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1. Introduction

Optimality conditions play a central role in the study and solution of nonlinear opti-
mization problems. Among them, the KKT conditions are arguably the most celebrated,
ensuring first order stationarity [9, 10, 13, 17, 18, 21]. Their main objective is to assert that
there is not any descent direction for the objective that remains feasible up to first order.
Second order conditions try to complete this picture, guaranteeing that the directions that
are not of ascent nature are not directions of negative curvature either. This paper studies
conditions that ensure the validity of second order conditions at local minima, i.e. we are
interested in situations where the second order conditions are necessary.
Given a local minimum x∗, the definition of the second order conditions starts with

the identification of a cone of critical directions for which the first order information is
not enough to assert optimality. This cone is called the (strong) critical cone and denoted
T(x∗). In fact, d 6∈ T(x∗) if, and only if, it either is a direction of ascent for the objective or
it is a direction that leads directly to infeasible points. See details in Definition 2.1 below.
The (strong) second order condition (SOC) then states that these (critical) directions are
not, up to the second order, descent directions of the Lagrangian L(·, λ, µ) starting from
x∗. In other words, the second order condition states that x∗ looks like a local minimum, up
to the second order, of the Lagrangian with fixed multipliers in all directions of the critical
cone. There is also a weak version of the second order necessary condition that appears
naturally in the context of analysis of algorithms [3, 14, 16]. See again Definition 2.1.
These SOCs are stated using multipliers (λ, µ), that form together with x∗ a KKT triple.

Hence, they depend on the validity of KKT at x∗. This in turn can be guaranteed by a (first
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order) constraint qualification. The first, and still most used, constraint qualification is
regularity, which states that the gradients of the active constraints are linearly independent
at x∗. Even though it is quite restrictive, regularity is still widely used due to its simplicity
and special properties, like the uniqueness of the multiplier.
There are many more first order constraint qualifications in the literature, two of

which play an important role in this work. Mangasarian-Fromovitz constraint qualification
(MFCQ) is an extension of regularity that is better suited for inequality constraints [19].
It asks that the gradients of the active constraints must be positively linearly independent,
with positive multipliers associated with the inequalities [22]. Another important and very
general constraint qualification was introduced by Abadie [1]. It states that the cone as-
sociated to the linearized constraints coincides with the (geometrical) tangent cone to the
feasible set.
In the context of second order conditions, the usual constraint qualification is regularity.

One of its advantages is that it ensures the existence of a unique multiplier, which simplifies
the definition of SOCs. In fact, most nonlinear optimization books only define second order
conditions under this assumption [9, 10, 13, 17, 18, 21]. A natural question that arises
is what conditions the constraints must satisfy to ensure the validity of a second order
necessary condition. The main objective would be to find conditions that are less stringent
than regularity.
A counter-example by Arutyunov, later rediscovered by Anitescu, shows that the natural

extension of regularity, Mangasarian-Fromovitz constraint qualification, does not imply
either the strong or the weak second order optimality condition [5, 6]. The research on
SOCs has since been performed under two main lines of reasoning: imposing constant rank
assumptions and proving that strong SOC holds for every Lagrange multiplier [2, 4, 20],
or imposing MFCQ and some additional condition to show that there exists at least one
Lagrange multiplier for which strong SOC holds [7, 8].
Another line of research on second order optimality conditions deals with necessary

conditions that can be made into a sufficient condition simply by requiring strict positive
semidefiniteness on the same critical cone. Those conditions are typically based on Fritz-
John multipliers, where the objective function may be ignored, and they depend on the
whole set of Lagrange multipliers, since a verification of positive semidefiniteness should
be performed on the maximum of a quadratic form over the set of multipliers. See, for
instance, [11]. In this work we are interested in conditions that can be verified given one
single Lagrange multiplier, since this is typically the case in numerical algorithms.
We prove first that if Abadie CQ holds for a subsystem of the constraints viewed as

