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Abstract

A Nonlinear Programming algorithm that converges to second-order stationary points is intro-
duced in this paper. The main tool is a second-order negative-curvature method for box-constrained
minimization of a certain class of functions that do not possess continuous second derivatives. This
method is used to define an Augmented Lagrangian algorithm of PHR (Powell-Hestenes-Rockafellar)
type. Convergence proofs under weak constraint qualifications are given. Numerical examples show-
ing that the new method converge to second-order stationary points in situations in which first-order
methods fail are exhibited.
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1 Introduction

We are concerned with the general nonlinear programming problem with equality and inequality con-
straints. Most practical nonlinear optimization algorithms aim to encounter a local solution of the
problem, since global solutions are, in general, very difficult to find. In order to approximate a local
minimizer, a typical nonlinear optimization method produces a sequence of iterates {xk} that converges
to a solution or, at least, to a point that verifies an optimality condition.

A good optimality condition should be strong. In that case, its fulfillment will be a serious indication
that a local minimizer has been found. Usually, a first-order optimality condition takes the form:

Not–CQ or P, (1)

where P is a statement that involves first derivatives of functions and constraints and CQ is a constraint
qualification that involves first derivatives of the constraints. Therefore, the strength of an optimality
condition is linked to the weakness of the associated constraint qualification. On the other hand, the
optimality condition (1) will be practical when there exist algorithms whose limit points necessarily
satisfy (1).

In first-order optimality, the proposition P of (1) is represented by the Karush-Kuhn-Tucker (KKT)
conditions. The weakest practical constraint qualification associated with KKT seems to be the Constant
Positive Linear Dependence (CPLD) condition, introduced by Qi and Wei [33] and defined below.

Assume x̄ is a feasible point of a nonlinear programming problem whose constraints are h̄i(x) =
0, i ∈ I, ḡj(x), j ∈ J and that the active constraints at x̄ are, besides the equalities, ḡj(x) ≤ 0, j ∈ J0.
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Let I1 ⊆ I, J1 ⊆ J0. We say that the gradients ∇h̄i(x̄)(i ∈ I1),∇ḡj(x̄)(j ∈ J1) are positively linearly
dependent if ∑

i∈I1

λi∇h̄i(x̄) +
∑

j∈J1

µj∇ḡj(x̄) = 0,

where λi ∈ IR ∀i ∈ I1, µj ≥ 0 ∀j ∈ J1 and
∑

i∈I1
|λi| +

∑
j∈J1

µj > 0. The CPLD condition says that,
when a subset of gradients of active constraints is positively linearly dependent at x̄, then the same
set of gradients remains positively linearly dependent for all x (feasible or not) in a neighborhood of
x̄. Therefore, CPLD is strictly weaker than the Mangasarian-Fromovitz (MFCQ) constraint qualification
[27, 35]. A trivial case in which CPLD holds, but MFCQ does not, is when the set of constraints is formed
by two identical equality constraints with nonnull gradient. In some sense, this is an unstable situation
since a small perturbation of a constraint may change completely the solution of the problem, or even
make the problem infeasible. However, in floating point computations, feasible perturbations affect the
two “repeated” constraints in exactly the same way, so that the problem remains stable, in spite of the
non-satisfaction of MFCQ.

The status of CPLD as a constraint qualification was elucidated in [2]. In [1] an Augmented Lagrangian
PHR algorithm for minimization with arbitrary lower-level constraints was introduced and it was proved
that limit points of sequences generated by this algorithm satisfy (1) if CQ = CPLD and P = KKT .

Second-order optimality conditions apply to feasible points that are known to be KKT. These condi-
tions also take the form (1). As in the first-order case, the proposition P involves derivatives of objective
function and constraints and, in the constraint qualification CQ, only constraint derivatives occur. In
this paper, P will be the Weak Second Order Necessary Condition (SONC), that says that the Hessian
of the Lagrangian at the KKT point x̄ is positive semidefinite on the orthogonal subspace to the gradients
of active constraints. In [3] it was proved that a suitable constraint qualification CQ associated with this
condition is

MFCQ and WCR. (2)

Condition WCR says that the rank of the matrix formed by the gradients of active constraints at x̄
remains constant in a neighborhood of x̄.

The problems addressed in this paper have the form:

Minimize f(x) subject to h(x) = 0, g(x) ≤ 0, x ∈ Ω, (3)

where Ω = {x ∈ IRn | ℓ ≤ x ≤ u} and the functions f : IRn → IR, h : IR → IRq, g : IR → IRp are twice
continuously differentiable in IRn.

We will define an implementable algorithm with convergence to first-order and second-order stationary
points defined by the optimality conditions above. The algorithm is a PHR-like Augmented Lagrangian
method [25, 32, 34]. This means that it is based on the sequential box-constrained approximate mini-
mization of the Augmented Lagrangian defined by:

Lρ(x, λ, µ) = f(x) +
ρ

2

{ q∑

i=1

[
hi(x) +

λi

ρ

]2

+

p∑

i=1

[
max

(
0, gi(x) +

µi

ρ

)]2}
(4)

for all x ∈ IRn, λ ∈ IRq, µ ∈ IRp, µ ≥ 0, ρ > 0.
By the PHR nature of the method, the objective function at each subproblem is not twice differen-

tiable. Therefore, we will need to define an algorithm for solving subproblems that preserves second-order
convergence properties in spite of second-derivative discontinuities. We will see that the convergence prop-
erties of the subproblem solver are strong enough to induce second-order convergence of the Augmented
Lagrangian method.

The Augmented Lagrangian PHR-like algorithm Algencan (see the web-available implementation
in http://www.ime.usp.br/∼egbirgin.tango) uses the box-constraint solver Gencan [7]. Gencan is based
on the active-set strategy and on spectral projected gradient steps for leaving faces [9, 10, 11]. The
effectiveness of this well established method for large-scale problems lead us to define a second-order
method for box-constrained minimization as a minor modification of Gencan. In the unconstrained
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case, most methods using negative-curvature information are based on line-search and trust-region ideas,
see [23, 28, 30, 36, 38, 40] and the books [16, 22, 28, 31], among others. In particular, the philosophy
of the unconstrained second-order method given in [23] was quite useful for defining a suitable Gencan

modification. It is worth to mention that in [4] and [6] box-constraint methods that use second-order
information inspired in Gencan were also defined, but convergence to second-order stationary points
was not unconditionally established.

A few words on practical and theoretical motivation are in order. Optimization research takes place in
two “parallel worlds”: the Continuous one and the Floating-point world. We aim robustness and efficiency
of algorithms in the Floating-point world, so, the continuous behavior of algorithms may be seen as a
model for the floating-point behavior. In the Continuous world one tries to prove convergence results, but
it is not completely clear the way in which these results affect the computer behavior of the algorithms.
We adopt a conservative point of view: Convergence results should be as strong as possible, and (if
possible) only reasonable assumptions on the problem should be employed. (Sometimes, assumptions on
the sequence behavior cannot be avoided.) The research on methods that converge to second-order critical
points is motivated by this “need of strength”. We implicitly believe that, in the Floating-point world,
the chance of finding global minimizers is enhanced if one guarantees convergence to points that satisfy
the strongest possible optimality conditions. This point of view is especially controversial in the case of
second-order criticality. Although, say, convergence of first-order unconstrained minimization algorithms
to saddle points may occur, the set of initial points from which such convergence may take place is usually
rare. As a consequence, even if a first-order method converges to a saddle point starting from x0, such
convergence may not occur if the initial point x0 is slightly perturbed. Therefore, the chance of obtaining
meaningful better results of a second-order modified method with respect to its first-order counterpart
in a massive comparison is very small. However, as statisticians use to say, events with probability zero
occur and initial points in a rare set may be originated, not in an individual user-decision but in an
external model out of human control. For this reason, we maintain our belief that methods converging
to second-order stationary points are useful.

