+(x, \alpha , \beta ) \subset K+(x, 0,\infty ) for all x \in \BbbR n and \alpha , \beta > 0. Furthermore
K+(x, 0,\infty ) = K+(x, 0, 0) whenever x is feasible a point of (P). These observations
are the key to proving the next result.

Theorem 3.2. AKKT-regular implies PAKKT-regular.

Proof. If x\ast satisfies the AKKT-regular condition, then

lim sup
x\rightarrow x\ast , \alpha \downarrow 0, \beta \downarrow 0

K+(x, \alpha , \beta ) \subset lim sup
x\rightarrow x\ast 

K+(x, 0,\infty ) \subset K+(x
\ast , 0,\infty ) = K+(x

\ast , 0, 0),

which completes the proof.

A natural constraint qualification associated with EFJ points is quasi-normality
(see, for example, [12]). Since PAKKT is an optimality condition that translates the
sign control in the EFJ points to the sequential world, it is reasonable that PAKKT-
regular and quasi-normality CQs are connected. In the next part, we discuss this
relation.

Definition 3.3 (see [22]). We say that x\ast \in X satisfies the quasi-normality

constraint qualification if there are no \lambda \in \BbbR m and \mu \in \BbbR | Ig(x\ast )| 
+ such that

1.
\sum m

i=1 \lambda i\nabla hi(x
\ast ) +

\sum 
j\in Ig(x\ast ) \mu j\nabla gj(x\ast ) = 0,

2. (\lambda , \mu ) \not = 0, and
3. in every neighborhood \scrB (x\ast ) of x\ast there is a x \in \scrB (x\ast ) such that \lambda ihi(x) > 0

for all i with \lambda i \not = 0 and \mu jgj(x) > 0 for all j with \mu j > 0.

Theorem 3.4. Quasi-normality implies PAKKT-regular.

Proof. We suppose that x\ast is not PAKKT-regular. Then there exists

w\ast \in 

\Biggl( 
lim sup

x\rightarrow x\ast , \alpha \downarrow 0, \beta \downarrow 0
K+(x, \alpha , \beta )

\Biggr) 
\setminus K+(x

\ast , 0, 0).

Let us take \{ xk\} \subset \BbbR n, \{ \omega k\} \subset \BbbR n, \{ \alpha k\} \subset \BbbR , and \{ \beta k\} \subset \BbbR such that xk \rightarrow x\ast ,
\omega k \rightarrow \omega \ast , \alpha k \downarrow 0, \beta k \downarrow 0, and \omega k \in K+(x

k, \alpha k, \beta k) for all k \geq 1, where \omega k is as in (10).
We define \~\delta k = \| (\lambda k, \mu k)\| \infty . The sequence \{ \~\delta k\} is unbounded because, otherwise, we
would have \omega \ast \in K+(x

\ast , 0, 0) since \omega k \in K+(x
k, \alpha k, \beta k) for all k. Thus, dividing (10)

by \~\delta k and taking the limit, we obtain

m\sum 
i=1

\lambda \ast 
i\nabla hi(x

\ast ) +
\sum 

j\in Ig(x\ast )

\mu \ast 
j\nabla gj(x\ast ) = 0,

where (\lambda \ast , \mu \ast ) \not = 0. Given a neighborhood \scrB (x\ast ) of x\ast , we have for some k large
enough xk \in \scrB (x\ast ) and sgn (\lambda \ast 

i hi(x
k)) = sgn (\lambda k

i hi(x
k)) = 1 whenever \lambda \ast 

i \not = 0 (note
that limk \lambda 

k
i /

\~\delta k = \lambda \ast 
i \not = 0 implies | \lambda k

i | > \beta k
\~\delta k = \beta k\| (1, \lambda k, \mu k)\| \infty for all k sufficiently

large). The same happens with \mu \ast . Hence x\ast does not satisfy the quasi-normality
CQ, which completes the proof.

As we already mentioned, AKKT-regular and quasi-normality are independent
constraint qualifications [8]. Then, from Theorems 3.2 and 3.4 we conclude that
PAKKT-regular does not imply either of these two conditions. A geometric compar-
ison between AKKT-regular and PAKKT-regular CQs is given in Figure 3.

In order to provide a complete relationship between PAKKT-regular and other
known constraint qualifications, we will now prove that PAKKT-regular is stronger
than Abadie's CQ [1]. We denote the tangent cone to the feasible set X of (P) at x\ast 
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g2(x) \leq 0
g1(x) \leq 0

x\ast 

xk1

xk2

\^xk1

\^xk2

\~xk1

\~xk2

(a) AKKT-regular

g2(x) \leq 0
g1(x) \leq 0

x\ast 

xk1

xk2

\^xk1

\^xk2

\~xk1

\~xk2

(b) PAKKT-regular

Fig. 3. Geometric interpretation of AKKT-regular and PAKKT-regular conditions. The in-
equality constraints g1(x) \leq 0 and g2(x) \leq 0 are active at x\ast . The sequence \{ xk\} is feasible with
respect to the two constraints, \{ \^xk\} is feasible only with respect to the second one and \{ \~xk\} is in-
feasible with respect to both constraints. In the cones K+(\cdot , 0,\infty ) of AKKT-regular there are no
restrictions on the sign of the multipliers beyond nonnegativity, and at all points of the sequences,
both gradients \nabla g1 and \nabla g2 take place (part (a)). The sets K+(\cdot , \alpha , \beta ) are possibly ``discontiguous""
in the following sense: if 0 \not = z \in K+(x, \alpha , \beta ), then it is possible that \gamma z /\in K+(x, \alpha , \beta ) for all
\gamma \in [a, b] whenever \alpha is not sufficiently large, where a and b depend on \alpha and \beta . Part (b) illustrates
the case where \beta = 0. In this situation, the multipliers related to strict satisfied constraints vanish
due to the sign control in the PAKKT-regular condition: for the sequence \{ xk\} , both multipliers are
null and then K+(\cdot , \alpha , 0) = \{ 0\} ; for \{ \^xk\} only \nabla g1 can be present; and for \{ \~xk\} both gradients may
constitute the set K+(\cdot , \alpha , 0).

by \scrT (x\ast ), and its linearization by \scrL (x\ast ). Furthermore, C\circ will denote the polar of
the set C. Recall that Abadie's CQ consists of the equality \scrT (x\ast ) = \scrL (x\ast ).

