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Abstract We present a new algorithm for solving bilevel programming problems
without reformulating them as single-level nonlinear programming problems. This
strategy allows one to take profit of the structure of the lower level optimization
problems without using non-differentiable methods. The algorithm is based on the
inexact-restoration technique. Under some assumptions on the problem we prove
global convergence to feasible points that satisfy the approximate gradient projection
(AGP) optimality condition. Computational experiments are presented that encourage
the use of this method for general bilevel problems.

Keywords Bilevel programming · Inexact-restoration · Optimization

This work was supported by PRONEX-Optimization (PRONEX—CNPq/FAPERJ
E-26/171.164/2003—APQ1), FAPESP (Grants 06/53768-0 and 05-56773-1) and CNPq.

R. Andreani · A. Friedlander (�) · S.A. Santos
Department of Applied Mathematics, IMECC-UNICAMP, University of Campinas, CP 6065,
13081-970 Campinas, SP, Brazil
e-mail: friedlan@ime.unicamp.br

R. Andreani
e-mail: andreani@ime.unicamp.br

S.A. Santos
e-mail: sandra@ime.unicamp.br

S.L.C. Castro
Faculdades Integradas Metropolitanas de Campinas-METROCAMP, Campinas, SP, Brazil
e-mail: suzana.castro@metrocamp.com.br

J.L. Chela
Banco Itaú and Universidade Presbiteriana Mackenzie, São Paulo, SP, Brazil
e-mail: chela@mackenzie.br

mailto:friedlan@ime.unicamp.br
mailto:andreani@ime.unicamp.br
mailto:sandra@ime.unicamp.br
mailto:suzana.castro@metrocamp.com.br
mailto:chela@mackenzie.br


308 R. Andreani et al.

1 Introduction

The bilevel programming problem that we address in this paper can be stated as
follows:

Minimize
x,y

F (x, y)

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H(x) = 0, x ∈ X

y = arg min
y

f (x, y)

s.t.

{
h(x, y) = 0
y ∈ Y.

(1)

We assume that � = X × Y , X ⊂ R
n and Y ⊂ R

m are multidimensional bounded
boxes, F : R

n+m → R, H : R
n → R

q , f (x, y) : R
n+m → R and h : R

n+m → R
p .

The essential feature of a bilevel problem is that a subset of its variables is required to
solve another optimization problem, parameterized by the remaining variables, called
the lower-level problem. Throughout the paper we assume that ∇F(x, y), ∇H(x),
∇2f (x, y), ∇2h(x, y) exist and are continuous in �.

Bilevel programming problems model two-level hierarchical systems and have
been studied since the seventies [4, 5]. In the last years some surveys and biblio-
graphic reviews appeared [9, 12, 13, 31], where history, applications, algorithms, the-
oretical questions and almost all relevant references can be found. Books on bilevel
programming and related issues are [2, 11, 20, 29].

We subdivide the algorithms for solving bilevel programming problems into three
classes, following Dempe [12]: algorithms that solve them globally, methods that find
stationary points or points that satisfy some local optimality condition, and heuris-
tics. Also inside these classes there are problems with particular structures for which
special algorithms have been designed. In [12] extensive bibliography is given that
covers most of the significant work done in the last years.

The reformulation of problem (1) as a single-level problem given next is frequently
used to solve the original bilevel problem and to obtain optimality conditions for it:

Minimize
x,y,μ,γ,α

F (x, y)

s.t. H(x) = 0, x ∈ X

∇yf (x, y) + ∇yh(x, y)μ − γ + α = 0

h(x, y) = 0

γi(yi − �i) = 0, i = 1, . . . ,m

αi(ui − yi) = 0, i = 1, . . . ,m

y ∈ Y ≡ [�,u], γ ≥ 0, α ≥ 0.

(2)

The use of algorithms for nonlinear programming to solve bilevel problems used
to be neglected in the past, because it was thought that the essential non-regularity
of the feasible points of their reformulation as single-level problems, via their KKT
conditions, was a serious drawback. These single-level problems include comple-
mentarity constraints to describe the feasible region. In [1] this issue is extensively
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discussed and it is shown that methods that converge to points that satisfy an optimal-
ity condition (AGP, which stands for Approximate Gradient Projection), introduced
in [25], have good chances to converge to the solution of mathematical programming
problems with complementarity constraints. In [17] superlinear local convergence is
shown when SQP methods are used to solve a class of mathematical programs with
equilibrium constraints near a strongly stationary point.

The results related with the reformulation (2), numerical experimentation with me-
chanical engineering problems, and the discussions in [24] encouraged us to present
a new approach for solving two-level problems.

The algorithm we present here belongs to the second class in Dempe’s classifica-
tion and, under suitable conditions, finds points that verify the AGP local optimality
condition given in [25]. The method is strongly based in the inexact-restoration tech-
nique introduced in [22]. Inexact restoration was designed to solve general nonlinear
optimization problems, that is, problems with nonlinear objective function and non-
linear constraints. It is an iterative method that deals separately with feasibility and
optimality at each iteration. In the feasibility stage, called restoration phase, it seeks
for a more feasible point considering the true function and constraints. In the opti-
mality phase it looks for a point (a trial point) that reduces sufficiently the value of a
Lagrangian defined by the original data, in a tangent set that approximates the feasi-
ble region, within a trust region centered at the point obtained in the feasibility phase.
Sufficient decrease of a merit function that balances feasibility and optimality deter-
mines the acceptance of the trial point obtained in the optimization phase. If the trial
point is not accepted, the size of the trust region is reduced. The user is free to use
any algorithm in each phase, making the choice of problem-oriented solvers possible.

In the problems addressed in the current work, a feasible point is a global solution
of an optimization problem. Therefore, a global optimization algorithm should be
used, if available, in the restoration phase. If the lower level problems are convex for
any x ∈ X, there exist many efficient algorithms to solve them, and even algorithms
designed for special instances of them. We require the algorithm used in the restora-
tion phase to be globally convergent in the sense that limit points are stationary.