Most papers on second-order methods for constrained optimization use the regularity (LICQ) con-
straint qualification. A few examples deserve to be mentioned. Byrd, Schnabel and Schultz [12] employ
a sequential quadratic programming (SQP) approach and second-order stationarity is obtained thanks
to the use of second-order correction steps. Coleman, Liu and Yuan [13] use the SQP approach with
quadratic penalty functions for equality constrained minimization. Conn, Gould, Orban and Toint [14]
employ a logarithmic barrier method for inequality constrained optimization with linear equality con-
straints. Dennis, Heinkenschloss and Vicente [17] use affine scaling directions and, also, the SQP approach
for optimization with equality constraints and simple bounds (see, also, [18]). Di Pillo, Lucidi and Palagi
[19] define a primal-dual algorithm model for inequality constrained optimization problems that exploits
the equivalence between the original constrained problem and the unconstrained minimization of an exact
augmented Lagrangian function and employs a curvilinear line search technique using information on the
nonconvexity of the augmented Lagrangian function. Facchinei and Lucidi [20] use negative-curvature
directions in the context of inequality constrained problems. The convergence to second-order critical
points of trust-region algorithms for convex constraints with identification properties is studied in Chapter
11 of [16].

This paper is organized as follows. In Section 2 we describe the second-order method for box-
constrained minimization of functions with the particular structure that is needed in the PHR Augmented
Lagrangian approach. We prove first-order and second-order convergence of this box-constraint solver.
In Section 3 we define the Augmented Lagrangian method and we prove, under the constraint quali-
fication (2), convergence to KKT points verifying the second-order necessary optimality condition. In
Section 4 we exhibit numerical examples. Finally, in Section 5, we state conclusions and lines for future
research.

Notation

• The symbol ‖ · ‖ denotes the Euclidian norm, although, many times it can be replaced by an
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arbitrary vector norm.

• PA(z) denotes the Euclidian projection of z on the set A.

• λ1(B) is the smallest eigenvalue of the symmetric real matrix B.

• We denote IN = {0, 1, 2, . . .}.

• The open ball with center x̄ and radius ε will be denoted B(x̄, ε).

• Ā is the topological closure of the set A.

• The segment {x ∈ IRn | x = tu + (1− t)v, t ∈ [0, 1]} will be denoted [u, v].

• For all y ∈ IRn, y+ = (max{0, y1}, . . . , max{0, yn})T .

2 Second-Order Method for Box-Constrained Minimization

In this section we consider the problem

Minimize F (x) subject to x ∈ Ω. (5)

The set Ω will be a compact n-dimensional box. That is,

Ω = {x ∈ IRn | ℓ ≤ x ≤ u},

where ℓ, u ∈ IRn, ℓ < u.
The general form of F (x) will be:

F (x) = f0(x) +
1

2

m∑

j=1

[fj(x)+]2, (6)

where f0, f1, . . . , fm are twice continuously differentiable on an open convex bounded set A that con-
tains Ω. The motivation of (6) is that this is the form of the Augmented Lagrangian function defined by
(4), with obvious adaptations. Therefore, in the Augmented Lagrangian PHR method we will need to
minimize functions of the form (6). By (6), F has continuous first derivatives, but second derivatives may
not exist at the points where fj(x) = 0 for some j. Note that the case in which F is a twice continuously
differentiable function is a particular case of (6), corresponding to m = 0 and F (x) = f0(x).

For all x ∈ A we denote:
I0(x) = {i ∈ {1, . . . , m} | fi(x) = 0},
I+(x) = {i ∈ {1, . . . , m} | fi(x) > 0},
I−(x) = {i ∈ {1, . . . , m} | fi(x) < 0}.

For all x ∈ Ω, ε ≥ 0, we define:

Iε(x) = {i ∈ {1, . . . , m} | fi(x) ≥ −ε}

and

∇2
εF (x) = ∇2f0(x) +

m∑

i=1

fi(x)+∇2fi(x) +
∑

i∈Iε(x)

∇fi(x)∇fi(x)T .

Observe that, at any point x where F is twice smooth, the Hessian of F is ∇2
0F (x). Therefore, at these

points, the eigenvalues of ∇2
εF (x) are bounded below by the eigenvalues of the Hessian. Therefore, if the

true Hessian is positive semidefinite, then ∇2
εF (x) is positive semidefinite too.
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The next proposition is a Taylor-like result that says that the quadratic whose gradient is ∇F (x̄) and
whose Hessian is ∇2

εF (x̄) is an approximate overestimation of the increment F (x)− F (x̄).

Proposition 1. Let x̄ ∈ A. Then, for all x ∈ A, ε ≥ 0, we have:

F (x) ≤ F (x̄) +∇F (x̄)T (x− x̄) +
1

2
(x− x̄)T∇2

εF (x̄)(x − x̄) + o(‖x− x̄‖2). (7)

Proof. By the continuity of fi, i = 1, . . . , m, there exists δ > 0 such that, for all x ∈ B(x̄, δ),

fi(x̄) > 0⇒ fi(x) > 0

and
fi(x̄) < 0⇒ fi(x) < 0,

for all i = 1, . . . , m. Therefore, for all x ∈ B(x̄, δ),

I+(x) ⊆ I0(x̄) ∪ I+(x̄) ⊆ Iε(x̄). (8)

Let x ∈ B(x̄, δ). Then,

F (x) = f0(x) +
1

2

m∑

i=1

[fi(x)]2+ = f0(x) +
1

2

∑

i∈I+(x)

fi(x)2.

Therefore, by (8),

F (x) ≤ f0(x) +
1

2

∑

i∈I0(x̄)∪I+(x̄)

fi(x)2. (9)

By the second-order Taylor development of the right-hand side of (9) we have:

F (x) ≤ f0(x̄) +∇f0(x̄)T (x − x̄) +
1

2
(x− x̄)T∇2f0(x̄)(x − x̄) + o(‖x− x̄‖2)

+
1

2

∑

i∈I0(x̄)∪I+(x̄)

(
fi(x̄)2+2fi(x̄)∇fi(x̄)T (x−x̄)+(x−x̄)T (fi(x̄)∇2fi(x̄)+∇fi(x̄)∇fi(x̄)T )(x−x̄)

)
+o(‖x−x̄‖2)

= f0(x̄) +
1

2

∑

i∈I0(x̄)∪I+(x̄)

fi(x̄)2 +

(
∇f0(x̄) +

∑

i∈I0(x̄)∪I+(x̄)

fi(x̄)∇fi(x̄)

)T

(x − x̄)

+
1

2
(x− x̄)T

(
∇2f0(x̄) +

∑

i∈I0(x̄)∪I+(x̄)

(fi(x̄)∇2fi(x̄) +∇fi(x̄)∇fi(x̄)T )

)
(x− x̄) + o(‖x− x̄‖2)

= F (x̄)+∇F (x̄)T (x−x̄)+
1

2
(x−x̄)T

(
∇2f0(x̄)+

m∑

i=1

fi(x̄)+∇2fi(x̄)+
∑

i∈I0(x̄)∪I+(x̄)

∇fi(x̄)∇fi(x̄)T

)
(x−x̄)+o(‖x−x̄‖2).