Lemma 3.5 (see [8, Lemma 4.3]). For each x\ast \in X and \omega \ast \in \scrT \circ (x\ast ), there are
sequences \{ xk\} \subset \BbbR n, \{ \lambda k\} \subset \BbbR m, and \{ \mu k\} \subset \BbbR p

+ such that xk \rightarrow x\ast ,
1. \omega k =

\sum m
i=1 \lambda 

k
i\nabla hi(x

k) +
\sum p

j=1 \mu 
k
j\nabla gj(xk) converges to \omega \ast ,

2. \lambda k = kh(xk) and \mu k = kg(xk)+.

Theorem 3.6. PAKKT-regular implies Abadie's CQ.

Proof. The multipliers in item 2 of Lemma 3.5 have the same sign of their corre-
sponding constraints for all k. Thus the proof follows the same arguments used in [8,
Theorem 4.4], taking appropriate sequences \{ \alpha k\} and \{ \beta k\} .

Example 4 (Abadie's CQ does not imply PAKKT-regular). Let us consider the
constraints

g1(x) = x2  - x2
1, g2(x) =  - x2  - x2

1, g3(x) = x2  - x5
1,

g4(x) =  - x2  - x5
1, and g5(x) =  - x1.

All these constraints are active at the point x\ast = (0, 0), which fulfills Abadie's CQ
since \scrT (x\ast ) = \scrL (x\ast ) = \{ (x1, 0) | x1 \in \BbbR +\} . We affirm that PAKKT-regular does not
hold at x\ast . In fact, consider the vector \omega \ast = (1, 0). With the sequences defined by
xk = ( - 1/k, 0), \mu k = (k/4, k/4, k3, k3, 0), \alpha k = 1/k2, and \beta k = 1/k for all k \geq 1 we
have \alpha k \downarrow 0, \beta k \downarrow 0, \delta k = \| (1, \mu k)\| \infty = k3,

\omega k =

5\sum 
j=1

\mu k
j\nabla gj(xk) =

\biggl[ 
1/2
k/4

\biggr] 
+

\biggl[ 
1/2
 - k/4

\biggr] 
+

\biggl[ 
 - 5/k

k3

\biggr] 
+

\biggl[ 
 - 5/k
 - k3

\biggr] 
\rightarrow 
\biggl[ 

1
0

\biggr] 
= \omega \ast ,
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and, for all k, \mu k
1 = \mu k

2 = k/4 < k2 = \beta k\delta k, \mu 
k
5 = 0 < \beta k\delta k, and \mu k

3 = \mu k
4 = k3 > \beta k\delta k

with \mu k
3g3(x

k) = \mu k
4g4(x

k) = 1/k2 \geq \alpha k. Therefore \omega k \in K+(x
k, \alpha k, \beta k) for all k,

but \omega \ast /\in K+(x
\ast , 0, 0) = \{ ( - x1, x2) | x1 \in \BbbR +, x2 \in \BbbR \} . That is, the origin does not

satisfy the PAKKT-regular CQ.

Figure 4 shows the relations between CQs. We emphasize that PAKKT-regular
unifies the branches from the independent AKKT-regular and quasi-normality CQs
under the augmented Lagrangian convergence theory, as we will see in the next section.

LICQ

MFCQ

CPLD CRCQ

Linear CQ

RCRCQRCPLD

CRSC CPG

AKKT-regular (CCP)

Pseudonormality

Quasinormality

PAKKT-regular

Abadie's CQ Guignard's CQ

Fig. 4. Updated landscape of constraint qualifications. The arrows indicate logical implications.
Note that the independent AKKT-regular and quasi-normality CQs imply PAKKT-regular, which
in turn is strictly stronger than Abadie's CQ.

4. Global convergence of the augmented Lagrangian method using the
PAKKT-regular constraint qualification. Next we present the augmented La-
grangian algorithm proposed to solve (P) [15].

The vector V k is responsible for measuring infeasibility and noncomplementarity
with respect to the inequality constraints. If the PHR augmented Lagrangian (1) is
used, then

(16) V k = max

\biggl\{ 
g(xk), - \=\mu k

\rho k

\biggr\} 
,

according to [15]. In this paper, we only deal with the augmented Lagrangian (1) (and
then we always have (16)), but we note that the general form (15) is also appropriate
for the case when a nonquadratic penalty augmented Lagrangian function is employed,
as in [18, 29].

It is known that when Algorithm 1 does not stop by failure, it generates an AKKT
sequence for problem (P) if its limit point is feasible (see [15]). In particular, every
feasible accumulation point of this algorithm is an AKKT point. Next we prove that
it also reaches the stronger PAKKT points (from now on, we suppose that the method
generates an infinite primal sequence).

Theorem 4.1. Every feasible accumulation point x\ast \in X generated by Algo-
rithm 1 is a PAKKT point.
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Algorithm 1 Augmented Lagrangian method.

Let x1 \in \BbbR n be an arbitrary initial point. The given parameters for the execution
of the algorithm are as follows: \tau \in [0, 1), \gamma > 1, \lambda min < \lambda max, \mu max > 0, and
\rho 1 > 0. Also, let \=\lambda 1 \in [\lambda min, \lambda max]

m and \=\mu 1 \in [0, \mu max]
p be the initial Lagrange

multipliers estimates. Finally, \{ \varepsilon k\} \subset \BbbR + is a sequence of tolerance parameters
such that limk \varepsilon k = 0. Initialize k \leftarrow 1.

Step 1. (Solve the subproblem.) Compute (if possible) xk \in \BbbR n such that

(14) \| \nabla xL\rho k
(xk, \=\lambda k, \=\mu k)\| \leq \varepsilon k.

If it is not possible, stop the execution of the algorithm, declaring failure.

Step 2. (Estimate new multipliers.) Compute

\lambda k = \=\lambda k + \rho kh(x
k) and \mu k =

\bigl( 
\=\mu k + \rho kg(x

k)
\bigr) 
+
.

Step 3. (Update the penalty parameter.) Define

(15) V k =
\mu k  - \=\mu k

\rho k
.

If k = 1 or

max
\bigl\{ 
\| h(xk)\| , \| V k\| 

\bigr\} 
\leq \tau max

\bigl\{ 
\| h(xk - 1)\| , \| V k - 1\| 

\bigr\} 
,

choose \rho k+1 = \rho k. Otherwise, define \rho k+1 = \gamma \rho k.

Step 4. (Update multipliers estimates.) Compute \=\lambda k+1 \in [\lambda min, \lambda max]
m and

\=\mu k+1 \in [0, \mu max]
p.

Step 5. (Begin a new iteration.) Set k \leftarrow k + 1 and go to step 1.