The restoration phase of the algorithm operates on the original lower level prob-
lem, that is, we do not reformulate the bilevel problem as a single-level optimization
problem. In the optimization phase we obtain a new point that reduces the value of
the true Lagrangian of the first-level objective function on the intersection of a linear
approximation of the feasible set with a trust region centered at the point obtained in
the restoration phase. The point is accepted as a new iterate if it reduces sufficiently
the value of a merit function. It is proved that the algorithm is well defined with mild
assumptions on the problem.

In the optimization phase any minimization algorithm for linearly constrained
problems can be employed. It is important to note that we use neither non-
differentiable nor smoothing techniques.

Our main contribution in this article is the introduction of a well defined algorithm
for solving a class of nonlinear bilevel programming problems without reformulat-
ing them as single-level problems and without using non-differentiable techniques.
The conditions under which we can apply the proposed algorithm are mild. We also
present global convergence results under more restrictive conditions. We are aware
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that strong theoretical convergence results are important and desirable, but we do not
think that the lack of them turns the algorithms unusable. For instance, the very pop-
ular BFGS method for unconstrained minimization, whose global convergence has
been proved just for convex functions, is generally considered one of the most effi-
cient methods for unconstrained optimization. Certainly, it will continue to be used
although recently in [10, 26] examples were given showing that it can fail to con-
verge in the general case. We think that it is essential to prove the well-definiteness
of a proposed algorithm and then, of course, seek for results concerning its global
convergence. Numerical experiments might encourage its usage and finally, exten-
sive experimentation with a good implementation will tell if it is robust or not. In this
paper we adopt this point of view.

Recently in [8] a trust-region algorithm is presented that also preserves the bilevel
structure of the problem, and does not involve the use of non-differentiable tech-
niques. In [7] a collection of test problems for the aforementioned algorithm is given.
The kind of problems studied in these articles share the features of the problems we
intend to solve here, thus their test problems have been included in our numerical ex-
periments. It would be interesting to compare theoretical properties of this algorithm
with ours, but in [8], where the algorithm is introduced, there are no convergence
results. It is very difficult to find in the literature algorithms for problems with the
generality proposed here, with strong theoretical properties, accompanied by numer-
ical experiments. Even to find a good set of large test problems is not easy and we
share the same difficulties mentioned in the last section of [8].

Our method was tested with many bilevel problems with good results. We wanted
to check if our algorithm was able to find the global solutions of the problems of the
collection [7] and other problems found in the literature. The efficiency will strongly
depend on the particular algorithms chosen for the different phases, and this choice
should consider the problem’s structure if possible. Therefore, a comparison with the
algorithm proposed in [8] in terms of efficiency is not made. Shape optimization and
truss topology design problems in mechanical engineering motivated us to study and
try to develop an algorithm for bilevel programming. We include some comments on
experiments with this application. See [6].

In order to simplify as much as possible the notation of this paper we will define
the algorithm and present the theoretical analysis considering the following bilevel
problem:

Minimize
x,y

F (x, y)

x ∈ X

s.t.

⎧
⎪⎨

⎪⎩

y = arg min
y

f (x, y)

s.t.

{
h(x, y) = 0
y ≥ 0.

(3)

It is easy to extend the analysis using the same arguments if we include the upper
level constraints H(x) = 0 and the bounded box Y , together with the corresponding
complementarities and the additional vector of multipliers associated with the upper
bounds of y that arise in this case.

By this we mean that the algebraic manipulations in the proofs of the results given
in the next sections can be extended straightforward when y ∈ Y replaces y ≥ 0. We
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take the liberty of using compactness of the y domain as assumed in the original
formulation (1) of the problem.

This paper is organized as follows. In Sect. 2 we comment on the inexact-
restoration method for standard nonlinear programming. In Sect. 3 we present the
algorithm for bilevel programs and we prove that it is well defined under mild as-
sumptions. In Sect. 4 we prove results concerning the feasibility of limit points of se-
quences generated by the algorithm. We also give conditions that enable us to prove
global convergence to points satisfying the AGP optimality condition. Moreover, we
discuss the hypotheses on the problem that imply the conditions given before. In
Sect. 5 we present numerical experiments and analyze some possible outcomes when
the hypotheses given in the previous section fail to be true. We comment on conclu-
sions and future research in Sect. 6.

2 Inexact-restoration methods

Inexact-restoration methods are motivated by the bad behavior of feasible methods
in the presence of strong nonlinearities. To overcome this drawback, in [21–23] the
authors introduce algorithms that keep feasibility under control but are tolerant when
the iterates are far from the solution. An interesting discussion about the background,
the main features of these methods and their analogies and differences with sequential
quadratic programming is presented in [24].

We describe now the main features of the inexact-restoration method that moti-
vated our algorithm for bilevel problems. This method was proposed to solve prob-
lems of the form

Minimize
x∈�

f (x)

s.t. C(x) = 0
(4)

where f : R
n → R and C : R

n → R
p are continuously differentiable and � ⊂ R

n

is a closed and convex set. It is an iterative method that generates feasible iterates
with respect to � (xk ∈ � for all k). Each iteration consists of two phases, called
restoration and minimization phases, respectively. Through the whole paper we shall
denote ‖.‖ an arbitrary vector norm and ‖.‖∞ the supremum norm. For simplicity
|.| will denote the Euclidean norm, although in many cases it can be replaced by
an arbitrary norm. In the restoration phase, if the current point is not feasible with
respect to C(x) = 0, we find an intermediate point yk ∈ � such that, for given β > 0
and 0 ≤ r < 1, ‖yk − xk‖ ≤ β|C(xk)| and the infeasibility at yk is a fraction of the
infeasibility at xk (|C(yk)| ≤ r|C(xk)|). The values r and β are parameters of the
algorithm and remain the same for all iterations. If the current point is feasible with
respect to C(x) = 0, we define yk = xk .