Then, using that ∇fi(x̄)∇fi(x̄)T is positive semidefinite and (8) we obtain that

F (x) ≤ F (x̄) +∇F (x̄)T (x− x̄) +
1

2
(x− x̄)T∇2

εF (x̄)(x− x̄) + o(‖x− x̄‖2)

as we wanted to prove. 2

The following technical proposition is a trivial consequence of the uniform continuity of the func-
tions fi.
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Proposition 2. Let ε > 0. There exists δ > 0 such that, for all x̄ ∈ Ω, i ∈ {1, . . . , m}, x ∈ B(x̄, δ) ∩ Ω,
we have:

fi(x̄) < −ε⇒ fi(x) < 0.

Proof. Since Ā is compact, all the functions fi are uniformly continuous on A. So, there exists δ > 0
such that, for all x̄, x ∈ Ω, x ∈ B(x̄, δ), i ∈ {1, . . . , m}, one has:

|fi(x) − fi(x̄)| ≤ ε

2
.

Then,

fi(x) ≤ fi(x̄) +
ε

2
.

Therefore, if fi(x̄) < −ε we have that fi(x) < − ε
2 < 0, as we wanted to prove. 2

For all x ∈ Ω, we define

F(x) = {z ∈ Ω | zi = ℓi if xi = ℓi, zi = ui if xi = ui, ℓi < zi < ui otherwise}.

We say that F(x) is the open face to which x belongs. We define V(x) as the smallest affine subspace that
contains F(x). Let S(x) be the parallel subspace to V(x). The dimension of F(x) (denoted dim(F(x)))
will be the dimension of S(x) which, of course, coincides with the number of free variables of the face.
Obviously, Ω is the disjoint union of all its open faces. Given an open face F(x), the variables xi such
that ℓi < xi < ui will be called free and the remaining variables will be called fixed or active. Vertices of
Ω are open faces with dimension zero.

Define:
gP (x) = PΩ(x−∇F (x)) − x,

gI(x) = PS(x)(gP (x)),

and
g(x) = gF(x)(x) = PS(x)(∇F (x)).

The vector gP (x) will be called (continuous, negative) Projected Gradient whereas gI(x) is the (continuous,
negative) Internal Projected Gradient and gF(x)(x) is the Internal Gradient.

Let F be an open face with at least one free variable. For all x ∈ F , we define the reduced ε-Hessian
H[F ,ε](x) as the n× n matrix whose entry (i, j) is:

• The entry (i, j) of ∇2
εF (x) if both xi and xj are free variables in F .

• The entry (i, j) of the Identity n× n matrix, otherwise.

Let us now describe our main algorithm. Given the iterate xk ∈ Ω, Algorithm 2.1 below chooses
among two procedures for computing the next iterate xk+1 ∈ Ω. The spectral projected gradient (SPG)
method is employed when an appropriate test indicates that the current face must be abandoned. If the
test recommends that one must stay in the current face, the next iterate is computed using an Internal
Algorithm. The Internal and SPG algorithms will be defined later.

The execution of Algorithm 2.1 finishes only when an iterate is found such that the norm of the
projected gradient is smaller than εgrad and all the eigenvalues of the reduced εfun-Hessian are greater
than −εhess. If the internal projected gradient is large relatively to the projected gradient or if there
are “sufficiently negative” eigenvalues of the reduced Hessian, the algorithm stays in the current face.
In the first case, this means that the internal components of the gradient are large enough and, so, it is
worthwhile to continue in the same face. In the second case, an internal direction exists along which the
(negative) curvature of the function is large. So, the algorithm also judges that staying in the current
face exploiting decrease along a negative curvature direction is worthwhile. Otherwise, the current face
is abandoned using an SPG iteration. In other words, we stay in the current face while the gradient and
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Hessian indicators reveal that internal progress is still possible.

Algorithm 2.1 (Main Algorithm)

Let x0 ∈ Ω be the initial approximation to the solution of (5). Assume that η ∈ (0, 1), ε0, εfun, εgrad, εhess >
0, εcurv ∈ (0, εhess). Initialize k ← 0.

Step 1. Stopping Criterion

If
‖gP (xk)‖ ≤ εgrad (10)

and
dim(F(xk)) = 0 or λ1(H[F(xk),εfun](x

k)) ≥ −εhess, (11)

terminate the execution of the algorithm declaring “Convergence”.

Step 2. Decision about keeping or abandoning the current face

If
‖gI(x

k)‖ ≤ η‖gP (xk)‖ (12)

and
dim(F(xk)) = 0 or λ1(H[F(xk),εfun](x

k)) ≥ −εcurv, (13)

compute xk+1 ∈ Ω using Algorithm 2.2 (SPG). Otherwise, compute xk+1 ∈ Ω using Algorithm 2.3 (In-
ternal Algorithm).

Step 3. Set k ← k + 1 and go to Step 1.

Remark. If F(xk) is a vertex then, by (12) and (13), gI(x
k) = 0 and xk+1 is computed by SPG. There-

fore, Algorithm 2.3 is called only when dim(F(xk)) ≥ 1.

The spectral projected gradient is defined below. As in [9, 10, 11] and [7], the SPG direction is a
projected gradient scaled by the spectral coefficient σk. In this way, a gradient step is performed with a
minimal amount of second-order information.

Algorithm 2.2 (Spectral Projected Gradient iteration)

Let xk ∈ Ω be the current approximation to the solution of (5). Assume that α ∈ (0, 1
2 ), 0 < σmin <

σmax <∞.

Step 1. Compute the search direction

If k = 0 or (xk − xk−1)T (∇F (xk) − ∇F (xk−1)) ≤ 0 then set σk = 1. Otherwise, define σk as the
safeguarded spectral coefficient [9]:

σk = max

{
σmin, min

{ ‖xk − xk−1‖2
(xk − xk−1)T (∇F (xk)−∇F (xk−1))

, σmax

}}
.

Define dk = PΩ(xk − σk∇F (xk))− xk.

Step 2. Compute the steplength
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Set t← 1. If
F (xk + tdk) ≤ F (xk) + αt(dk)T∇F (xk). (14)

set tk = t, define xk+1 ∈ Ω such that F (xk+1) ≤ F (xk + tkd) (observe that xk+1 = xk + tkd is an
admissible choice) and return. Otherwise, choose tnew ∈ [0.1t, 0.9t], set t← tnew and repeat test (14).

Algorithm 2.3 below explains how to choose the search direction and the steplength when Algo-
rithm 2.1 decides to stay in the current face.

Algorithm 2.3 (Second-order internal algorithm iteration)

Let xk ∈ Ω be the current approximation to the solution of (5). Assume that α ∈ (0, 1
2 ), β > 0,

0 < θ < 1, κ > 0. Let ε0 and εcurv be the ones of Algorithm 2.1. Denote Hk = H[F(xk),εfun](x
k),

g(xk) = PS(xk)(∇F (xk)).