Proof. Let \{ xk\} , \{ \=\lambda k\} , \{ \=\mu k\} , and \{ \rho k\} be sequences generated by Algorithm 1 and
let x\ast be a feasible accumulation point of \{ xk\} . We can suppose, taking a subsequence
if necessary, that limk x

k = x\ast . By (14) we have

(17) \nabla xL(x
k, \lambda k, \mu k) = \nabla f(xk) +\nabla h(xk)\lambda k +\nabla g(xk)\mu k \rightarrow 0,

where

(18) \lambda k = \=\lambda k + \rho kh(x
k) and \mu k =

\bigl( 
\=\mu k + \rho kg(x

k)
\bigr) 
+
.

With the sequence \{ (xk, \lambda k, \mu k)\} , (17) implies (5). If \rho k \rightarrow \infty , then \mu k
j = 0 whenever

gj(x
\ast ) < 0 and k is sufficiently large. If \{ \rho k\} is bounded, then limk V

k = 0, and thus
limk \mu 

k
j = 0 whenever gj(x

\ast ) < 0. Therefore limk \mu 
k
j = 0, and (6) holds.

Define \delta k = \| (1, \lambda k, \mu k)\| \infty as in the PAKKT definition. If \{ \delta k\} is unbounded,
then we can suppose, taking a subsequence if necessary, that, in addition to the
unboundedness of \{ \delta k\} , limk \lambda 

k
i /\delta k exists for all i and limk \mu 

k
j /\delta k exists for all j. Then,
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from the boundedness of \{ \=\lambda k\} we have that, for each i such that limk \lambda 
k
i /\delta k \not = 0,

0 \not = lim
k

\lambda k
i

\delta k
= lim

k

\biggl[ \=\lambda k
i

\delta k
+

\rho khi(x
k)

\delta k

\biggr] 
= lim

k

\rho khi(x
k)

\delta k
\Rightarrow \lambda k

i hi(x
k) > 0 \forall k \geq ki,

for some ki \geq 1. Then (7) is satisfied on a subsequence of \{ (xk, \lambda k, \mu k)\} initializing
from the index maxi ki. Condition (8) is obtained in the same way for the indexes j
such that gj(x

\ast ) = 0. Now, if gj(x
\ast ) < 0, then (6) implies limk \mu 

k
j /\delta k \leq limk \mu 

k
j = 0,

and these indexes j do not violate (8). Therefore, we have shown that \{ xk\} is a
PAKKT sequence, and thus that x\ast is a PAKKT point when \{ \delta k\} is unbounded.

If \{ \delta k\} is bounded, then, taking the limit in (17) on an appropriate subsequence,
we conclude that x\ast is KKT, and then a PAKKT point by Lemma 2.6 (not necessarily
with the same primal-dual sequence generated by the method).

It is important to note that Algorithm 1 generates PAKKT points, but not nec-
essarily PAKKT sequences. That is, we claim that for each feasible accumulation
point x\ast there is a corresponding PAKKT sequence, but the generated sequence \{ xk\} 
does not necessarily have a subsequence with this property. Specifically, when the
dual sequence \{ \delta k\} is unbounded, \{ xk\} has a PAKKT subsequence associated with
x\ast . But in the proof of the above theorem we do not have any guarantee that the
sequence generated by the method has a PAKKT subsequence if \{ \delta k\} is bounded. Of
course, it is not a problem because in the last case the limit point is already a KKT
point. The next example shows that this situation may occur.

Example 5. Let us consider the minimization of f(x) = x subject to  - x \leq 0.
Then \nabla xL\rho k

(xk, \mu k) = 0 iff xk = (\mu k - 1)/\rho k. If we always choose \=\mu k+1 = 2 in step 4,
we will have (\=\mu k  - \rho kxk)+( - xk) =  - 1/\rho k < 0 for all k \geq 1.

Practical implementations of Algorithm 1 adopt the following updating rule for
the Lagrange multipliers in step 4:

\=\lambda k+1
i = min\{ \lambda max , max\{ \lambda min, \=\lambda 

k
i + \rho khi(x

k)\} \} , i = 1, . . . ,m,

\=\mu k+1
j = min\{ \mu max , max\{ 0, \=\mu k

j + \rho kgj(x
k)\} \} , j = 1, . . . , p.(19)

This rule corresponds to projecting the estimates \lambda k and \mu k from step 2 onto the
boxes [\lambda min, \lambda max]

m and [0, \mu max]
p, respectively. It is used, for example, in the imple-

mentation of the so-called augmented Lagrangian method Algencan [2] provided by
TANGO project (www.ime.usp.br/\sim egbirgin/tango). Even with this updating rule,
there is no guarantee that a convergent subsequence generated by Algorithm 1 is a
PAKKT sequence, as the next example illustrates.

Example 6. Let us consider the same problem as in Example 5:

min
x

x subject to  - x \leq 0.

The origin is the global minimizer and it satisfies the well-known linear independence
constraint qualification. Although it is a KKT point (and then a PAKKT point by
Lemma 2.6), Algorithm 1 may converges to the origin with a non-PAKKT primal
sequence. In fact, consider the sequence defined by xk = 1/((k+1)2\rho k), k \geq 0, which
converges to the origin. We have\nabla xL\rho k

(xk, \=\mu k) = 1 - (\=\mu k - 1/(k+1)2)+ \rightarrow 0 whenever
\=\mu k \rightarrow 1. For a fixed \tau \in (0, 1), we also have | Vk - 1| = 1/(k2\rho k - 1) > \tau /((k + 1)2\rho k) =
\tau | Vk| for all k large enough. If we initialize x0 sufficiently close to the origin, we can

www.ime.usp.br/~egbirgin/tango
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suppose without loss of generality that this occurs for all k \geq 0. Thus, as xk > 0, we
have \=\mu k+1 = \mu k+1 = (\=\mu k  - \rho kxk)+ for all k \geq 1 and then

(20) \=\mu k+1 =

\biggl[ 
\=\mu k  - 

1

(k + 1)2

\biggr] 
+

= \cdot \cdot \cdot = \=\mu 0  - 
k+1\sum 
i=1

1

i2
.

The above series is convergent as k \rightarrow \infty , and hence it is possible to choose \=\mu 0 > 0 so
that limk \=\mu k+1 = 1 as we wanted. In this case \=\mu k > 0 for all k, and then expression (20)
makes sense. We also note that, as \rho k+1 = \gamma \rho k for all k, the iterate xk only depends
on \rho 0 and \gamma , avoiding cyclic definitions. This concludes the discussion.