equalities, a condition weaker than the usual constant rank assumptions, then strong
SOC holds for all Lagrange multipliers. As a consequence, we prove that if only equality
constraints are present, Abadie CQ is sufficient to ensure strong SOC for all multipliers.
As for systems that conform to MFCQ, we show that if a generalized complementarity
condition plus a new constant rank condition holds then strong SOC can be asserted for
at least one multiplier. Finally, we also show that the weak SOC is valid for all multipliers
whenever Abadie CQ holds for the full set of active constraints, considered as a system of
equalities.
The rest of this paper is organized as follows: Section 2 presents the formal definition of

the second order conditions. Section 3 presents definitions and results concerning second
order under Abadie-type assumptions. In Section 4 we present the results under MFCQ.
Section 5 presents some concluding remarks.
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2. Basic definitions

Let us introduce the second order optimality conditions below. We start by formally
defining the problem of interest.

min f0(x),
s.t. fi(x) = 0, i = 1, . . . ,m, (1)

fj(x) ≤ 0, j = m+ 1, . . . ,m+ p,

where f` : Rn → R, ` = 0, . . . ,m+ p are twice continuously differentiable. If x is feasible,
we denote as A(x) the index set of active inequalities at x and as I the index set of equality
constraints. All the equality constraints are, naturally, also said to be active at x. We also
use the convention g` = ∇f`(x∗) and H` = ∇2f`(x∗), for ` = 0, . . . ,m + p, where x∗ is a
particular feasible point of interest. Finally, given a pair (λ, µ) ∈ Rm × Rp+, the function
L(·, λ, µ) given by

L(x, λ, µ) = f0(x) +
m∑
i=1

λifi(x) +
m+p∑
j=m+1

µjfj(x)

is called the Lagrangian associated to (1).
Now we can state formally the second order conditions analysed in this paper:

Definition 2.1 Assume that (x∗, λ, µ) ∈ Rn × Rm × Rp+ is a KKT triple. The cone

T(x∗) :=
{
d ∈ Rn | g′0d ≤ 0; g′id = 0, i ∈ I; g′jd ≤ 0, j ∈ A(x∗)

}
is called the (strong) critical cone at x∗ while the smaller cone

τ(x∗) :=
{
d ∈ Rn | g′0d = 0; g′id = 0, i ∈ I; g′jd = 0, j ∈ A(x∗)

}
,

is called the weak critical cone at x∗.
The (strong) second order optimality condition (SSOC) holds at x∗ with multiplier (λ, µ)

if

∀d ∈ T(x∗), d′
H0 +

∑
i∈I

λiHi +
∑

j∈A(x∗)
µjHj

 d ≥ 0.

Similarly, the weak second order optimality condition (WSOC) holds at x∗ with multiplier
(λ, µ) if

∀d ∈ τ(x∗), d′
H0 +

∑
i∈I

λiHi +
∑

j∈A(x∗)
µjHj

 d ≥ 0.

Observe that the matrix that appears in both conditions above is exactly the Hessian,
with respect to x, of the Lagrangian at x∗. Moreover, it is well known that if strict com-
plementarity holds, i.e., if there exists a multiplier that is strictly positive for all active
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inequality constraints, then the strong and weak cones are the same and hence both the
strong and weak second order condition are equivalent [3].

3. Abadie-type Conditions

Recently, assumptions based on constant rank that have been used to ensure the validity
of second order conditions for every Lagrange multiplier [2, 4, 20]. In this section we show
that such conditions can be naturally replaced by a much weaker condition based on
Abadie’s CQ. The results are rather simple once we identify which is the correct set of the
constraints that must be taken into account.
Let us start this by showing that constant rank implies a weaker constraint qualification

for system of equalities and that in turn implies Abadie’s condition.