Step 1. Compute the first-order direction

If ‖g(xk)‖ 6= 0, compute dk,1 ∈ S(xk) (the first-order direction) satisfying

g(xk)T dk,1 ≤ −θ‖dk,1‖‖g(xk)‖ (15)

and
‖dk,1‖ ≥ β‖g(xk)‖. (16)

Otherwise, define dk,1 = 0.

Step 2. Compute the second-order negative-curvature direction

If ‖g(xk)‖ ≥ ε0 or λ1(Hk) ≥ −εcurv, define dk = dk,1 and go to Step 4. Otherwise, compute
dk,2 ∈ S(xk) satisfying

‖dk,2‖ = 1,

g(xk)T dk,2 ≤ 0, (17)

and
(dk,2)T Hkdk,2 < −εcurv. (18)

(Since λ1(Hk) < −εcurv this direction necessarily exists.)

Step 3. Decide between first and second-order directions

If ‖dk,1‖ 6= 0 and
g(xk)T dk,1

‖dk,1‖ ≤ κ

(
g(xk)T dk,2 +

1

2
(dk,2)T Hkdk,2

)
(19)

choose dk = dk,1, else choose dk = dk,2.

Step 4. Compute maximal feasible steplength

Compute
t[max,k] = max{t ≥ 0 | [xk, xk + tdk] ⊆ Ω}.

Step 5. Test xk+1 in the boundary of F(xk).
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If t[max,k] < 1 and F (xk + t[max,k]d
k) < F (xk) then compute xk+1 in the boundary of F(xk) such that

F (xk+1) ≤ F (xk + t[max,k]d
k) and return.

(Observe that xk+1 = xk + t[max,k]d
k is an admissible choice and that, since dim(F(xk)) ≥ 1, xk+1 /∈

F(xk).)

Step 6. Choose descent function γ(t)

If dk = dk,2, define γ(t) = −t2εcurv/4. Else, define γ(t) = t(dk)T∇F (xk).

Step 7. Backtracking

Set t← min{1, t[max,k]}. If

F (xk + tdk) ≤ F (xk) + αγ(t). (20)

set tk = t, define xk+1 ∈ F(xk) such that F (xk+1) ≤ F (xk + tkd) (observe that xk+1 = xk + tkd is an
admissible choice) and return. Otherwise, choose

tnew ∈ [0.1t, 0.9t], (21)

set t← tnew and repeat test (20).

Remarks.

1. The first-order direction dk,1 is always computed. The second-order negative-curvature direction
dk,2 is computed only if the reduced gradient is small and the smallest eigenvalue of the reduced
Hessian is negative enough.

2. If both directions were computed, the algorithm decides between the first and the second-order
directions. The idea (as in [23]) is to choose the search direction that provides a better predicted
reduction of the model (linear in the case of the first-order direction, quadratic in the case of the
negative-curvature direction).

3. To compute the steplength, the algorithm firstly computes the maximum feasible steplength along
the search direction. If the maximum steplength is smaller than 1 and, at the boundary point that
corresponds to this steplength, the objective function decreases, then this boundary point (or some
better boundary point) is defined as the next iterate. Otherwise, a backtracking process starts.

4. To perform the backtracking process, the algorithm firstly selects the forcing descent function.
This function corresponds to a simple quadratic model if the descent direction is the negative-
curvature one and to the linear approximating function if we deal with the first-order direction.
Then, the algorithm performs a backtracking procedure trying to decrease the objective function
proportionally to the forcing function chosen.

As usually, we say that an algorithm is well defined if it guarantees to terminate or return in finite
time. We will show first that Algorithm 2.3 is well defined. That is, when we try to compute the next
iterate keeping the current active constraints, we find in a finite number of steps a new point that satisfies
the required descent condition.

Lemma 1. Algorithm 2.3 is well defined. Moreover, if xk+1 is computed by Algorithm 2.3, then
xk+1 ∈ F(xk) and F (xk+1) < F (xk).

Proof. Consider first the case dk = dk,1. Since g(xk)T dk < 0, the proof that the Armijo condition (20) is
satisfied for t small enough follows from classical one-dimensional arguments for descent methods.
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Let us consider now the case dk = dk,2. By (17) and (18) we have that, for all t > 0,

tg(xk)T dk,2 +
t2

2
(dk,2)T Hkdk,2 ≤ − t2εcurv

2
< 0. (22)

By (7), for t > 0 small enough, we have:

F (xk + tdk,2)− F (xk)− [tg(xk)T dk,2 +
t2

2
(dk,2)T Hkdk,2] ≤ o(t2).

Therefore, by (22),
F (xk + tdk,2)− F (xk)

tg(xk)T dk,2 + t2

2 (dk,2)T Hkdk,2
− 1 ≥ o(1).

Thus, since 0 < α < 1, for t small enough, we have:

F (xk + tdk,2)− F (xk)

[tg(xk)T dk,2 + t2

2 (dk,2)T Hkdk,2]
≥ α.

Therefore,

F (xk + tdk,2)− F (xk) ≤ α[tg(xk)T dk,2 +
t2

2
(dk,2)T Hkdk,2] ≤ −α

t2εcurv

2
.

This implies that, for t small enough, the sufficient descent condition (20) necessarily holds. Therefore,
after a finite number of backtrackings in Algorithm 2.3, a value of t satisfying (20) is necessarily found. 2

Lemma 2. Algorithm 2.2 is well defined.

Proof. See, for example, [11]. Observe that dk, generated by Algorithm 2.2, is a descent direction and,
so, the Armijo condition (14) is satisfied for t small enough. 2

In Lemma 3 we show that, if all the iterations are eventually computed by Algorithm 2.3, then all
the iterates belong to the same face after a finite number of iterations.

Lemma 3. Assume that there exists k0 ∈ IN such that xk+1 is computed by Algorithm 2.3 for all k ≥ k0.
Then, there exists k1 ≥ k0 such that

xk ∈ F(xk1 ) for all k ≥ k1.

Proof. By Step 2 of Algorithm 2.1, xk+1 ∈ F(xk) for all k ≥ k0. Assume, by contradiction, that

xk+1 /∈ F(xk)

infinitely many times. This means that at least one variable is added to the set of fixed variables at xk

infinitely many times. This is impossible, since the number of variables is finite. 2

In the next lemma we show that, if all the iterates are eventually computed by Algorithm 2.3 and,
moreover, the first-order direction is used infinitely many times, then the main algorithm terminates at
some point satisfying the stopping conditions.

Lemma 4. Assume, as in Lemma 3, that there exists k0 ∈ IN such that xk+1 is computed by Algo-
rithm 2.3 for all k ≥ k0. Moreover, suppose that there exists k2 ≥ k0 such that dk = dk,1, for infinitely
many indices k ≥ k2. Then, there exists k ∈ IN such that the algorithm stops at xk, satisfying (10) and
(11).

10



Proof. By Lemma 3 there exists k1 such that xk ∈ F(xk1) for all k ≥ k1. Let k3 = max{k1, k2}. Let
K ⊆ {k3, k3 + 1, k3 + 2, . . .} be an infinite set of indices such that dk = dk,1 for all k ∈ K. Define, as
usually, g(x) = PS(xk1)[∇F (x)].