In [21] the sequential complementarity (6) is exchanged for a more stringent con-
dition, resulting in the so-called strong AKKT notion. We say that x\ast \in X is a
strong AKKT (SAKKT) point if there are sequences \{ xk\} \subset \BbbR n, \{ \lambda k\} \subset \BbbR m, and
\{ \mu k\} \subset \BbbR p

+ such that (4) and (5) hold and, for all k,

(21) gj(x
k) < 0 \Rightarrow \mu k

j = 0.

The authors of [21] also present some relations between SAKKT and AKKT, but no
result linking SAKKT points to practical algorithms. The previous example shows, in
particular, that Algorithm 1 can generate a non-SAKKT sequence. However, by [7,
Theorem 4.1] and [21, Theorem 4.3], every CAKKT point is also SAKKT. Further-
more, when a very weak generalized Lojasiewicz inequality on the sum-of-squares
infeasibility measure holds, Algorithm 1 generates CAKKT points [7] (the previous
example satisfies this assumption). Thus, although Algorithm 1 does not always gen-
erate SAKKT sequences, it reaches SAKKT points.

It is already known in the literature that the augmented Lagrangian method
(Algorithm 1) converges to KKT points under the AKKT-regular constraint qualifi-
cation [8]. Theorem 4.1 asserts that Algorithm 1 reaches PAKKT points, and then
by Theorem 2.4 it converges to a KKT point under the less stringent PAKKT-regular
CQ. The next result is a direct consequence of Theorem 2.4, 3.4, and 4.1. To the best
of our knowledge, it is the first time it has been proved that a practical algorithm
for general nonlinear constrained optimization converges to KKT points under the
quasi-normality CQ.

Corollary 4.2. Let x\ast be a feasible accumulation point of (P) generated by
Algorithm 1. If x\ast satisfies PAKKT-regular (and thus quasi-normality), then x\ast is a
KKT point.

4.1. Strength of the PAKKT condition: AKKT vs. PAKKT methods.
As already mentioned in the introduction, sequential optimality conditions have been
used to strengthen the theoretical convergence results of several methods; see [2,
3, 4, 7, 8, 9, 15, 25] and references therein. The goal is to prove that a specific
method achieves, say, AKKT points. Thus, the theoretical convergence of this ``AKKT
method"" is established under any constraint qualification that ensures that an AKKT
point is actually KKT. In this sense, we improve the previous convergence results for
the PHR augmented Lagrangian method by proving that it reaches PAKKT points
(see Theorem 4.1 and Corollary 4.2).

The aim of this section is to illustrate how ``PAKKT methods"" may have signifi-
cantly better theoretical convergence results than pure AKKT methods. For this pur-
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pose, we consider so-called mathematical programs with complementarity constraints
(MPCC). It is worth noticing that, although we make some progress, we do not intend
to extend existing convergence results for MPCC. In fact, it is known that this type
of result was obtained for specific methods, in particular Algorithm 1 [10, 23]. On
the other hand, our approach focuses on sequential optimality conditions, which do
not depend on the method considered. We emphasize that the AKKT condition is
naturally associated with stopping criteria adopted by practical algorithms, since it
consists of a simple and computable inexact version of the KKT conditions (see (2)).
Our theory ensures that methods based on external penalty approaches generate more
than AKKT points, and then it helps to clarify why algorithms such as Algorithm 1
have good behaviour in MPCCs.

Firstly, we note that PAKKT methods are not worst than the AKKT methods,
since every PAKKT point is an AKKT one (Theorem 3.1). Now, let us recall the
MPCC (3) of the introduction:

(22) min
x

(x1  - 1)2 + (x2  - 1)2 subject to x1, x2 \geq 0, x1x2 \leq 0.

We have shown that every feasible point of this problem is AKKT. This means that,
at least in theory, a generic AKKT method can converge to an arbitrary feasible point.
On the other hand, it is straightforward to verify that only the global solutions (1, 0)
and (0, 1) and the point (0, 0) are PAKKT. In other words, a generic PAKKT method
has a drastically better theoretical convergence guarantee than the pure AKKT meth-
ods when applied to (22). This example shows that it is not possible to establish any
reasonable convergence theory to the classical stationarity concepts for MPCC (strong,
Mordukhovich, Clarke, or even weak stationarity) using the AKKT condition.

Let us analyze the previous problem in a more comprehensive way. The mathe-
matical program with complementarity constraints can be generically stated as

min
x

f(x)

subject to h(x) = 0, g(x) \leq 0,

H(x) \geq 0, G(x) \geq 0, Hi(x)Gi(x) \leq 0, i = 1, . . . , s,

(MPCC)

where f : \BbbR n \rightarrow \BbbR , h : \BbbR n \rightarrow \BbbR m, g : \BbbR n \rightarrow \BbbR p, and H,G : \BbbR n \rightarrow \BbbR s. We suppose
that all these functions are continuously differentiable. The last s inequality con-
straints, which ensure that G and H are complementary, are called complementarity
constraints.

MPCCs constitute an important class of optimization problems, and there is an
extensive literature devoted to them (see, for example, [17] and references therein).
They are highly degenerate problems. For instance, even with the simple constraints
x1, x2 \geq 0 and x1x2 \leq 0, it is straightforward to show the AKKT-regular CQ is
not satisfied at any feasible point (in particular, even Abadie's CQ fails at the ori-
gin). More generally, we can expect, as in problem (22), that every feasible point
is AKKT in a wide variety of instances, since the complementary constraints of a
generic MPCC can be rewritten in this simple form by inserting slack variables. On
the other hand, when all the gradients of the active constraints, excluding the com-
plementarity one, at a feasible point x\ast are linearly independent (a condition known
as MPCC-LICQ [30]) and when lower level strict complementarity is satisfied at x\ast ,
that is, when Gi(x

\ast ) > 0 or Hi(x
\ast ) > 0 for each i = 1, . . . , s, the quasi-normality CQ



A SEQUENTIAL CONDITION RELATED TO QUASI-NORMALITY 761

holds. In fact, if (\lambda , \mu , \gamma H , \gamma G, \gamma 0) \in \BbbR m \times \BbbR p
+ \times \BbbR 3s

+ is such that

(23) \nabla h(x\ast )\lambda +\nabla g(x\ast )\mu  - \nabla H(x\ast )\gamma H  - \nabla G(x\ast )\gamma G