Definition 3.1 Let Ω = {x | hi(x) = 0, i = 1, . . . ,m′} ⊂ Rn be a system of continu-
ously differentiable equalities such that x∗ ∈ Ω. The Kuhn-Tucker constraint qualification
(KTCQ) holds for Ω at x∗ if, for each d ∈ Rn where ∇hi(x∗)′d = 0, i = 1, . . . ,m′, there
exists T > 0 and a differentiable curve α : (−T, T )→ Rn such that

(1) α(0) = x∗, α̇(0) = d.
(2) hi(α(t)) = 0,∀t ∈ (−T, T ) and i = 1, . . . ,m′.
If this curve is also twice continuously differentiable at 0 we say that C2-KTCQ holds.

Definition 3.2 Given a feasible point x∗ of Problem (1), we define the Tangent Cone
at x∗ as the set of directions d ∈ Rn such that d = 0 or d = lim xk−x∗

‖xk−x∗‖ for some feasible
sequence xk → x∗. We say that x∗ fulfills the Abadie constraint qualification when the
Tangent Cone at x∗ is the critical cone T (x∗).

Now we can present the relation with constant rank conditions.

Lemma 3.1 Consider Ω and x∗ as in Definition 3.1. If the gradients {∇hi(x), i =
1, . . . ,m′} have constant rank around x∗, then C2-KTCQ holds at x∗. In particular Abadie’s
CQ with respect to Ω holds at x∗.

Proof. It suffices to follow the proof of Bazaraa [9, Theorem 4.3.3]. In particular, let us
define the differential equation

α̇(t) = P (α)d, α(0) = x∗,

where P (x) is the matrix that projects onto the subspace orthogonal to {∇hi(x), i =
1, . . . ,m′}. Peano’s Theorem says that this system must have a solution, since all data
is continuous. It is easy then to check that this solution has the properties (1) and (2)
from Definition 3.1. Moreover, the solution is twice continuously differentiable because the
matrix function P (x) is differentiable under the constant rank assumption [15]. �

We move on to the second order results. In order to do so let us introduce a technical
lemma that will be the key in the proofs.

Lemma 3.2 Let (λ, µ) ∈ Rm × Rp+ be a multiplier pair associated to a local minimum x∗
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and a non-zero d ∈ Rn. If there is a feasible sequence xk such that

xk − x∗

‖xk − x∗‖
→ d

‖d‖

and such that for ` = 1, . . . ,m+p, either f`(xk) = o(‖xk−x∗‖2) or the respective multiplier
is zero, then

d′

H0 +
∑
i∈I

λiHi +
∑

j∈A(x∗)
µjHj

 d ≥ 0.

Proof. First, observe that the complementarity assumption between f`(xk) and the re-
spective multiplier implies that

L(xk, λ, µ) = f0(xk) + o(‖xk − x∗‖2).

Therefore, we can use the minimality of x∗ to see that for large k

0 ≤ f0(xk)− f0(x∗)
= L(xk, λ, µ)− L(x∗, λ, µ) + o(‖xk − x∗‖2)

= ∇xL(x∗, λ, µ)′(xk − x∗) + 1
2(xk − x∗)′∇2

xxL(x̄k, λ, µ)(xk − x∗) + o(‖xk − x∗‖2)

= 1
2(xk − x∗)′∇2

xxL(x̄k, λ, µ)(xk − x∗) + o(‖xk − x∗‖2),

where x̄k belongs to the segment joining x∗ and xk and the last equality follows from the
fact that ∇xL(x∗, λ, µ) = 0.
Dividing the inequality above by ‖xk − x∗‖2 and taking limits in k, it follows that

d′∇2
xxL(x∗, λ, µ)d ≥ 0.

�

We can now present the first second order result: a simple condition that ensures that
the weak second order condition holds at x∗.

Theorem 3.1 Let x∗ be a local minimum of (1) associated to Lagrange multipliers
(λ, µ) ∈ Rm × Rp+. If the system

f`(x) = 0, ` ∈ I ∪ A(x∗)

conforms to Abadie’s constraint qualification at x∗, then the weak second order optimality
condition holds with multiplier (λ, µ).