By (20), we have, for all k ∈ K,

F (xk+1) ≤ F (xk) + αtkg(xk)T dk.

Then, by (15),
F (xk+1) ≤ F (xk)− αθtk‖g(xk)‖‖dk‖ (23)

for all k ∈ K.
We wish to prove that, for a suitable subsequence, g(xk) → 0. If this is not the case, then, since

F (xk+1) ≤ F (xk) for all k ∈ IN , the inequality (23) implies that

lim
k∈K
‖sk‖ = 0, (24)

where, for all k ∈ IN ,
sk = tkdk. (25)

We consider two cases:

Case 1: There exists an infinite sequence K1 ⊆ K such that limk∈K1
‖dk‖ = 0.

Case 2: The sequence {‖dk‖}k∈K is bounded away from zero.

In Case 1, by (16), we have that limk∈K1
‖g(xk)‖ = 0.

In Case 2, by (24) and (25), we have that

lim
k∈K

tk = 0.

Therefore, for k ∈ K large enough, there exists t̄k ≤ 10tk (then t̄k → 0) such that:

F (xk + t̄kdk) ≥ F (xk) + αt̄kg(xk)T dk.

So,
F (xk + t̄kdk)− F (xk)

t̄k
≥ αg(xk)T dk.

So, by the Mean Value Theorem, for all k ∈ K there exists ξk ∈ [0, 1] such that:

g(xk + ξksk)T dk ≥ αg(xk)T dk

for infinitely many indices k ∈ K. Since ‖sk‖ → 0, by the uniform continuity of g, this implies that
‖g(xk)‖ → 0.

Therefore, in all cases, we have that limk∈K1
‖g(xk)‖ = 0, for some infinite subsequence K1. This

implies that limk∈K1
‖gI(x

k)‖ = 0. Therefore, by the test (12),

lim
k∈K1

‖gP (xk)‖ = 0. (26)

Now, we have two possibilities:

Case 3. The direction dk is defined at Step 2 of Algorithm 2.3, for infinitely many indices k ∈ K2 ⊆ K1.

Case 4. The direction dk is defined at Step 3 of Algorithm 2.3, for all k ∈ K1 large enough.

11



Consider first Case 3. In this case, λ1(Hk) ≥ −εcurv ≥ −εhess for infinitely many indices k ∈ K1.
Therefore, by (26), for some finite k we have that (10) and (11) hold.

Now, consider Case 4. By (17), (18) and (19), for all k ∈ K1 large enough we have:

g(xk)T dk,1

‖dk,1‖ ≤ κ

(
g(xk)T dk,2 +

1

2
(dk,2)T Hkdk,2

)

≤ κ

2
(dk,2)T Hkdk,2 ≤ −κεcurv

2
.

But this is impossible for k large enough, since g(xk)T dk,1

‖dk,1‖
is nonpositive and tends to zero. 2

Now we introduce an additional assumption. We are going to assume that, in any segment contained
in the box Ω, the objective function possesses, at most, finitely many second-derivative discontinuities.

Assumption A. Given u, v ∈ A, define

ϕu,v(t) = F ((1 − t)u + tv) for all t ∈ [0, 1].

We assume that, for all u, v ∈ Ω, the function ϕu,v has, at most, a finite number of second-derivative
discontinuities.

Remark. Roughly speaking, Assumption A says that each function fi changes its sign at most a finite
number of times in any segment [u, v] ⊆ Ω.

In Lemma 5 we prove that, if all the iterates are eventually computed by Algorithm 2.3, then all the
iterates are eventually computed using first-order directions.

Lemma 5. Suppose that Assumption A holds. Assume that there exists k0 ∈ IN such that xk+1 is com-
puted by Algorithm 2.3 for all k ≥ k0. Suppose that the algorithm generates an infinite sequence {xk}.
Then, there exists k4 ∈ IN such that dk = dk,1 for all k ≥ k4.

Proof. Let x∗ ∈ Ω be a limit point of the sequence generated by the algorithm. By Lemma 3, there exists
k1 such that xk ∈ F(xk1) for all k ≥ k1. So, x∗ ∈ F(xk1 ). Moreover, F (xk+1) ≤ F (xk) for all k and, by
continuity,

lim
k→∞

F (xk) = F (x∗).

Assume, by contradiction, that for infinitely many indices k ∈ K2 ⊆ {k1, k1 + 1, k1 + 2, . . .}, the
algorithm chooses dk = dk,2. Therefore, by (18),

(dk,2)T Hkdk,2 < −εcurv

for all k ∈ K2.
Let ε > 0 be such that B(x∗, ε) ⊆ A. By Proposition 2, there exists δ ∈ (0, ε/2) such that, for all

i = 1, . . . , m, k ∈ K2, x ∈ B(xk, δ),

fi(x
k) < −εfun ⇒ fi(x) < 0. (27)

Without loss of generality, assume that xk ∈ B(x∗, δ/2) for all k ∈ K2. By (27), since ‖dk,2‖ = 1, there
exists t̂ > 0 such that, for all k ∈ K2,

0 < t ≤ t̂ and fi(x
k) < −εfun ⇒ fi(x

k + tdk,2) < 0. (28)

Define, for all k ∈ K2, t ∈ [0, t̂],
ϕk(t) = F (xk + tdk,2).
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The function ϕk has continuous first derivatives on [0, t̂]. Moreover, by Assumption A, it has at most
a finite number of second-derivative discontinuities at points (say) tk,1, . . . , tk,qk

. By convention, let us
write, for all j = 1, . . . , qk,

ϕ′′
k(tk,j) = lim

t→tk,j−
ϕ′′

k(t).

By Proposition 1, for all t ∈ (tk,j , tk,j+1) and x = xk + tdk,2 ∈ Ω, we have:

ϕ′′
k(t) ≤ (dk,2)T Hkdk,2 = (dk,2)T

[
∇2f0(x) +

m∑

i=1

fi(x)+∇2fi(x) +
∑

i∈Iεfun
(x)

∇fi(x)∇fi(x)T

]
dk,2.

Therefore, by (28) and the uniform continuity of fj(x), ∇fj(x) and ∇2fj(x) on Ω, there exists t̄ ∈ (0, t̂)
such that, for all t ∈ [0, t̄] such that xk + tdk,2 ∈ Ω, we have that

ϕ′′
k(t) ≤ (dk,2)T Hkdk,2 < −εcurv/2. (29)

By (29), since ϕ′
k(0) = g(xk)T dk,2 ≤ 0, for all k ∈ K2, t ∈ [0, t̄] such that xk + tdk,2 ∈ Ω, we have:

ϕ′
k(t) ≤ 0. (30)

By (29) and (30), for all k ∈ K2, t ∈ (0, t̄] such that xk + tdk,2 ∈ Ω,

ϕk(t) < ϕk(0)− εcurvt
2

4
= F (xk)− εcurvt

2

4
. (31)

But xk+1 ∈ F(xk1) for all k ∈ K2, therefore, by (31), and Step 4 of Algorithm 2.3,

t[max,k] > t̄ for all k ∈ K2. (32)

(Otherwise, by (31), the step t[max,k] would be accepted in (20) and, consequently, xk+1 would not belong

to F(xk1 ).) By (21), (31) and (32), for all k ∈ K2,

F (xk+1) ≤ F (xk)− εcurv

4

[
t̄

10

]2

.