After the restoration phase we define a linear approximation of the feasible region
of (4), containing the point yk . This approximation is given by

π(yk) = {z ∈ � | C′(yk)(z − yk) = 0}. (5)

Next, a direction called Approximate Gradient Projection (AGP) and denoted by
dtan(y

k) is computed as,

dtan(y
k) = Pk[yk − η∇xL(yk, λk)] − yk,
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where L(x,λ) = f (x) + C(x)T λ, Pk[w] is the orthogonal projection of w on π(yk)

and η > 0 is an arbitrary scaling parameter, independent of k. It turns out that dtan(y
k)

is a feasible descent direction for L on π(yk) and its norm is used to test the AGP op-
timality condition introduced in [25]. A feasible point w satisfies the AGP optimality
condition if there exists a sequence {wk} that converges to w such that dtan(w

k) → 0.
Finally, before proceeding to the minimization step, a trust region is defined by

Bk,i = {x ∈ R
n | ‖x − yk‖ ≤ δk,i} (6)

and δk,i > 0.
The goal of the minimization phase is to obtain a trial point zk,i ∈ Bk,i

⋂
π(yk)

that sufficiently reduces L(. , λk). The first trial point at each iteration is obtained
using a trust-region radius δk,0 ≥ δmin, where δmin is independent of k. Successive
trust-region radius are tried until a point zk,i is found that sufficiently reduces the
value of a merit function compared with its value at xk .

The merit function used is a variant of the sharp Lagrangian introduced in [28],
given by

�(x,λ, θ) = θL(x,λ) + (1 − θ)|C(x)| (7)

where θ ∈ (0,1] is a penalty parameter that gives different weights to the objective
function and the feasibility. The choice of θ at each iteration depends on practical and
theoretical considerations. See [22].

In the next section we present an algorithm to solve bilevel problems based on the
inexact-restoration method described above. We will discuss in detail how the central
ideas of the inexact-restoration technique are adapted for the solution of two-level
problems. The reader interested in the method for ordinary nonlinear programming
problems should consult [22].

3 Description of the algorithm

In this section we consider the simplified problem (3). Define

C(x, y,μ,γ ) =

⎛

⎜
⎜
⎜
⎜
⎝

∇yf (x, y) + ∇yh(x, y)μ − γ

h(x, y)

γ1y1
...

γmym

⎞

⎟
⎟
⎟
⎟
⎠

where (μ,γ ) ∈ 
 ⊂ R
p × R

m. The Karush-Kuhn-Tucker conditions of the lower
level problem in (3), parameterized by x and denoted by KKT(x), are

C(x, y,μ,γ ) = 0, y ≥ 0, γ ≥ 0. (8)

Define

L(x, y,μ,γ,λ) = F(x, y) + C(x, y,μ,γ )T λ, (9)
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with λ ∈ R
m×R

p ×R
m. To facilitate the reading we denote s = (x, y,μ,γ ) ∈ �×
,

and so (9) turns into

L(s,λ) = F(x, y) + C(s)T λ.

We propose the following algorithm to solve (3). It is an iterative method that
generates a sequence {sk} = {(xk, yk,μk, γ k)}. The parameters η > 0, M > 0, θ−1 ∈
(0 1), δmin > 0, τ1 > 0, τ2 > 0 are given as well as the initial approximation s0 ∈
� × 
, the initial vector of Lagrange multipliers λ0 ∈ R

2m+p and a sequence of
positive numbers ωk such that

∑∞
k=0 ωk < ∞.

Assume that for k ∈ {0,1,2, . . .}, sk ∈ � × 
, λk ∈ R
2m+p and θk−1, θk−2, . . . , θ0

have been computed. The steps for obtaining sk+1 = (xk+1, yk+1,μk+1, γ k+1) and
λk+1 are given below.

Algorithm 3.1

Step 1. Initialization of penalty parameter.
Define

θmin
k = min{1, θk−1, . . . , θ−1}, (10)

θ
large
k = min{1, θmin

k + ωk} (11)

and

θk,−1 = θ
large
k .

Step 2. Restoration phase.
Find an approximate minimizer ȳ ≥ 0 and a pair of estimated Lagrange

multiplier vectors (μ̄, γ̄ ) ∈ 
 of problem

Minimize
y

f (xk, y)

s.t. h(xk, y) = 0
y ≥ 0,

(12)

and define zk = (xk, ȳ, μ̄, γ̄ ).

Step 3. Tangent Cauchy direction.
Define dtan(z

k) ≡ dk
tan, π(zk) ≡ πk .

Compute dk
tan = Pk[zk − η∇Ls(z

k, λk)] − zk , where Pk[.] is the orthogo-
nal projection on πk , and

πk = {s ∈ � × 
 | C′(zk)(s − zk) = 0}. (13)

If

zk = sk and dk
tan = 0, (14)

terminate the execution of the algorithm returning (xk, yk) as the final point.
Else, set i ← 0, choose δk,0 ≥ δmin and continue.
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Step 4. Minimization phase in πk .
If dk

tan = 0, set vk,0 = zk . Else, compute t
k,i
break = min{1, δk,i/ ‖dk

tan‖} and

find a point vk,i ∈ πk such that for some 0 < t ≤ t
k,i
break,

L(vk,i , λk) ≤ max{L(zk + tdk
tan, λ

k), L(zk, λk) − τ1δk,i , L(zk, λk) − τ2}
(15)

with

γ ≥ 0 (16)

and

‖vk,i − zk‖∞ ≤ δk,i . (17)

Step 5. Trial multipliers.
If dk

tan = 0 define λ
k,i
trial = λk . Else, Compute λ

k,i
trial ∈ R

2m+p such that

|λk,i
trial| ≤ M .

Step 6. Predicted reduction.
Define, for all θ ∈ [0,1],

Predk,i (θ) ≡ θ [L(sk, λk) − L(vk,i , λk) − C(zk)T (λ
k,i
trial − λk)]

+ (1 − θ)[|C(sk)| − |C(zk)|]. (18)

Compute θk,i as the maximum θ ∈ [0, θk,i−1] that verifies

Predk,i (θ) ≥ 1

2
[|C(sk)| − |C(zk)|]. (19)

Define Predk,i = Predk,i(θk,i).
Step 7. Comparison between actual and predicted reduction.

Compute

Aredk,i = θk,i[L(sk, λk) − L(vk,i , λ
k,i
trial)] + (1 − θk,i)[|C(sk)| − |C(vk,i)|].

If

Aredk,i ≥ 0.1Predk,i (20)

update

sk+1 = vk,i , λk+1 = λk,i , θk = θk,i , δk = δk,i

Aredk = Aredk,i , Predk = Predk,i (21)

and terminate iteration k.
Else, choose δk,i+1 ∈ [0.1δk,i ,0.9δk,i], set i ← i + 1 and go to Step 4.