Proof. First observe that τ(x∗) is just the cone of linearised feasible directions associated
to the system of equalities above. Hence, Abadie’s condition states that for any non zero
d ∈ τ(x∗) there is xk → x∗ that conforms to all equalities and such that

xk − x∗

‖xk − x∗‖
→ d

‖d‖
.
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The result follows now directly from Lemma 3.2. �

This result is a clear generalization of [2, Theorem 3.2], since Lemma 3.1 shows that the
weak constant rank condition implies Abadie’s CQ, for the relevant system of equalities.
An immediate corollary, which in turn is a generalization of [3, Theorem 3.3], is:

Corollary 3.1 Consider the case where the minimization problem (1) only has equality
constraints. Let x∗ be a local minimum of this problem where Abadie’s constraint quali-
fication holds. Then, x∗ conforms to the KKT conditions and the (strong) second order
optimality condition holds for every Lagrange multiplier.

Proof. Since there are no inequalities, A0(x∗) = ∅ and the Abadie assumption of the
previous result applies to the original feasible set. Moreover, in the absence of inequalities,
the strong and weak critical cone are clearly the same. �

Note the result from the corollary was already known, see the discussion in the end of
Chapter 5 of [9]. We will revisit this discussion below.
For now, let us turn our attention to the (strong) second order optimality condition in

the presence of inequalities. Once again, the main assumption will be related to Abadie’s
CQ for a special subset of the constraints when viewed as equalities. To identify such
constraints we introduce some notation and prove a few auxiliary results.

Definition 3.3 The index set of positive inequality multipliers at x∗, denoted A+(x∗),
is the set of indexes j ∈ A(x∗) for which there exists (λ, µ) ∈ Rm×Rp+ such that (x∗, λ, µ)
is a KKT triple and µj > 0. We will denote A0(x∗) = A(x∗) \ A+(x∗).

We already know that for d ∈ T(x∗) and j ∈ A+(x∗) the inequality appearing in the
definition of the critical cone holds as an equality [2]. Hence, this cone can be rewritten as

T(x∗) =
{
d ∈ Rn | g′`d = 0, ` ∈ I ∪ A+(x∗), g′jd ≤ 0, j ∈ A0(x∗)

}
(2)

where the objective function gradient can be omitted because we already assumed that x∗
is a KKT point.
Using this fact we can present an interesting characterization of the index set A0(x∗).

Lemma 3.3

A0(x∗) = {j ∈ A(x∗) | ∃d ∈ T(x∗) s.t. g′jd < 0}.

Proof. From (2) we already know that

A0(x∗) ⊃ {j ∈ A(x∗) | ∃d ∈ T(x∗) s.t. g′jd < 0}.

On the other hand, we know that j ∈ A0(x∗) if and only if the linear problem

max
λ,µ

µj ,

s.t.
∑
i∈I

λigi +
∑

k∈A(x∗)
µkgk = −g0,

µk ≥ 0, k ∈ A(x∗)

6
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has optimal value 0. Hence 0 is also the optimal value of the dual problem

min
d

g′0d,

s.t. g′id = 0, i ∈ I,
g′kd ≤ 0, k ∈ A(x∗) \ {j},
g′jd ≤ −1.

In particular, the system

g′0d ≤ 0,
g′id = 0, i ∈ I,
g′kd ≤ 0, k ∈ A(x∗) \ {j}
g′jd ≤ −1.

has a solution, that is, j ∈ {j ∈ A(x∗) | ∃d ∈ T(x∗) s.t. g′jd < 0}. �

Corollary 3.2 There is h ∈ T(x∗) s.t.

g′ih = 0, i ∈ I ∪ A+(x∗),
g′jh < 0, j ∈ A0(x∗).

Proof. As T(x∗) is a convex cone, it is closed by addition. Hence, it is sufficient to add the
vectors given by Lemma 3.3 for each j ∈ A0(x∗). �

Finally we can present the new condition for the validity of the (strong) second order
condition. It is a direct generalization of [2, Theorem 3.1] and [20, Theorem 6], where we
clearly identify the set of gradients that need to be well behaved instead of looking at all
the subsets that involve active inequalities.