This implies that, for k ∈ K2 large enough, F (xk+1) < F (x∗), which is a contradiction. 2

In Lemma 6 we prove that, if infinitely many iterates are computed by Algorithm 2.2, then the algo-
rithm terminates at some iteration satisfying the stopping criteria.

Lemma 6. Assume that, for infinitely many indices k, xk+1 is computed by Algorithm 2.2. Then, there
exists k ∈ IN such that

‖gP (xk)‖ ≤ εgrad and λ1(H[F(xk),εfun](x
k)) ≥ −εhess.

Proof. Observe that in the definition of the algorithm we assume that Algorithm 2.3 computes xk+1 in
such a way that F (xk+1) < F (xk) for all k. As a consequence, the convergence proof of Algorithm 2.2
[11] holds, after same relabeling, without modifications and, so, ‖gP (xk)‖ ≤ εgrad for k large enough.
The inequality λ1(H[F(xk),εfun](x

k)) ≥ −εhess follows from the fact that, by (13), this inequality holds at
every SPG iteration. 2

Theorem 1 condenses the results above. It tells that Algorithm 2.1 necessarily terminates at a point
that satisfies the stopping criteria.
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Theorem 1. Suppose that Assumption A holds. Assume that Algorithm 2.1 is applied to the problem (5)
and generates {x0, x1, x2, . . .}. Then, there exists k ∈ IN such that the algorithm terminates satisfying
the convergence criteria (10) and (11).

Proof. By Lemma 6, if Algorithm 2.2 is called infinitely many times, the algorithm terminates satisfying
(10) and (11). If Algorithm 2.2 is not called infinitely many times, then there exists k0 ∈ IN such that
xk+1 is computed by Algorithm 2.3 for all k ≥ k0. Then, by Lemma 5, there exists k4 ∈ IN such that
dk = dk,1 for all k ≥ k4. Therefore, by Lemma 4, the algorithm terminates at some xk satisfying (10)
and (11). 2

3 Application to an Augmented Lagrangian Method

In this section we use the tools presented before to define an Augmented Lagrangian method for solving (3)
that aims to converge to second-order stationary points.

As suggested in the previous section, for fixed values of ρ, λ, µ we define:

F (x) = Lρ(x, λ, µ),

f0(x) = f(x) +
ρ

2

q∑

i=1

[
hi(x) +

λi

ρ

]2

,

fj(x) =
1√
ρ
(µj + ρgj(x)), j = 1, . . . , p.

In this section, for notational convenience, we will use the equivalences above and the consequent gra-
dient and Hessian definitions of Section 2 whenever this simplifies the exposition. In particular, we will
assume, for the well-definiteness of the main algorithm, that Assumption A always holds. This means
that gi(x) + µi/ρ does not change its sign infinitely many times in any segment contained in Ω.

For all x ∈ IRn we define T (x) as the set of directions d ∈ IRn that satisfy:

• ∇h(x)T d = 0,

• ∇gi(x)T d = 0 for all i such that gi(x) = 0,

• di = 0 if xi = ℓi or xi = ui.

Therefore, if x is feasible, T (x) is the orthogonal subspace to the gradients of active constraints at x.
We want to find points that satisfy both first and second-order optimality conditions of original

problem. These are feasible points such that there exist λ∗ ∈ IRq, µ∗ ∈ IRp, µ∗
i ≥ 0, µ∗

i gi(x
∗) = 0

satisfying the KKT conditions:

PΩ

[
x∗ −

(
∇f(x∗) +

q∑

i=1

λ∗
i∇hi(x

∗) +

p∑

i=1

µ∗
i∇gi(x

∗)

)]
− x∗ = 0

and the second-order necessary condition (SONC):

dT

(
∇2f(x∗) +

q∑

i=1

λ∗
i∇2hi(x

∗) +

p∑

i=1

µ∗
i∇2gi(x

∗)

)
d ≥ 0

for all d ∈ T (x∗).
Most Nonlinear Programming algorithms for solving (3) obtain points that satisfy the KKT con-

ditions under some constraint qualification. The most popular constraint qualification is LICQ (linear
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independence of the gradients of active constraints), also known as regularity. A weaker (thus, better) con-
straint qualification is the Mangasarian-Fromovitz condition (MFCQ). The PHR Augmented Lagrangian
method introduced in [1] converges to KKT points under the even weaker CPLD constraint qualification
mentioned in the Introduction of this paper.

The (weak) second-order necessary condition is satisfied by limit points of several well-known algo-
rithms under the regularity constraint qualification. It has been shown [5, 26] that the fulfillment of
MFCQ is not enough for guaranteeing that local minimizers of nonlinear programming problems satisfy
SONC. In [3] it has been proved that the condition (2) is a suitable constraint qualification that guaran-
tees that local minimizers satisfy SONC. Relations of (2) with other second-order constraint qualifications
can also be found in [3].

In [3] an Augmented Lagrangian algorithm for solving (3) in the case Ω = IRn was introduced. It was
shown that, if the subproblems are solved in such a way that the augmented Hessian of the Lagrangian is
(almost) positive semidefinite then convergence to first and second-order stationary points are obtained
under the condition (2). However, no algorithm for obtaining the solutions of the subproblems was pro-
posed in [3]. The algorithm below fills this gap. On one hand, we use the compact domain Ω as defined
at the beginning of this paper, so that sequences are necessarily bounded and limit points of subproblem
approximate solutions necessarily exist. On the other hand, we establish the conditions for the subprob-
lem solutions in such a way that the box-constrained algorithm defined in the previous section may be
used and is necessarily successful. In other words, by the main result proved in Section 2, the PHR-like
algorithm given below is necessarily well defined.

Algorithm 3.1. (Augmented Lagrangian method)

Let λmin < λmax, µmax > 0, γ > 1, 0 < τ < 1. Let {(εfun)k}, {(εgrad)k}, {(εhess)k} be sequences of positive
numbers such that limk→∞(εfun)k = limk→∞(εgrad)k = limk→∞(εhess)k = 0. Let λ1

i ∈ [λmin, λmax], i =
1, . . . , q, µ1

i ∈ [0, µmax], i = 1, . . . , p, and ρ1 > 0. Let x0 ∈ Ω be an arbitrary initial point. Initialize k ← 1.

Step 1. Find an approximate minimizer xk of the problem minx∈Ω Lρk
(x, λk, µk). The conditions for

xk ∈ Ω are:
‖PΩ[xk −∇Lρk

(xk, λk, µk)]− xk‖ ≤ (εgrad)k (33)

and
λ1(H[Fk,(εfun)k](x

k)) ≥ −(εhess)k. (34)

Step 2. Define

V k
i = max

{
gi(x

k),−µk
i

ρk

}
, i = 1, . . . , p.

If k > 1 and
max{‖h(xk)‖∞, ‖V k‖∞} ≤ τ max{‖h(xk−1)‖∞, ‖V k−1‖∞}, (35)

define ρk+1 = ρk. Otherwise, define ρk+1 = γρk.

Step 3. Compute λk+1
i ∈ [λmin, λmax], i = 1, . . . , q and µk+1

i ∈ [0, µmax], i = 1, . . . , p. Set k ← k + 1 and
go to Step 1.