At Step 2 we apply any globally convergent optimization algorithm to solve the
second level minimization problem parameterized by xk . Once an approximate min-
imizer ȳ and a pair of corresponding estimated Lagrange multiplier vectors are ob-
tained, we compute the current set πk and the direction dk

tan. The set πk is a linear
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approximation of the region described by KKT(xk) containing zk = (xk, ȳ, μ̄, γ̄ ). If
the stopping criterion (14) is not satisfied we define vk,0 = zk and a radius for the
trust region δk,0 ≥ δmin. We use vk,0 to initialize an algorithm for minimizing non-
linear problems with linear constraints to obtain a sufficient decrease of L(s,λ). The
trust region is described by simple bounds since we use the supremum norm. We
update the multipliers λk,0 imposing that |λk,0| ≤ M . As long as the merit function

�(s,λ, θ) = θL(s,λ) + (1 − θ)|C(s)| (22)

is not sufficiently decreased as required in Step 7, we reduce the trust-region radius
and repeat the minimization step obtaining points vk,i ∈ πk . When the desired reduc-
tion in the merit function value is obtained, we stop the iteration and update all the
data.

3.1 Well-definiteness of the algorithm

The well-definiteness of the inexact restoration algorithm for standard nonlinear pro-
gramming problems discussed in the previous section is proved in Theorem 4.1
of [22]. In order to obtain a corresponding proof of this theorem for the bilevel pro-
gramming case the following assumptions are sufficient.

A1. The set � × 
 is compact and convex.
A2. There exists L1 > 0 such that, for all (x, y), (v,w) ∈ �,

|∇F(x, y) − ∇F(v,w)| ≤ L1|(x, y) − (v,w)|.
A3. There exists L2 > 0 such that, for all (x, y), (v,w) ∈ �,

|∇2f (x, y) − ∇2f (v,w)| ≤ L2|(x, y) − (v,w)|,
|∇2h(x, y) − ∇2h(v,w)| ≤ L2|(x, y) − (v,w)|.

A4. At the current point C(xk, yk, γ k,μk) 
= 0, the approximate solution and esti-
mated Lagrange multipliers (ȳ, γ̄ , μ̄) obtained at Step 2 of Algorithm 3.1 verify
that γ̄ ≥ 0 and

|C(xk, ȳ, μ̄, γ̄ )| < |C(xk, yk,μk, γ k)|.
If C(xk, yk,μk, γ k) = 0, then (xk, ȳ, μ̄, γ̄ ) = (xk, yk,μk, γ k).

With these assumptions the well-definiteness of Algorithm 3.1 is proved as in
Theorem 4.1 in [22]. This result encouraged us to run the algorithm and we observed
that the solution was obtained in a large number of test problems. Mild hypotheses on
the problem will guarantee A4 and we discuss them in the next section. The algorithm
can be applied to a large class of problems without getting stuck at an iteration.

We want to emphasize that in Step 2 of Algorithm 3.1 a minimization procedure
should be used if we want to take profit of the bilevel structure. If the lower level
problem is not convex, a global optimization algorithm, if available is the best op-
tion. As an example, consider a bilevel program such that the lower level problem
is to find the smallest eigenvalue and the corresponding eigenvector of a symmetric
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matrix that depends on several parameters. If this bilevel program is reformulated
as a standard single-level problem substituting the lower level problem by the para-
meterized KKT conditions, the other eigenvalues and corresponding eigenvectors are
stationary points as well. The chances of any nonlinear programming algorithm to
reach the desired solution are very low. Even SQP methods, that perform efficiently
when applied to mathematical programs with complementarity constraints, will prob-
ably fail in this case.

4 Convergence results

In this section we discuss the theoretical results obtained for Algorithm 3.1.

4.1 Feasibility

We use a modification of A4 to prove that any limit point of Algorithm 3.1 is a
stationary point of some lower level problem. A point (x, y) is feasible for the bilevel
problem (3) if y is the global solution of the lower level problem parameterized by x.

Assumptions A1, A2, A3 and the next assumption instead of A4, are sufficient to
prove the theorems of this section.

A5. There exists r ∈ [0 1) independently of k, such that the approximate solution and
estimated Lagrange multipliers (ȳ, γ̄ , μ̄), obtained at Step 2 of Algorithm 3.1
verify that γ̄ ≥ 0 and

|C(xk, ȳ, μ̄, γ̄ )| ≤ r|C(xk, yk,μk, γ k)|.
Moreover, if C(xk, yk,μk, γ k) = 0, (xk, ȳ, μ̄, γ̄ ) = (xk, yk,μk, γ k).

The proof of the following theorems are obvious adaptations of Theorems 3.4
and 3.5 in [23].

Theorem 4.1 If Algorithm 3.1 generates an infinite sequence, then

lim
k→∞ Aredk = 0.

Theorem 4.2 If Algorithm 3.1 does not stop in a finite number of iterations

lim
k→∞|C(sk)| = 0.

This means that any limit point of Algorithm 3.1 is a stationary point of some
lower level problem. In other words, it is a feasible point of the reformulation of (3)
given by

Minimize
x,y,μ,γ

F (x, y)

s.t. ∇yf (x, y) + ∇yh(x, y)μ − γ = 0

h(x, y) = 0

γiyi = 0, i = 1, . . . ,m

y ≥ 0, γ ≥ 0.

(23)
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If we find the global minimizer at Step 2 or if the lower level problem is convex for all
x ∈ X, any limit point of Algorithm 3.1 is a feasible point of the bilevel problem (3).

4.2 Optimality

We assume now A1, A2, A5 and assumption A6 stated below.

A6. There exists β > 0, independently of k, such that

‖sk − zk‖ ≤ β|C(sk)|. (24)

The AGP optimality condition was introduced in [25] for single-level non-
linear programming problems. The set of local minimizers of a nonlinear pro-
gramming problem is contained in the set of AGP points and this set is strictly
contained in the set of Fritz-John points.

The vector dtan(s) can be defined for any s ∈ �×
 as in Step 3 of Algorithm 3.1.
This definition depends just on the problem and we state two optimality conditions
for the bilevel programming problem (3) based on the AGP condition:

• Weak AGP.
A feasible point s∗ of problem (23) satisfies the weak AGP condition of

problem (3), if there exists a sequence {sk} that converges to s∗ and such that
dtan(s

k) → 0.
• Strong AGP.