Theorem 3.2 Let x∗ be a local minimum of (1) associated to Lagrange multipliers
(λ, µ) ∈ Rm × Rp+. If the Tangent cone of

F+ := {f`(x) = 0, ` ∈ I ∪ A+(x∗)}

at x∗ contains the critical cone T(x∗), then the (strong) second order optimality condition
holds at x∗ with multiplier (λ, µ).

Proof. Let d be any non-zero direction in T(x∗), and consider without loss of generality
that ‖d‖ = 1. Let h be as in Corollary 3.2. For any k = 1, 2, . . ., define

dk := d+ (1/k)h
‖d+ (1/k)h‖ .

It follows that g′`dk = 0, ` ∈ I ∪ A+(x∗), g′jdk < 0, for all j ∈ A0(x∗), ‖dk‖ = 1, and
dk → d. In particulr dk ∈ T(x∗).
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The assumption of the theorem implies then that dk belongs to the tangent cone of the
system of equalities at x∗. That is, there must be xl → x∗, with f`(xl) = 0, ` ∈ I∪A+(x∗),
such that

xl − x∗

‖xl − x∗‖
→l d

k.

We show now that xl is feasible in (1) for l large enough. In fact, for ` ∈ I ∪A+(x∗) the
constraints hold as equalities. For j ∈ A0(x∗) we get

fj(xl) = fj(x∗) +∇fj(x̄l)′(xl − x∗) = ∇fj(x̄l)′(xl − x∗),

for some x̄l in the line segment joining x∗ and xl. Then,∇fj(x̄l)→l gj . Since (xl−x∗)/‖xl−
x∗‖ →l d

k and g′jdk < 0, it follows that, for l large enough, fj(xl) < 0. Finally, continuity
of the constraints imply that all inactive constraints hold in xl for large l.
Since f`(xl) = 0, for all ` ∈ I ∪ A+(x∗), Lemma 3.2 shows then that

(dk)′∇2
xxL(x∗, λ, µ)dk ≥ 0.

The result follows taking limits in k. �

Theorem 3.2 above may be seen as a variation of the results described in the discus-
sion of Chapter 5 of [9]. There, the authors define the following second order constraint
qualification.

Theorem 3.3 (Bazaraa, Sherali, and Shetty [9]) Let x∗ be a local minimum of (1) and
(λ, µ) ∈ Rm×Rp+ an associated Lagrange multiplier pair. Let A+

µ := {j ∈ A(x∗) | µj > 0}
and A0

µ := A(x∗) \ A+
u . If the system

Fµ := {x | f`(x) = 0, ` ∈ I ∪ A+
µ ; fj(x) ≤ 0, j ∈ A0

µ} (3)

conforms to Abadie’s constraint qualification at x∗, then the (strong) second order opti-
mality condition holds at x∗ with multiplier (λ, µ).

Observe that this theorem has a different assumption for each multiplier. Hence it can
only ensure a SOC for all multiplier if all the associated systems conform to Abadie’s
condition.
In order to better understand this result and see the relationship between Theorems 3.3

and 3.2, let us proof two auxiliary lemmas.

Lemma 3.4 The linearized cones associated to the systems appearing in (3) are all the
same and coincide with the strong critical cone T(x∗).

Proof. This is a simple consequence of direct algebraic manipulations of the definitions of
the cones and the KKT conditions.

�

This result allows us to interpret the condition from Bazaraa et al. as a family of inclu-
sions indexed by the multiplier pairs. It asserts the validity of SSOC for a specific multiplier
pair (λ, µ) whenever

Tangent of Fµ ⊃ T(x∗). (4)
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It follows immediately that if one of these inclusions holds for (λ, µ), it also holds for all
other multiplier pairs (λ̃, µ̃) where A+

µ̃ ⊂ A+
µ . This happens because in this case clearly

Fµ̃ ⊃ Fµ and this inclusion is inherited by the tangent cones. In particular, if (λ, µ) is
a multiplier pair where A+

µ = A+(x∗), which always exists since convex combinations of
multiplier pairs is a multiplier pair, the strong second order condition will hold for every
multiplier. This fact is summarized in the next theorem.