Remark. In Section 2 we proved that, when Algorithm 2.1 is applied to the problem of minimizing Lρk

on Ω, the conditions (33) and (34), which correspond to (10) and (11), are necessarily fulfilled in finite
time. Therefore, Algorithm 3.1 is well defined. In (34) we omitted the dependence of H with respect
to ρk and the multipliers in order to simplify the notation. We also assume that Fk is the open face of
Ω that contains xk. Therefore, (34) says that the approximate Hessian of the Augmented Lagrangian is
almost positive semidefinite, restricted to the face defined by the active bounds at xk. In other words,
(34) states that, if d ∈ IRn is such that di = 0 whenever xk

i = ℓi or xk
i = ui, then:

dT∇2
(εfun)k

Lρk
(xk, λk, µk)d ≥ −(εhess)k‖d‖2. (36)
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The following lemma was proved in [3] and will be useful here to prove the main convergence result.

Lemma 7. Assume that the feasible point x∗ satisfies WCR, the sequence {xk} ⊆ IRn converges to x∗

and d ∈ T (x∗). Then, there exists a sequence {dk} ⊆ IRn such that dk ∈ T (xk) for all k ∈ IN and
limk→∞ dk = d.

The main result of this section is stated below. It will be proved that feasible limit points of sequences
generated by Algorithm 3.1 are first and second-order stationary, under reasonably weak constraint qual-
ifications.

Theorem 2. Let {xk} be a sequence generated by Algorithm 3.1. Then:

• The sequence admits at least a limit point and every limit point x∗ is a first-order stationary point
of the problem

Minimize ‖h(x)‖2 + ‖g(x)+‖2 subject to x ∈ Ω. (37)

• If a limit point x∗ is feasible and satisfies the CPLD constraint qualification, then it satisfies the
KKT conditions.

• If a feasible limit point x∗ satisfies (2), then x∗ is a KKT point and satisfies the second-order con-
dition SONC.

Proof. Algorithm 3.1 is a particular case of Algorithm 3.1 of [1]. Therefore, every limit point is a first-
order stationary point of (37). Limit points obviously exist because xk ∈ Ω for all k and Ω is compact.
The fact that feasible limit points that satisfy CPLD are necessarily KKT also follows from Theorem 4.2
of [1].

Let us prove now that SONC also takes place under the constraint qualification (2). Let K be an
infinite sequence of indices such that limk∈K xk = x∗. Assume that x∗ is feasible and satisfies (2).

Let us define, for all k ∈ K,
λ̂k = λk + ρkh(xk)

and
µ̂k = (µk + ρkg(xk))+.

By Theorem 4.2 of [1], since x∗ satisfies MFCQ, the sequence {(λ̂k, µ̂k)}k∈K is bounded and, so,

there exists an infinite subsequence K1 ⊆ K and (λ∗, µ∗) such that limk∈K1
(λ̂k, µ̂k) = (λ∗, µ∗). Taking

appropriate limits in (33) it turns out that x∗ satisfies the KKT conditions with multipliers λ∗ and µ∗.
Let d ∈ T (x∗). By Lemma 7, since limk∈K1

xk = x∗, there exists a sequence {dk} such that dk ∈ T (xk)
and limk∈K1

dk = d.
By (36), we have that

−(εhess)k‖dk‖2 ≤ (dk)T∇2
(εfun)k

Lρk
(xk, λk, µk)dk

= (dk)T

(
∇2f(xk) +

q∑

i=1

λ̂k
i∇2hi(x

k) +

p∑

i=1

µ̂k
i∇2gi(x

k)

)
dk

+ρk

[ q∑

i=1

(∇hi(x
k)T dk)2 +

∑

µk
i
+ρkgi(xk)≥−(εfun)k

(∇gi(x
k)T dk)2

]
. (38)

Let us analyze the case in which gi(x
∗) < 0. Then, gi(x

k) < 0 for k ∈ K1 large enough. Consider two
cases: (a) the sequence {ρk} is bounded; and, (b) the sequence {ρk} is unbounded. In the first case, by
(35), we have that ‖V k‖ → 0 and, since gi(x

∗) < 0, we obtain that −µk
i /ρk → 0. Also, since (εfun)k → 0,

we have that −(εfun)k/ρk → 0. Thus, for k ∈ K1 large enough we have that gi(x
k) < −µk

i /ρk−(εfun)k/ρk.
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Now, consider Case (b). Since µk
i is bounded and (εfun)k → 0, we have that −µk

i /ρk → 0 and
−(εfun)k/ρk → 0. Therefore, for k ∈ K1 large enough, gi(x

∗) < 0 implies that gi(x
k) < −µk

i /ρk −
(εfun)k/ρk.

Thus, for k ∈ K1 large enough, µk
i + ρkgi(x

k) ≥ −(εfun)k implies that gi(x
∗) = 0. Therefore, by (38),

−(εhess)k‖dk‖2 ≤ (dk)T

(
∇2f(xk) +

q∑

i=1

λ̂k
i∇2hi(x

k) +

p∑

i=1

µ̂k
i∇2gi(x

k)

)
dk

+ρk

[ q∑

i=1

(∇hi(x
k)T dk)2 +

∑

gi(x∗)=0

(∇gi(x
k)T dk)2

]

for k large enough. So, by the definition of dk,

−(εhess)k‖dk‖2 ≤ (dk)T

(
∇2f(xk) +

q∑

i=1

λ̂k
i∇2hi(x

k) +

p∑

i=1

µ̂k
i∇2gi(x

k)

)
dk.

Taking limits for k ∈ K1 in the last inequality, we obtain SONC, as desired. 2

4 Numerical Examples

We implemented Algorithm 2.1 described in Section 2 of this paper (called Gencan-Second from now
on) with the first-order directions computed as in Gencan [7, 8]. We used EISPACK [37] to compute the
leftmost eigenvalue of the matrix Hk and the corresponding eigenvector, when required. The direction
dk,2 is a normalized eigenvector. We call Algencan-Second to Algorithm 3.1, defined in Section 3, using
Gencan-Second as subproblem solver. In the experiments we used the AMPL interface of Algencan.
The default parameters of Gencan and Algencan were used here. As convergence tolerance εopt we
used 10−8. This tolerance defines the stopping criterion for Algorithm AL. The specific parameters of
Gencan-Second were chosen as follows: ε0 = 103, (εcurv)k = 0.99× 10−8, (εhess)k = 10−8, κ = 1. The
tolerances (εgrad)k were automatically chosen. We set (εgrad)k =

√
εopt when feasibility, optimality or

complementarity at the current point are not satisfied with tolerance
√

εopt, otherwise we set (εgrad)k =
max{εopt, 0.1 (εgrad)k−1}.

In the four examples presented below, first-order algorithms fail to converge to local minimizers start-
ing from the given initial points. (As we mentioned in the Introduction, after small perturbations of
the initial points, both Gencan and Algencan converge to local minimizers.) Examples 1 and 2 are
classical unconstrained saddle point problems.

Example 1: Wolfe [39].

Minimize − x2
2 +

(
x2

2 +
x4

1

4
− x3

1 −
x2

1

2
+ 3x1 − 1.75

)2

.