A point s∗ = (x∗, y∗,μ∗, γ ∗) such that C(s∗) = 0 and (x∗, y∗) is feasible for
problem (3) satisfies the strong AGP condition of problem (3), if there exists a
sequence {sk} that converges to s∗ and such that dtan(s

k) → 0.

The proof of the next theorem is obtained using the same arguments as in the proof
of the convergence results for the inexact-restoration method given in [22, 23].

Theorem 4.3 If assumptions A1, A2, A3 and A5 are satisfied, {sk} is an infinite
sequence generated by Algorithm 3.1 and {zk} is the sequence defined at Step 2, then

1. |C(sk)| → 0.
2. Every limit point of {sk} is a feasible point of the reformulated problem (23).
3. If, for all x ∈ X, a global solution of the lower level problem is found then any

limit point is a feasible point of problem (3).
4. If s∗ is a limit point of {sk}, there exists an infinite set K1 ⊂ {0,1,2, . . .} such that

limk∈K1 sk = s∗ and limk∈K1 zk = s∗.
5. There exist an infinite set K2 ⊂ {0,1,2, . . .} such that limk∈K2 dk

tan = 0.
6. There exists an infinite set K3 ⊂ {0,1,2, . . .} and s∗ ∈ � × 
 such that

lim
k∈K3

sk = lim
k∈K3

zk = s∗, C(s∗) = 0 and lim
k∈K3

dk
tan = 0

7. There exists a limit point and every limit point is a weak AGP point.
8. If, for all x ∈ X, a global solution of the lower level problem is found then any

limit point is a strong AGP point.
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4.3 Sufficient conditions for the assumptions

The assumed compacity of the set � guarantees that for each x ∈ X, there exists
a solution of the corresponding lower level problem. Assumptions A4, A5, A6 are
made on the progress of the procedure and it is interesting to find conditions on the
lower level problem that will ensure their validity. To verify A4 and A5, a sufficient
condition is that for any given x, a stationary point of the lower level problem exists.
The next hypotheses on the lower level problem in (3) guarantee that A6 is verified.

A7. For each x ∈ X, the solution of the lower-level problem y(x) ∈ Y is a regular
point, in the sense that the active constraints at y(x) are linearly independent.

A8. The matrices [∇2
yf (x, y(x)) + ∑p

i=1 ∇2
yhi(x, y(x))μ(x)], associated with the

second-order conditions of the lower level problems are positive definite in the
subset of Y defined by the intersection of the null space of ∇h(x, y(x))T with
the set of vectors such that the j -th component is zero for any index j such that
yj (x) = 0.

A9. Every solution s(x) of (8) verifies

yi(x) + γi(x) > 0 ∀i ∈ {1, . . . ,m}. (25)

We proceed to prove, through some lemmas, that the error bound hypothesis A6
is verified under assumptions A1, A2, A3, A7, A8, A9.

We define

C′
y,μ,γ (s(x)) =

(
W(s(x)) ∇yh(x, y(x)) −Im

∇yh(x, y(x))T 0 0
diag(γ (x)) 0 diag(y(x))

)

,

where W(s(x)) = [∇2
yf (x, y(x)) + ∑p

i=1 ∇2
yhi(x, y(x))μi(x)]. Given a vector v,

D = diag(v) is a diagonal matrix such that dii = vi and Im is the m × m identity
matrix.

Lemma 4.4 The matrix C′
y,μ,γ (s(x)) is non-singular for any x ∈ X.

Proof We will prove that if a vector is in the null space of C′
y,μ,γ (s(x)) it is neces-

sarily the null vector.
Let u ∈ R

m, v ∈ R
p and w ∈ R

m be such that:

C′
y,μ,γ (s(x))

(
u

v

w

)

= 0

then,

W(s(x))u + ∇yh(x, y(x))v − w = 0, (26)

∇yh(x, y(x))T u = 0, (27)

diag(γ (x))u + diag(y(x))w = 0. (28)
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By A9 and (28) it follows that

uT w = 0. (29)

Pre-multiplying equation (26) by uT we get

uT W(s(x))u + uT ∇yh(x, y(x))v − uT w = 0,

by (27) and (29) we obtain

uT W(s(x))u = 0,

and by (27) and A8 we get u = 0.
Now, we need to analyze the following equations

∇yh(x, y(x))v − w = 0, (30)

diag(y(x))w = 0. (31)

Let J ⊂ {1, . . . ,m} be such that yi(x) = 0 for i ∈ J and let J̄ = {1, . . . ,m}\J .
Due to A9, for i ∈ J̄ we have that γi(x) = 0.

By (31) we have that wi = 0 for i ∈ J̄ . Therefore (30) reads

(∇yh(x, y(x)) − Im)

(
v

w

)

= 0

or

(∇yh(x, y(x)) − IJ )

(
v

wJ

)

= 0

where IJ is a sub-matrix of the m-dimensional identity matrix Im corresponding to
the indices in J and wJ is the vector of the non zero components of w.

Assumption A7 means that (∇yh(x, y(x)) − IJ ) is a full-rank matrix, therefore

v = 0, wJ = 0.

We conclude that necessarily u = 0, v = 0 and w = 0 and C′
y,μ,γ (s(x)) is nonsin-

gular for any x ∈ X. �

To simplify the notation in the next lemmas we define υ(x) ∈ R
2m+p , υ(x) ≡

(y(x),μ(x), γ (x)) and υ ∈ R
2m+p), υ ≡ (y,μ,γ ).

By the previous lemma we can define a function ϒ : X → R
2m+p×2m+p , such that

ϒ(x) = [C′
y,μ,γ (x,υ(x))]−1.

Let V (υ(x), ε) ≡ {υ ∈ Y × 
 | ‖υ − υ(x)‖ < ε}.