Theorem 3.4 Let x∗ be a local minimum of (1) and (λ, µ) ∈ Rm × Rp+ an associated
multiplier pair such that A+

µ = A+(x∗). If the system

Fµ = {x | f`(x) = 0, ` ∈ I ∪ A+(x∗); fj(x) ≤ 0, j ∈ A0(x∗)}

conforms to Abadie’s constraint qualification at x∗, then the (strong) second order opti-
mality condition holds at x∗ for all multiplier pairs.

Note that the hypothesis of this last result is equivalent to the inclusion (4). Hence, at
first sight, Theorem 3.2 may seem to be a generalization of Theorem 3.4, where the critical
feasible set Fµ is replaced by the potentially larger set F+, making the inclusion easier to
hold. However, both results are actually equivalent.

Lemma 3.5 Using the assumptions and notation of Theorems 3.2 and 3.4, then

Tangent of Fµ ⊃ T(x∗) ⇐⇒ Tangent of F+ ⊃ T(x∗).

Hence, Theorems 3.2 and 3.4 are equivalent.

Proof. It follows directly from the definitions of F+ and Fµ that F+ ⊃ Fµ, hence the direct
implication is obvious.
As for the reverse implication, we can follow the proof of Theorem 3.2 to see that given

a non-zero d ∈ T(x∗), we can find a sequence dk → d such that for each k there is a
sequence xl feasible for Fµ where

xl − x∗

‖xl − x∗‖
→ dk.

Hence dk must also belong to the tangent cone of Fµ. The result follows taking limits in
k as tangent cones are closed. �

Actually, the same line of arguments allow us to give a similar variation of Theorem 3.3
where the constraints with index in A0(x∗) are omitted. This result encompasses as special
cases Theorems 3.2-3.4.

Theorem 3.5 Let x∗ be a local minimum of (1) and (λ, µ) ∈ Rm × Rp+ an associated
Lagrange multiplier pair. Let A+

µ = {j ∈ A(x∗) | µj > 0}. If the tangent cone of

{x | f`(x) = 0, ` ∈ I ∪ A+
µ , fj(x) ≤ 0, j ∈ A+(x∗) \ A+

µ } (5)

at x∗ contains the (strong) critical cone T(x∗), then the (strong) second order optimality
condition holds at x∗ for all multiplier pairs (λ̃, µ̃) such that A+

µ̃ ⊂ A+
µ .

We close this section by showing a simple example where the assumptions of the The-
orem above fail for the multipliers with the largest number of strictly positive entries. In
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particular, Theorems 3.2 and 3.4 can not be applied. However, it is still possible to find a
special multiplier for which its assumptions hold and hence where SOC is fulfilled.
Consider the optimization problem

min x2,

s.t. − x2
1 − x2 ≤ 0,

− x2 ≤ 0, (6)
x1 ≤ 0.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Figure 1. Feasible set of problem (6).

The point x∗ = (0, 0) is clearly a solution, which is associated to many possible
multipliers. In particular, the multipliers associated to the first two constraints can be
strictly positive, while the multiplier associated to the last constraint is always 0. That is,
A+(x∗) = {1, 2} and A0(x∗) = {3}. The critical cone is only the negative portion of the
first axis, T(x∗) = {d | d1 ≤ 0, d2 = 0}. If we consider a multiplier where the first two
coordinates are not zero, for example µ = (1/2, 1/2, 0), it follows that the sets F+, that
appears in Theorem 3.2, and Fµ, that appears in Theorems 3.3 and 3.4, coincide and are
equal to {(0, 0)}. Clearly its tangent cone does not contain T(x∗). On the other hand, if
we consider µ̃ = (0, 1, 0), the set Fµ̃ = {x | x1 ≤ 0, x2 = 0}, appearing in Theorem 3.3,
is exactly T(x∗). Hence, SSOC holds. The set appearing in Theorem 3.5 is even larger,
consisting on the whole first axis.