+

s\sum 
i=1

\gamma 0
i (\nabla Hi(x

\ast )Gi(x
\ast ) +\nabla Gi(x

\ast )Hi(x
\ast )) = 0,

then, by the linear independence hypothesis, \lambda = 0, \mu = 0, and \gamma H
i  - \gamma 0

i Gi(x
\ast ) =

\gamma G
i  - \gamma 0

i Hi(x
\ast ) = 0 for all i = 1, . . . , s. If \gamma 0 = 0, then \gamma H = \gamma G = 0, and thus

quasi-normality holds at x\ast . If otherwise \gamma 0
j > 0 for some fixed j, then lower level

strict complementarity ensures that \gamma H
j = \gamma 0

jGj(x
\ast ) > 0 or \gamma G

j = \gamma 0
jHj(x

\ast ) > 0. We

can suppose without loss of generality that \gamma H
j > 0, and consequently Hj(x

\ast ) = 0,
Gj(x

\ast ) > 0. By the continuity of G, we have Gj(x) > 0 for all x in a neighbor-
hood \scrB (x\ast ) of x\ast . If \gamma H

j ( - Hj(x)) =  - \gamma 0
jGj(x

\ast )Hj(x) > 0, then Hj(x) < 0 and

\gamma 0
j (Hj(x)Gj(x)) < 0 for every x \in \scrB (x\ast ). This contradicts the third condition of Def-

inition 3.3, and thus x\ast fulfills the quasi-normality CQ (and consequently PAKKT-
regular) as we want to prove. We conclude that, under the two hypotheses made on
x\ast , any PAKKT method converges to a KKT point x\ast of (MPCC).

The same previous conclusion about the convergence of PAKKT methods in
MPCCs can be obtained if we replace MPCC-LICQ by the much weaker MPCC--
quasi-normality condition defined in [24]. This condition is an adaptation of the
quasi-normality CQ to the MPCC setting. For a feasible x\ast for (MPCC) we define
the sets of indexes

IH(x\ast ) = \{ i | Hi(x
\ast ) = 0\} , IG(x

\ast ) = \{ i | Gi(x
\ast ) = 0\} , and I0(x

\ast ) = IH(x\ast ) \cap IG(x\ast ).

Note that IH(x\ast ) \cup IG(x
\ast ) = \{ 1, . . . , s\} , and that lower level strict complementarity

at x\ast consists of imposing I0(x
\ast ) = \emptyset .

Definition 4.3. We say that a feasible point x\ast conforms to the MPCC--quasi-
normality CQ if there is no (\lambda , \mu , \gamma H , \gamma G) \in \BbbR m \times \BbbR p

+ \times \BbbR 2s such that
1. \nabla h(x\ast )\lambda +\nabla g(x\ast )\mu  - \nabla H(x\ast )\gamma H  - \nabla G(x\ast )\gamma G = 0;
2. \mu i = 0 \forall i /\in Ig(x

\ast ), \gamma H
i = 0 \forall i \in IG(x

\ast )\setminus IH(x\ast ), \gamma G
i = 0 \forall i \in IH(x\ast )\setminus IG(x\ast )

and either \gamma H
i > 0, \gamma G

i > 0 or \gamma H
i \gamma G

i = 0 \forall i \in I0(x
\ast );

3. (\lambda , \mu , \gamma H , \gamma G) \not = 0;
4. in every neighborhood \scrB (x\ast ) of x\ast there is an x \in \scrB (x\ast ) such that

\bullet \lambda ihi(x) > 0 for all i with \lambda i \not = 0,
\bullet \mu igi(x) > 0 for all i with \mu i > 0,
\bullet  - \gamma H

i Hi(x) > 0 for all i with \gamma H
i \not = 0, and

\bullet  - \gamma G
i Gi(x) > 0 for all i with \gamma G

i \not = 0.

Lemma 4.4. Under lower level strict complementarity, MPCC--quasi-normality
implies the standard quasi-normality CQ for (MPCC).

Proof. Suppose that the standard quasi-normality CQ is not satisfied at x\ast . In
other words, there are a nonzero vector (\lambda , \mu , \gamma H , \gamma G, \gamma 0) \in \BbbR m \times \BbbR p

+ \times \BbbR 3s
+ and a

sequence \{ xk\} \subset \BbbR n converging to x\ast such that (23) holds,

(24) \mu i = 0 \forall i /\in Ig(x
\ast ), \gamma H

i = 0 \forall i /\in IH(x\ast ), \gamma G
i = 0 \forall i /\in IG(x

\ast ),
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and, for all k,

\lambda ihi(x
k) > 0 whenever \lambda i \not = 0,(25a)

\mu igi(x
k) > 0 whenever \mu i > 0,(25b)

 - \gamma H
i Hi(x

k) > 0 whenever \gamma H
i > 0,(25c)

 - \gamma G
i Gi(x

k) > 0 whenever \gamma G
i > 0, and(25d)

\gamma 0
i Hi(x

k)Gi(x
k) > 0 whenever \gamma 0

i > 0.(25e)

We note that, by the lower level strict complementarity assumption, I0(x
\ast ) =

\emptyset , i /\in IH(x\ast ) iff i \in IG(x
\ast ) = IG(x

\ast )\setminus IH(x\ast ), and i /\in IG(x
\ast ) iff i \in IH(x\ast ) =

IH(x\ast )\setminus IG(x\ast ). That is, condition 2 of Definition 4.3 can be rewritten exactly as (24).
Thus, if \gamma 0

i = 0 for all i = 1, . . . , s, then the vector (\lambda , \mu , \gamma H , \gamma G) and the sequence
\{ xk\} fulfill the four items of Definition 4.3. In this case MPCC--quasi-normality does
not hold at x\ast , and the statement is proved.

From now on, we suppose that \gamma 0
j > 0 for a fixed index j. We can suppose

without loss of generality that j \in IH(x\ast ), since the j \in IG(x
\ast ) case is analogous.

Equation (23) can be rewritten as

\nabla h(x\ast )\lambda +\nabla g(x\ast )\mu  - \nabla H(x\ast )\~\gamma H  - \nabla G(x\ast )\~\gamma G = 0,

where, for all i = 1, . . . , s,

(26) \~\gamma H
i = \gamma H

i  - \gamma 0
i Gi(x

\ast ) and \~\gamma G
i = \gamma G

i  - \gamma 0
i Hi(x

\ast ).