Lemma 4.5 There exist ε1 and β > 0 such that for all x ∈ X, |ϒ(x)| ≤ β and ϒ(x)

coincides with the local inverse operator of C(x, .) for all υ ∈ V (υ(x), ε1).
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Proof The continuity of ϒ(x) follows from the continuity of C′ and υ(x). The com-
pactness of X implies that there exists a number β > 0 such that |ϒ(x)| ≤ β for all
x ∈ X. For each fixed value of x ∈ X the continuously differentiable operator that
associates to each υ the vector C(x,υ) verifies the hypothesis of the inverse function
theorem at υ(x). Therefore, there exists ε1 > 0 such that C(x, .) admits a continu-
ously differentiable local inverse operator G(x) : C(x,V (υ(x), ε1)) �→ V (υ(x), ε1)

and the Jacobian [G(x)]′ coincides with ϒ(x). By hypotheses A1, A2 and the exis-
tence of the uniform bound β of ϒ(x), ε1 is independent of x. �

In the next lemma we prove the existence of a local error bound independent of x ∈ X.

Lemma 4.6 There exist ε > 0 and β > 0 such that for all x ∈ X

‖υ − υ(x)‖ ≤ β|C(x,υ)|, ∀υ ∈ V (υ(x), ε).

Proof The Taylor expansion of G(x) around C(x,υ(x)) = 0 reads

G(x)(C(x,υ)) = G(x)(C(x,υ(x)))

+ [G(x)]′(C(x,υ(x)))(C(x,υ) − C(x,υ(x)))

+ R(C(x,υ) − C(x,υ(x)))

where

lim
C(x,υ)→C(x,υ(x))

R(C(x,υ) − C(x,υ(x)))

|C(x,υ) − C(x,υ(x))| = 0.

Let ε1 be as in Lemma 4.5, then using that G(x) is a local inverse of C(x, .)

in V (υ(x), ε1), the definition of ϒ(x) and that C(x,υ(x)) = 0, we get that, for all
υ ∈ V (υ(x), ε1),

(x,υ) = (x,υ(x)) + ϒ(x)C(x,υ) + R(C(x,υ))

and

(x,υ) − (x,υ(x)) = ϒ(x)C(x,υ) + R(C(x,υ)),

where

lim
C(x,υ)→0

R(C(x,υ))

|C(x,υ)| = 0.

Therefore

‖υ − υ(x)‖ ≤ β|C(x,υ)| + |R(C(x,υ))|. (32)

Given any α > 0, by the definition of R, there exists ε2 > 0 such that

|C(x,υ)| ≤ ε2 ⇒
∥
∥
∥
∥
R(C(x,υ))

|C(x,υ)|
∥
∥
∥
∥ ≤ α.
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By the continuity of C, the compactness of X and the fact that C(x,υ(x)) = 0
there exists ε3 > 0, independently of x, such that

|C(x,υ)| ≤ ε2 (33)

for all υ ∈ V (υ(x), ε3).
Therefore, for the given α > 0

‖R(C(x,υ))‖ ≤ α|C(x,υ)|, (34)

for all

υ ∈ V (υ(x), ε3) ∩ V (υ(x), ε1). (35)

Using (33), (34) and (32), we get

‖υ − υ(x)‖ ≤ (β + α)|C(x,υ)| (36)

for all υ ∈ V (υ(x), ε3) ∩ V (υ(x), ε1).
Taking ε = min{ε3, ε1} and renaming β + α as β we get the desired result. �

Now we proceed to prove the existence of a global error bound. Although we as-
sume in the next lemma that y(x) is the unique stationary point of the lower level
problem, it is possible to extend the arguments used for an arbitrary number or sta-
tionary points satisfying A7, A8 and A9.

Lemma 4.7 There exists β > 0 such that

‖υ − υ(x)‖ ≤ β|C(x,υ)|
for all (x,υ) ∈ � × 
.

Proof By Lemma 4.6 there exist ε and β such that

‖υ − υ(x)‖ ≤ β|C(x,υ)|
for all υ ∈ V (υ(x), ε). For each x ∈ X consider the following set

�ε(x) ≡ {υ ∈ Y × 
 | ‖υ − υ(x)‖ ≥ ε}.
The set �ε = ⋂

x∈X �ε(x) is compact and υ(x) /∈ �ε for all x ∈ X.
Due to the compactness of �ε , |C(x,υ)| assumes maximum and minimum values

in �ε , WM and Wm, respectively, independently of x. Wm > 0 because υ(x) /∈ �ε .
Similarly ‖υ − υ(x)‖ also assumes maximum and minimum values UM and Um

in �ε , respectively. Moreover, Um > 0 because υ(x) /∈ �ε .
For any (x,υ) ∈ � × 
 one of the next two possibilities is true,

υ ∈ V (υ(x), ε)

or

υ /∈ V (υ(x), ε).
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In the first case we apply directly Lemma 4.5. In the second case we obtain, using the
upper and lower bounds UM and Wm, that

‖υ − υ(x)‖
|C(x,υ)| ≤ UM

Wm
.

Renaming max{β, UM
Wm

} as β we finish our proof. �

Theorem 4.8 Let (x,υ) ∈ � × 
 be such that |C(x,υ)| 
= 0 and r ∈ [0 1). There
exist ῡ = (ȳ, μ̄, γ̄ ) ∈ � × 
 and a positive constant β , such that β is independent
of x, that verify

|C(x, ῡ)| ≤ r|C(x,υ)| (37)

and

‖(x, ῡ) − (x,υ)‖ ≤ β|C(x,υ)|. (38)

Proof By the uniform continuity of C, there exists an ε > 0, independent of x, such
that if

‖(x, ῡ) − (x,υ(x))‖ ≤ ε,

then

|C(x, ῡ)| ≤ r|C(x,υ)|, (39)

where (x,υ(x)) is the unique solution of C(x,υ) = 0.
Let (x, ῡ) be a point within distance ε from the solution point.
By the previous lemmas we know that there exists a positive number β , indepen-

dent of x, such that

‖(x,υ) − (x,υ(x))‖ ≤ β|C(x,υ)| (40)

and

‖(x, ῡ) − (x,υ(x))‖ ≤ β|C(x, ῡ)|. (41)

Applying the triangular inequality and (39) we obtain

‖(x, ῡ) − (x,υ)‖ ≤ β(1 + r)|C(x,υ)|. (42)