Starting from the initial point x0 = (1.75, 0), Gencan converges in 17 iterations to the saddle point
(1, 0). Gencan-Second converges, in 8 iterations, to the global minimizer (3,−2.1213). See Figure 1.

Example 2: Humps Problem ([16], page 343).

Minimize [sin(ξx1) sin(ξx2)]
2 + 0.05 (x2

1 + x2
2),

where ξ > 0. Taking any initial point such that |x1| = |x2|, Gencan converges to saddle points. Gencan-

Second always converges to the global minimizer (0, 0). Using ξ = 2 and the initial point (5, 5), Gencan

converges to (1.4007, 1.4007) using 9 iterations and Gencan-Second converges to the global minimizer
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(1.75, 0) Initial pointSaddle point (1, 0)

GENCAN

x4 . . . x8 ≈ (3,−2.1213)
Global minimizer

x1

x2

x3

GENCAN-SECOND

−2 0 2 4

−3

−2

−1

0

1

2

3

Figure 1: Behavior of Gencan and Gencan-Second on the Wolfe Problem. Gencan converges to the
saddle point while Gencan-Second converges to the global minimizer. The first iterate of both methods
is the same, but Gencan-Second leaves the line given by y = 0 when using a second-order direction
from x1 to x2.

Initial point (5, 5)

x1

x2

x3

x4
x5

x6

x7
x8x9 . . . x13 ≈ (0, 0)

Global minimizer

GENCAN-SECOND

GENCAN

Saddle point (1.4007, 1.4007)

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Figure 2: Behavior of Gencan and Gencan-Second on the Humps Problem. Gencan goes in a straight
line to the saddle point (1.4007, 1.4007). Gencan-Second starts as Gencan until it leaves the straight
line given by x1 = x2 using a second-order direction from x2 to x3.

18



(0.5, 0)
Initial point(0, 0) Saddle point

(0, 1) Global minimizer

x1 = (0, 1.0488)

ALGENCAN

ALGENCAN-SECOND

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Figure 3: Behavior of Algencan and Algencan-Second on the Indefinite Quadratic Problem. This
picture corresponds to the problem formulation without the slack variable s.

in 13 iterations, as illustrated in Figure 2.

Example 3: Indefinite Quadratic.

Minimize

n−1∑

i=1

x2
i − εx2

n s. t. ‖x‖2 + s = 1, s ≥ 0.

We took n = 2, ε = 1 (note that the problem has three variables, namely, x1, x2 and a “slack” vari-
able s). Using the initial point (0.5, 0, 0.75), Algencan converges to the interior saddle point (0, 0, 1)
in 3 iterations. On the other hand, Algencan-Second converges to the global minimizer (0, 1, 0) in 3
iterations too. Similar behavior is observed for different values of n and ε, whenever the initial point is
in the hyperplane xn = 0. See Figure 3.

Example 4: First-Order Convergence to Global Maximizer.

Minimize − x1 − x2 s. t. x1x2 = ε, 0 ≤ x1, x2 ≤ 10,

where ε ≥ 0. When ε = 0, this is a mathematical programming problem with complementarity con-
straints. If we drop the constraint x1x2 = ε, the global minimizer of the relaxed problem is (10, 10).
Therefore, (10, 10) is a “good candidate” to be the initial point for a nonlinear programming solver. The
global minimizers of this problem are (ε/10, 10) and (10, ε/10).

Starting from any initial point in the line x1 = x2 (in particular, starting from (10, 10)), Algencan

converges to the global maximizer of the problem (
√

ε,
√

ε). On the other hand, Algencan-Second

always converges to one of the global minimizers. See Figure 4a. It is interesting to observe that the
convergence to a global maximizer is not related to the absence of first-order constraint qualifications. In
the case ε = 0, the global maximizer (0, 0) does not satisfy even very weak constraint qualifications (as
CPLD), but the global maximizers in the case ε > 0 are regular feasible points.

A similar behavior of Algencan and Algencan-Second is observed if, in the present problem, we
replace the constraints by the Fischer-Burmeister constraint x1 + x2 −

√
x2

1 + x2
2 = ε. See Figure 4b.
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(5, 5) Initial point

(1.7071, 1.7071) Global maximizer

ALGENCAN

x1 ≈ x2 = (1.0556, 10)

Global minimizer

ALGENCAN-SECOND
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0
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(a) (b)

Figure 4: Behavior of Algencan and Algencan-Second on the Example 4 with ε = 1. (a) corresponds
to the constraint x1x2 = ε and (b) corresponds to the Fischer-Burmeister formulation.

Note that the convergence to a global maximizer does not contradict the convergence theory presented
in [1]. The method generates infeasible points and, generally, achieves feasibility only in the limit. In
the case of Algencan functional values do not decrease from one outer iteration to another. Similar
behavior may be observed in other nonlinear programming algorithms.

5 Conclusions

PHR-like Augmented Lagrangian methods have been revisited in our recent work [1]. A web-available
version of the main algorithm introduced in [1] usually gives good results for large-scale problems, at least
when the number of inequality constraints is very large and when the Lagrangian-Hessian matrix is very
badly structured for sparse factorizations. In these cases, matrix-free algorithms as the one presented
in [1] are recommendable. The computer code implementing Algencan is frequently updated, so that
the algorithm performs reasonably well not only in the special situations for which it is recommendable,
but also in many other standard situations. As part of this permanent improvement work, we decided to
define a version of Algencan with guaranteed convergence to second-order stationary points. In [3] the
aimed optimality condition was rigorously stated. The classical (weak) second-order optimality condition
was associated in [3] to a new second-order constraint qualification, which turns out to be weaker than
LICQ.

For achieving convergence to the defined second-order critical points we need a special subproblem
solver. For obvious reasons, we wish this special algorithm to be a minor modification of the matrix-free
box-constraint solver Gencan, used by the Augmented Lagrangian method. The main difficulty is that,
since the PHR approach uses subproblems that are not twice smooth, the new box-constraint solver
should achieve second-order criticality even in the absence of second derivatives.

Fortunately, we were able to define the special type of box-constraint criticality that is needed in
the PHR method (Section 2 of the present paper). The Augmented Lagrangian method, equipped
with subproblem stopping criteria associated with the proved finite-time criticality of the subproblem
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solver, turned out to be globally convergent in the sense desired (Section 3 of the present paper). As a
consequence, second-order stationarity was obtained for a nonlinear programming solver using suitable
weak constraint qualifications.

In massive comparisons, the second-order version of Algencan does not represent a meaningful im-
provement over Algencan. One reason is that convergence of first-order methods to points that are not
local minimizers only occurs starting from rare initial approximations. A second reason is that, albeit
without theoretical convergence consequences, Gencan uses negative curvature directions when its inter-
nal conjugate-gradient process finds one. Nevertheless, we provided examples showing that, sometimes,
initial rare approximations could be quite reasonable initial choices and that first-order methods could
fail in cases in which the second-order algorithm succeeds.

The extension of good box-constraint or linear-constraint solvers to the case in which the objec-
tive function has the PHR form is an interesting subject of research. Especially interesting should be
the extension of the box-constraint conjugate-gradient solver described in [24], the linearly-constrained
minimization algorithm of Forsgren and Murray [21] and the extension of interior point box-constraint
approaches. We believe that taking profit in a clever way of second-order information will cause general
algorithmic improvements, independently of convergence to second-order criticality.
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