We affirm that \~\gamma H
j \not = 0. In fact, suppose by contradiction that \~\gamma H

j = 0. By lower
level strict complementarity at x\ast , we have j /\in IG(x

\ast ) and then

(27) \gamma 0
jGj(x

k) > 0

for all k sufficiently large, let us say, for all k \in K. By (26), we also have \gamma H
j =

\gamma 0
jGj(x

\ast ) > 0. From condition (25c) we then obtain

(28) Hj(x
k) < 0

for all k. Therefore, from (27) and (28) we conclude that \gamma 0
jHj(x

k)Gj(x
k) < 0 for

all k \in K, contradicting (25e). Thus \~\gamma H
j \not = 0. In particular, the whole vector of

multipliers (\lambda , \mu , \~\gamma H , \~\gamma G) is nonzero.
Now, we note that (24) and lower level strict complementarity imply \~\gamma H

i = 0 \forall i /\in 
IH(x\ast ) and \~\gamma G

i = 0 \forall i /\in IG(x
\ast ). Furthermore, let us consider a nonzero multiplier

\~\gamma H
i = \gamma H

i  - \gamma 0
i Gi(x

\ast ), i \in IH(x\ast ). If \~\gamma H
i > 0, then necessarily \gamma H

i > 0. By (25c),
Hi(x

k) < 0 for all k and then  - \~\gamma H
i Hi(x

k) > 0 for all k. If otherwise \~\gamma H
i < 0, then \gamma 0

i >
0. Since i /\in IG(x

\ast ), we have Gi(x
k) > 0 for all k large enough. Then, condition (25e)

implies Hi(x
k) > 0 for these indexes k, and consequently  - \~\gamma H

i Hi(x
k) > 0 for all

k large enough. Therefore, the nonzero vector (\lambda , \mu , \~\gamma H , \~\gamma G) and the sequence \{ xk\} 
(passing to a subsequence if necessary) violate the MPCC--quasi-normality condition.
This concludes the proof.

Theorem 4.5. Let x\ast be a feasible accumulation point of (MPCC) generated by
a generic PAKKT method (in particular, Algorithm 1). Suppose that x\ast satisfies
MPCC--quasi-normality and lower level strict complementarity. Then x\ast is a KKT
point of (MPCC).
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Proof. This is a direct consequence of Lemma 4.4, and Theorems 2.4 and 3.4.

Theorem 4.5 extends Theorem 3.2 of [23] (see also [10]) in the case where lower
level strict complementarity holds. This previous result deals exclusively with aug-
mented Lagrangian methods and was obtained assuming MPCC-LICQ, a much more
stringent condition than MPCC--quasi-normality. On the contrary, in addition to
allowing us to change MPCC-LICQ to the less stringent MPCC--quasi-normality con-
straint qualification, the PAKKT condition enables us to prove a result not exclusively
valid for Algorithm 1, but for any PAKKT method.

When we deal with a ``linear MPCC,"" i.e., an MPCC where all the functions h, g,
H, and G are affine, MPCC--quasi-normality is always satisfied (see, for instance, [19]).
In particular, Theorem 4.5 can be applied to this important class of problems.

Corollary 4.6. Suppose that h, g, H, and G are affine functions. If x\ast is a
feasible accumulation point of (MPCC) generated by a generic PAKKT method (in
particular, Algorithm 1) that satisfies lower level strict complementarity, then x\ast is a
KKT point of (MPCC).

4.2. Boundedness of the dual sequences generated by the method. An
important consequence of the above discussion is that the sequences of Lagrange
multiplier estimates associated with a PAKKT sequence are bounded whenever quasi-
normality holds at the limit point x\ast . More specifically, we have the following result.

Theorem 4.7. Let \{ xk\} be a PAKKT sequence for (P) with associated dual se-
quence \{ (\lambda k, \mu k)\} . If x\ast = limk x

k satisfies quasi-normality, then the dual sequence is
bounded.

Proof. Let us define \delta k = \| (1, \lambda k, \mu k)\| \infty for all k, and suppose that \{ \delta k\} is un-
bounded. By (7) and (8) we have

(29) lim
k

\lambda k
i

\delta k
\not = 0 \Rightarrow \lambda k

i hi(x
k) > 0 \forall k

and

(30) lim
k

\mu k
j

\delta k
\not = 0 \Rightarrow \mu k

j gj(x
k) > 0 \forall k,

for all i = 1, . . . ,m and j = 1, . . . , p. By the definition of \delta k, at least one of the
left-hand side limits of (29) or (30) is nonzero. Furthermore, condition (5) guarantees

(31) \nabla xL(x
k, \lambda k, \mu k) = \nabla f(xk) +\nabla h(xk)\lambda k +\nabla g(xk)\mu k \rightarrow 0.

Thus, dividing (31) by \delta k and taking the limit, the quasi-normality condition at x\ast is
violated. This concludes the proof.

Theorem 4.7 says that any PAKKT method generates a bounded sequence of
Lagrange multiplier estimates under quasi-normality. In particular, the dual sequences
generated by Algorithm 1, namely \{ \lambda k = \=\lambda k + \rho kh(x

k)\} and \{ \mu k = (\=\mu k + \rho kg(x
k))+\} 

(see step 2), are bounded under quasi-normality.

Corollary 4.8. Let \{ xk\} be the sequence generated by Algorithm 1 applied to
(P). Suppose that x\ast \in X is a feasible accumulation point of \{ xk\} with associated
infinite index set K, i.e., limk\in K xk = x\ast . Also, suppose that x\ast satisfies quasi-
normality. Then the associated dual sequences \{ \lambda k\} k\in K and \{ \mu k\} k\in K computed in
step 2 are bounded.
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Proof. By the proof of Theorem 4.1, if the dual sequence \{ (\lambda k, \mu k)\} k\in K generated
by Algorithm 1 is unbounded, then the method in fact generates a PAKKT sequence.
Thus, the statement follows from Theorem 4.7.

The boundedness of the multiplier estimates has a practical consequence for the
stability of Algorithm 1. In fact, we can expect, at least in theory, that, under the
quasi-normality CQ, the multipliers generated by the algorithm do not grow indefi-
nitely, avoiding numerical instabilities. In particular, the boundedness of \mu k in (15)
tends to enforce the nullity of V k if \mu max is sufficiently large to encompass all \mu k's,
leading to the choice \rho k+1 = \rho k in step 3. It is worth noticing that the interior point
method implemented in the popular IPOPT package tends to generate unbounded
multipliers even for linear problems of the NETLIB collection [20].

Evidently, Corollary 4.8 (and more generally Theorem 4.7) is valid for any CQ
stronger than quasi-normality, like pseudonormality, LICQ, MFCQ, CPLD, CRCQ,
and linear constraints (see Figure 4). It is surprising that the authors of [6] did not
prove this statement for CPLD. Actually, we did not establish this result in the first
publicly available version of this paper either, although it is a natural consequence
of our theory. Very recently, and citing this earlier version, Bueno, Haeser, and
Rojas reported this fact in a more general context, namely, of the generalized Nash
equilibrium problems (see [16, Theorem 6.3]). In this sense, it is not the first time
that Corollary 4.8 appears in the literature.