Finally, renaming β(1 + r) as β we get the desired result. �

5 Numerical experiments

Algorithm 3.1 was implemented in Fortran 77 in a Pentium(R) 4, 2.20 GHz,
512 MB of RAM. The main algorithmic parameters used were r = 0.99, θ−1 = 0.5,
δ0 = 10. The first two were inherited from Martínez and Pilotta [23], whereas the
third was a choice that fitted in well with all the tests. The penalty parameter θ is
decreased when the feasibility progress in Step 2 of the algorithm largely exceeds the
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optimality progress. Large feasibility improvements generally happen at the first iter-
ations, therefore a significant decrease of θ will probably occur in the beginning. This
is the motivation for using a non monotonic strategy to update the penalty parame-
ter. The parameter β is not given explicitly. Instead, in problems where the sufficient
conditions for its existence fail to be true, we monitor the growth of the quotients
‖zk − sk‖/|C(sk)|. We finish the restoration step when the feasibility error is suffi-
ciently reduced and the corresponding quotient is not greater than ten times the quo-
tient obtained in the restoration step of the previous iteration. If this is not possible we
stop the algorithm and declare failure in this step. Actually this situation never hap-
pened and we comment this fact later. Convergence at Step 2 was declared whenever
|C(sk)| ≤ 10−4. A worth mentioning aspect that helps to improve the performance of
the algorithm is to count on good approximations for the Lagrange multipliers, not
only for the lower level problem at Step 2, but also for the reformulated constraints
at Step 5.

To solve the restoration and the optimization subproblems for the bilevel instances
we used the box constrained solver GENCAN of Birgin and Martínez [3] and the active
set software MINOS [27], which also provided estimates to update, in Step 5, the
multipliers λ associated to the Lagrangian of the reformulation of the bilevel problem
by its KKT system.

Three family of bilevel test problems were considered: linear and quadratic prob-
lems given in [18], and nonlinear ones presented in [7]. The results are reported in
Tables 1, 2 and 3, respectively, where the following notation was used: in the first
column we include the numbering or name used in the corresponding source; n and
m indicate the dimension of the outer and inner variables x and y, respectively;
(x, y)Initial denotes the initial point (the remaining variables were all set to zero);
column Iter gives the number of iterations performed by the inexact-restoration al-
gorithm; (x, y)Best reports the point with the best functional value FBest, extracted
from the literature; and (x, y)IR provides the solution computed by the algorithm,
with corresponding functional value FIR. We should mention that, in Table 3, we did
not have access to the points (x, y)Best nor to the value FBest for problem BIPA1.

As far as the choices for the initial points, we have always tried the suggestion
available in the literature, among a few other choices. To show the viability of our
approach we only report the results that produced the solution with smallest objec-
tive function value. For instance, the initial points for problems BIPA2, BIPA3 and
BIPA5 are not the same suggested in [8], starting from which we have obtained local
solutions distinct from those reported in Table 3.

To assess the effect of the assumptions A7–A9 on the problem, we have analyzed
the performance of Algorithm 3.1 applied to the following bilevel problem

Minimize
x,y

x2 + y2

s.t.

⎧
⎨

⎩

x ≥ 0
y = arg min(y − x)2

s.t. 0 ≤ y ≤ x.

(43)

Clearly, its solution is the origin, a non-regular point where strict complementarity
fails. Applying Algorithm 3.1 to problem (43), starting from (x0, y0) = (5,1) (and
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Table 1 Linear bilevel problems solved by inexact-restoration technique

Test n m (x, y)Initial Iter (x, y)Best (x, y)IR

problem FBest FIR

1 (9.2.2) 1 2 (4,0,0) 2 (5,4,2) (5,4,2)

−13 −13

2 (9.2.3) 1 1 (5,0,0) 2 (4,4) (4,4)

−16 −16

3 (9.2.4) 2 6 (0.5,0.5,0.5,0.5,0.5, 3 (0,0.9,0,0.6,0.4,0,0,0) (0,0.9,0,0.6,0.4,0,0,0)

0.5,0.5,0.5) −29.2 −29.2

4 (9.2.5) 1 1 (2,2) 11 (19,14) (19,14)

−37 −37

5 (9.2.6) 1 2 (0.5,0.5,0) 2 (1,0,0) (0,0,1)

−1 −1

6 (9.2.7) 1 1 (15,15) 2 (16,11) (16,11)

−49 −49

7 (9.2.8) 2 3 (0.5,0.5,0.5,0.5,0.5) 3 (0,0.9,0,0.6,0.4) (0,0.9,0,0.6,0.4)

−26 −26

8 (9.2.9) 2 2 (1,1,1,1) 2 (1,0, .5,1) (2,0,1.5,0)

−1.75 −3.25

9 (9.2.10) 1 1 (1,1) 2 (0.889,2.222) (0.889,2.222)

3.111 3.111

10 (9.2.11) 2 2 (1,1,0,0) 2 (2,0,1.5,0) (2,0,1.5,0)

−3.25 −3.25

remaining variables set to zero), after 3 iterations the origin is reached, under the
prescribed accuracy, and the quotients ‖zk − sk‖/|C(sk)| remain bounded by 1.14.

In [6], Algorithm 3.1 is used to solve truss topology design problems. In these
problems we know that strict complementarity is not verified in some feasible non-
optimal points. In these points the function υ(x) = (y(x),μ(x), γ (x)) is not differ-
entiable. We initialized the algorithm with these points and we never observed a dra-
matic growth of the critical quotients. This unexpected performance deserves future
research. We illustrate this situation with the following bilevel problem, that models a
one dimensional simplification of the problem of minimizing the deformation energy
subject to volume constraints and frictionless contact

Minimize
x,ν

1
2k(x)ν2

s.t.

⎧
⎪⎨

⎪⎩

0 ≤ x ≤ V
L

ν = arg min 1
2k(x)ν2 − Pν

s.t. − d ≤ ν ≤ 0

where x represents the cross section area of a vertical truss with the upper extreme not
allowed to displace, L its fixed length, V is the maximal volume allowed, P a load
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Table 2 Quadratic bilevel problems solved by inexact-restoration technique

Test n m (x, y)Initial Iter (x, y)Best (x, y)IR

problem FBest FIR

1 (9.3.2) 1 1 (2,2) 3 (1,0) (1,0)

17 17

2 (9.3.3) 1 1 (1,1) 4 (10,10) (10,10)

100 100

3 (9.3.4) 2 2 (5,5,0,0) 2 (0,0,−10,−10) (0,0,−10,−10)

0 0

4 (9.3.5) 1 2 (0,0,0) 3 (3,1,2) (3,1,2)

0.5 0.5

5 (9.3.6) 2 1 (0,0) 2 (1,3) (1,3)

5 5

6 (9.3.7) 2 2 (0,0,0,0) 2 (0.5,0.5,0.5,0.5) (0.5,0.5,0.5,0.5)

−1 −1

7 (9.3.8) 1 1 (2,2) 2 (1,0) (1,0)

17 17

8 (9.3.9) 1 1 (0,0) 3 (0.25,0) (0.25,0)

1.5 1.5

9 (9.3.10) 1 2 (1,1,1) 3 (2,6,0) (2,6,0)

2 2

Table 3 Nonlinear bilevel problems solved by inexact-restoration technique

Problem n m (x, y)Initial Iter FBest (x, y)IR (FIR)

BIPA1 1 1 (10,10) 2 – (6.08,4.46) (230.26)

BIPA2 1 1 (3,0) 3 17 (1,0) (17)

BIPA3 1 1 (1,1) 2 2 (4,0) (2)

BIPA4 1 1 (1.5,2.25) 2 88.79 (0,0.6) (88.79)

BIPA5 1 2 (2,2,2) 2 2.75 (1.94,0,1.21) (2.75)

at the free extreme (P < 0 by convention), ν is the vertical displacement of the truss
(negative by convention), d is the distance between the free extreme and an obstacle.
Finally, k(x) = E

L
x is the stiffness coefficient and E is the Young modulus of the

material of which the truss is made.
It is easy to see that the solution function ν(x), whose graphic represents the feasi-

ble region for the upper level problem determined by the lower level problem is given
by:

ν(x) =
{

−d if 0 ≤ x < −LP
Ed

,

(LP
E

) 1
x

if − LP
Ed

≤ x ≤ V
L

.
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Substituting this expression in the upper level objective function, we obtain ex-
plicitly the expression as a function just of x,

F(x) =
{

(Ed2

2L
)x if 0 ≤ x < −LP

Ed
,

(LP 2

2E
) 1
x

if − LP
Ed

≤ x ≤ V
L

.

We can easily conclude that the global minimizer of F(x) is x = 0 and the unique
local minimizer is x = V

L
. The value of x that breaks the function F in two differ-

entiable parts is a maximum. If we start our algorithm at this point it will abandon it
and find the global minimizer.

If the lower level problem is a variational inequality problem and a good algo-
rithm is available to solve it, the inexact restoration strategy can be applied. Therefore
the generalized bilevel problem, as it is called in the literature, can be solved with-
out reformulating it as a single-level optimization problem. To address this instance,
a Matlab (version 6.1) implementation was developed, where the restoration was
performed combining the projection algorithm of Solodov and Svaiter [30] to obtain
an approximate solution of the variational problem, with a least-squares strategy to
update the multipliers μ,γ of the lower-level constraints. The optimization subprob-
lem of minimizing the Lagrangian in the intersection of the linear approximation πk

with the trust region was solved using the internal routine fmincon of Matlab.
As the optimality conditions of the lower level in bilevel instances may be written

as a variational inequality problem, test 7 from Table 1 and problems 4 to 8 from
Table 2 were solved with this strategy as well, reaching the same objective function
value F , and usually performing an additional iteration.

We have also solved two test problems from [15], whose results are reported in
Table 4. The first problem is a legitimate generalized bilevel programming problem,
and the second one is a bilevel problem with a constraint in the upper level that is
addressed by means of an external penalization, as done by [15]. In both cases a
known solution was obtained.

By analyzing the reported results one can see that the proposed approach is a
valid alternative to address nonlinear bilevel programming problems. Our preliminary
results indicate a promising perspective. We show that this approach is reliable and
its efficiency will certainly depend on the methods used in each of the algorithm’s
phases, a choice that the user should make.

Table 4 Generalized bilevel programming problems solved by inexact-restoration technique

Test n m (x, y)Initial Iter (x, y)Best (x, y)IR

FBest FIR

1 (problem 9) 2 2 (0,0,0,0) 6 (5,9,5,9) (5,9,5,9)

0 10−17

2 (problem 7) 2 2 (20,35,0,0) 4 (25,30,5,10) (25,30,5,10)

5 4.9999767
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6 Conclusions and future research

We introduced a new algorithm for solving bilevel problems that preserves the two-
level structure of the problem, and is based in the inexact restoration technique. In the
feasibility phase the lower level problem can be solved inexactly taking advantage
of its properties and the user is free to use special purpose solvers, mainly global
optimization algorithms if they are available. In the optimality phase any algorithm
for minimization with linear constraints can be used. The decrease of a merit function,
that combines a Lagrangian of the upper level objective with a measure of stationarity
of the lower level problem, is obtained using a trust-region approach.

We prove that the algorithm is well defined and converges to feasible points under
mild conditions. Under more restrictive assumptions we prove that a sequence gen-
erated by the algorithm converges to feasible points that satisfy an AGP optimality
condition. These conditions are also imposed in most of the previous work in this field
that present a convergence result, with the exception of the strict complementarity at
the solutions of the lower level problem. The possibility of relaxing this hypothesis
depends on the existence of error bounds when strict complementarity fails to be true,
using other feasibility measures. It could also be possible to use other merit functions
or optimality conditions, or a combination of all these. We are doing research on
these questions. Some interesting ideas that could be exploited for this purpose are
in [14, 16, 19].

We present numerical experiments that show that the algorithm is capable of solv-
ing the problems, even if this hypothesis is not verified. This suggests that the condi-
tion might not be necessary and motivates us to extend our theoretical result. However
there exist many interesting problems that satisfy all the hypotheses. We believe that
our approach gives a valid alternative to methods that strongly use the implicit depen-
dence of the upper level variable on the lower level one. We do not need to evaluate
the derivative of this implicit function as we treat these variables as “independent”.

The results of the computational experiments encourage us to design a special
program that should allow the user to take profit of his or hers preferred nonlinear
programming routines.
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