Finally, it is worth mentioning that, under the MPCC--quasi-normality condition,
Theorem 4.7 and Lemma 4.4 imply the boundedness of MPCC multiplier estimates
(26) generated by Algorithm 1 when applied to MPCCs. To the best of our knowl-
edge, this type of result for augmented Lagrangian methods has not been previously
established in the literature. We summarize this below.

Corollary 4.9. Let \{ xk\} be the sequence generated by Algorithm 1 applied to
(MPCC). Suppose that x\ast \in X is a feasible accumulation point of \{ xk\} with associ-
ated infinite index set K, and for which MPCC--quasi-normality is satisfied. Then the
associated sequence of the usual Lagrange multipliers \{ (\lambda k, \mu k, \gamma H,k, \gamma G,k, \gamma 0,k)\} k\in K

computed in step 2 is bounded. In particular, the associated sequence of MPCC mul-
tipliers \{ (\lambda k, \mu k, \~\gamma H,k, \~\gamma G,k)\} k\in K , where

\~\gamma H,k
i = \gamma H,k

i  - \gamma 0,k
i Gi(x

k) and \~\gamma G,k
i = \gamma G,k

i  - \gamma 0,k
i Hi(x

k)

for all k and i = 1, . . . , s, is bounded.

5. Conclusions and future work. A new sequential optimality condition,
called positive approximate KKT (PAKKT), is defined in the present work. The main
goal of this new condition is to take into account the control of the dual sequence in-
spired in the enhanced Fritz John optimality conditions developed by Hestenes [22].
This control is related to the external penalty theory and, therefore, it brings the
quasi-normality constraint qualification into play. As the Powell--Hestenes--Rockafellar
(PHR) augmented Lagrangian method has an intrinsic connection with the pure ex-
ternal penalty method, we were able to prove that this practical method converges
to KKT points under the quasi-normality constraint qualification, a new result in the
literature. In addition, we were able to prove the boundedness of Lagrange multiplier
estimates generated by the method.

We also provided the strict constraint qualification related to the PAKKT opti-
mality condition, called PAKKT-regular, and we proved that it is less stringent than
both quasi-normality and the cone continuity property (see [8]). As a consequence,
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we generalized all previous theoretical convergence results for the PHR augmented
Lagrangian method. In fact, we proved that this method reaches the new PAKKT
points. These points are stronger than the approximate KKT (AKKT) points defined
in [3], which had been used to analyze the convergence of this popular technique [3, 15].
In this sense, we highlighted the class of degenerate mathematical programs with com-
plementarity constraints (MPCCs) for which the gap between AKKT and PAKKT
points is drastic. Some new results in the MPCC context were also obtained. Fur-
thermore, we presented the relationship between PAKKT and other known sequential
optimality conditions in the literature.

From a practical point of view, the fact that the PAKKT condition is defined
independently of a particular method is very important for generalizing convergence
properties of existent algorithms, and this will be a topic for a future work. In par-
ticular, as PAKKT describes the behavior of the classical external penalty approach,
it is reasonable to expect that other methods based on this technique will be able to
achieve PAKKT points.

REFERENCES

[1] J. Abadie, On the Kuhn--Tucker theorem, in Nonlinear Programming, J. Abadie, ed., John
Wiley, New York, 1967, pp. 21--36.

[2] R. Andreani, E. G. Birgin, J. M. Mart\'{\i}nez, and M. L. Schuverdt, On augmented
Lagrangian methods with general lower-level constraints, SIAM J. Optim., 18 (2007),
pp. 1286--1309, https://doi.org/10.1137/060654797.

[3] R. Andreani, G. Haeser, and J. M. Mart\'{\i}nez, On sequential optimality conditions for
smooth constrained optimization, Optimization, 60 (2011), pp. 627--641, https://doi.org/
10.1080/02331930903578700.

[4] R. Andreani, G. Haeser, M. L. Schuverdt, and P. J. S. Silva, A relaxed constant positive
linear dependence constraint qualification and applications, Math. Program., 135 (2012),
pp. 255--273, https://doi.org/10.1007/s10107-011-0456-0.

[5] R. Andreani, G. Haeser, M. L. Schuverdt, and P. J. S. Silva, Two new weak constraint
qualifications and applications, SIAM J. Optim., 22 (2012), pp. 1109--1135, https://doi.
org/10.1137/110843939.

[6] R. Andreani, J. M. Mart\'{\i}nez, and M. L. Schuverdt, On the relation between constant
positive linear dependence condition and quasinormality constraint qualification, J. Optim.
Theory Appl., 125 (2005), pp. 473--485, https://doi.org/10.1007/s10957-004-1861-9.

[7] R. Andreani, J. M. Mart\'{\i}nez, and B. F. Svaiter, A new sequential optimality condition
for constrained optimization and algorithmic consequences, SIAM J. Optim., 20 (2010),
pp. 3533--3554, https://doi.org/10.1137/090777189.

[8] R. Andreani, J. M. Mart\'{\i}nez, A. Ramos, and P. J. S. Silva, A cone-continuity constraint
qualification and algorithmic consequences, SIAM J. Optim., 26 (2016), pp. 96--110, https:
//doi.org/10.1137/15M1008488.

[9] R. Andreani, J. M. Mart\'{\i}nez, A. Ramos, and P. J. S. Silva, Strict constraint qualifications
and sequential optimality conditions for constrained optimization, Math. Oper. Res., 43
(2018), pp. 693--1050, https://doi.org/10.1287/moor.2017.0879.

[10] R. Andreani, L. D. Secchin, and P. J. S. Silva, Convergence properties of a second order aug-
mented Lagrangian method for mathematical programs with complementarity constraints,
SIAM J. Optim., 28 (2018), pp. 2574--2600, https://doi.org/10.1137/17M1125698.

[11] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Athena Scien-
tific, Nashua, NH, 1996.

[12] D. P. Bertsekas, Nonlinear Programming, 2nd ed., Athena Scientific, Nashua, NH, 1999.
[13] D. P. Bertsekas, A. E. Ozdaglar, and P. Tseng, Enhanced Fritz John conditions for

convex programming, SIAM J. Optim., 16 (2006), pp. 766--797, https://doi.org/10.1137/
040613068.

[14] E. G. Birgin, R. A. Castillo, and J. M. Mart\'{\i}nez, Numerical comparison of augmented
Lagrangian algorithms for nonconvex problems, Comput. Optim. Appl., 31 (2005), pp. 31--
55, https://doi.org/10.1007/s10589-005-1066-7.

[15] E. G. Birgin and J. M. Mart\'{\i}nez, Practical Augmented Lagrangian Methods for Constrained
Optimization, SIAM, Philadelphia, PA, 2014, https://doi.org/10.1137/1.9781611973365.

https://doi.org/10.1137/060654797
https://doi.org/10.1080/02331930903578700
https://doi.org/10.1080/02331930903578700
https://doi.org/10.1007/s10107-011-0456-0
https://doi.org/10.1137/110843939
https://doi.org/10.1137/110843939
https://doi.org/10.1007/s10957-004-1861-9
https://doi.org/10.1137/090777189
https://doi.org/10.1137/15M1008488
https://doi.org/10.1137/15M1008488
https://doi.org/10.1287/moor.2017.0879
https://doi.org/10.1137/17M1125698
https://doi.org/10.1137/040613068
https://doi.org/10.1137/040613068
https://doi.org/10.1007/s10589-005-1066-7
https://doi.org/10.1137/1.9781611973365


766 R. ANDREANI, N. FAZZIO, M. SCHUVERDT, L. SECCHIN

[16] L. F. Bueno, G. Haeser, and F. N. Rojas, Optimality Conditions and Constraint Qualifica-
tions for Generalized Nash Equilibrium Problems and Their Practical Implications, Tech-
nical report, http://www.optimization-online.org/DB HTML/2017/12/6386.html, 2017.

[17] S. Dempe, Annotated bibliography on bilevel programming and mathematical programs with
equilibrium constraints, Optimization, 52 (2003), pp. 333--359, https://doi.org/10.1080/
0233193031000149894.

[18] N. Echebest, M. D. S\'anchez, and M. L. Schuverdt, Convergence results of an augmented
Lagrangian method using the exponential penalty function, J. Optim. Theory Appl., 168
(2016), pp. 92--108, https://doi.org/10.1007/s10957-015-0735-7.

[19] L. Guo and G.-H. Lin, Notes on some constraint qualifications for mathematical programs
with equilibrium constraints, J. Optim. Theory Appl., 156 (2013), pp. 600--616, https:
//doi.org/10.1007/s10957-012-0084-8.

[20] G. Haeser, O. Hinder, and Y. Ye, On the Behavior of Lagrange Multipliers in Con-
vex and Non-Convex Infeasible Interior Point Methods, Technical report, http://www.
optimization-online.org/DB HTML/2017/07/6139.html, 2017.

[21] G. Haeser and M. L. Schuverdt, On approximate KKT condition and its extension to-
continuous variational inequalities, J. Optim. Theory Appl., 149 (2011), pp. 528--539,
https://doi.org/10.1007/s10957-011-9802-x.

[22] M. R. Hestenes, Otimization Theory: The Finite Dimensional Case, John Wiley, New York,
1975.

[23] A. F. Izmailov, M. V. Solodov, and E. I. Uskov, Global convergence of augmented La-
grangian methods applied to optimization problems with degenerate constraints, including
problems with complementarity constraints, SIAM J. Optim., 22 (2012), pp. 1579--1606,
https://doi.org/10.1137/120868359.

[24] C. Kanzow and A. Schwartz, Mathematical programs with equilibrium constraints: Enhanced
Fritz John-conditions, new constraint qualifications, and improved exact penalty results,
SIAM J. Optim., 20 (2010), pp. 2730--2753, https://doi.org/10.1137/090774975.

[25] J. M. Mart\'{\i}nez and B. F. Svaiter, A practical optimality condition without constraint qual-
ifications for nonlinear programming, J. Optim. Theory Appl., 118 (2003), pp. 117--133,
https://doi.org/10.1023/A:1024791525441.

[26] J. M. Mart\'{\i}nez and E. A. Pilotta, Inexact Restoration Methods for Nonlinear Programming:
Advances and Perspectives, Springer, Boston, MA, 2005, pp. 271--291, https://doi.org/10.
1007/0-387-24255-4 12.

[27] L. Qi and Z. Wei, On the constant positive linear dependence condition and its applica-
tion to SQP methods, SIAM J. Optim., 10 (2000), pp. 963--981, https://doi.org/10.1137/
S1052623497326629.

[28] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, 1st ed., Grundlehren Math.
Wiss. 317, Springer, Berlin, Heidelberg, 1998, https://doi.org/10.1007/978-3-642-02431-3.

[29] M. D. S\'anchez and M. L. Schuverdt, A Second Order Convergence Augmented Lagrangian
Method Using Non-Quadratic Penalty Functions, Opsearch, submitted.

[30] H. Scheel and S. Scholtes, Mathematical programs with complementarity constraints: Sta-
tionarity, optimality, and sensitivity, Math. Oper. Res., 25 (2000), pp. 1--22, https:
//doi.org/10.1287/moor.25.1.1.15213.

[31] J. J. Ye and J. Zhang, Enhanced Karush--Kuhn--Tucker condition and weaker constraint
qualifications, Math. Program., 139 (2013), pp. 353--381, https://doi.org/10.1007/s10107-
013-0667-7.

http://www.optimization-online.org/DB_HTML/2017/12/6386.html
https://doi.org/10.1080/0233193031000149894
https://doi.org/10.1080/0233193031000149894
https://doi.org/10.1007/s10957-015-0735-7
https://doi.org/10.1007/s10957-012-0084-8
https://doi.org/10.1007/s10957-012-0084-8
http://www.optimization-online.org/DB_HTML/2017/07/6139.html
http://www.optimization-online.org/DB_HTML/2017/07/6139.html
https://doi.org/10.1007/s10957-011-9802-x
https://doi.org/10.1137/120868359
https://doi.org/10.1137/090774975
https://doi.org/10.1023/A:1024791525441
https://doi.org/10.1007/0-387-24255-4_12
https://doi.org/10.1007/0-387-24255-4_12
https://doi.org/10.1137/S1052623497326629
https://doi.org/10.1137/S1052623497326629
https://doi.org/10.1007/978-3-642-02431-3
https://doi.org/10.1287/moor.25.1.1.15213
https://doi.org/10.1287/moor.25.1.1.15213
https://doi.org/10.1007/s10107-013-0667-7
https://doi.org/10.1007/s10107-013-0667-7

	Introduction
	The positive approximate Karush–Kuhn–Tucker condition
	Relations
	Relations with other sequential optimality conditions
	Relations between PAKKT-regular and other known CQs

	Global convergence of the augmented Lagrangian method using the PAKKT-regular constraint qualification
	Strength of the PAKKT condition: AKKT vs. PAKKT methods
	Boundedness of the dual sequences generated by the method

	Conclusions and future work
	References