4. MFCQ-type Conditions

Another approach on the (strong) second order condition was pioneered by Baccari and
Trad [8]. In this paper, the authors show that there is at least one Lagrange multiplier pair
such that the second order condition holds if there is at most one inequality in A0(x∗), an
assumption called generalized strict complementarity slackness (GSCS), and if a modified
version of Mangasarian-Fromovitz constraint qualification hold.
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Definition 4.1 We say that the Modified Mangasarian-Fromovitz (MMF) holds at x∗ if
MFCQ holds and the rank of the active gradients is deficient of at most one.

The proof technique is very interesting. They first show that there are two multiplier
pairs (λ1, µ1) and (λ2, µ2) for which

max
(
d′∇2

xxL(x∗, λ1, µ1)d, d′∇2
xxL(x∗, λ2, µ2)d

)
≥ 0.

Then, using the fact that the critical cone T(x∗) is a first order cone whenever GSCS
holds, it is possible to conclude, using Yuan’s Lemma [12, 23], that there exists at least
one multiplier pair for which SSOC holds.
Now, it is simple to see that the GSCS assumption is only used to allow for the use of

Yuan’s Lemma. However, if one is interested on the weak second order condition, the cone
τ(x∗) is always a subspace regardless of A0(x∗). Hence, Yuan’s result can be applied and
we can see that:

Corollary 4.1 Let x∗ be a local minimum of (1). If x∗ conforms to MMF then WSOC
holds for at least one multiplier pair.

This results are not special cases of the previous second order results, based only on
Abadie’s condition for the right set of constraints viewed as equalities. For example consider
the problem

min x2

s.t. − x2 ≤ 0
x2

1 − x2 ≤ 0

at its global minimum (0, 0).
However, we can still use the ideas presented in the previous section to extend the

corollary above. In particular, we will show that the constraints with indexes in A0(x∗)
do not play an important role and hence their rank should not be taken into account.

Theorem 4.1 Let x∗ be a local minimum of (1). Suppose that MFCQ holds at x∗ and
that all the systems with the form

f`(x) = 0, ` ∈ I ′,

where I ′ ⊂ I ∪A+(x∗), #I ′ = #(I ∪A+(x∗))− 1, conform to C2-KTCQ . Then, WSOC
holds at x∗ for at least one multiplier pair.

We will prove this result in a series of lemmas below. This proof can also be adapted to
give also an alternative proof of Baccari and Trad’s result.

Lemma 4.1 Under MFCQ, if the gradients of constraints with index in I ∪ A+(x∗) are
linearly dependent, then there are two active inequalities j1 and j2 such that

(1) j1, j2 ∈ A+(x∗).
(2) There exists γj1 , γj2 > 0 and γ` ∈ R, ` ∈ I ∪ A+(x∗), ` 6= j1, j2, such that

γj1gj1 = γj2gj2 +
∑

`∈I∪A+(x∗)
6̀=j1,j2

γ`g`. (7)

11
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(3) It is possible to find two multiplier pairs (µ1, λ1), (µ2, λ2) ∈ Rm × Rp+ such that λ1
j1 =

λ2
j2 = 0.

Proof. If the constraints with index in I ∪A+(x∗) are linearly dependent, there must exist
β`, ` ∈ I ∪ A+(x∗), not all zero, such that

0 =
∑

`∈I∪A+(x∗)
β`g`.

We extend these coefficients to Rm × Rp by defining βj = 0 for the remaining indexes.
Now, given a multiplier pair (λ, µ) ∈ Rm ×Rp+ such that µj > 0, ∀j ∈ A+(x∗), the line

that passes through this multiplier with direction β, must intercept the set of all possible
multipliers in a non-trivial segment. The extremes (λ1, µ1) and (λ2, µ2) of this segment
are clearly associated to two indexes j1, j2 for which λ1

j1 = λ2
j2 = 0. This happens because

βj1 and βj2 have opposite signs. Now, define αj1 = |βj1 |, αj2 = |βj2 |, and α` = β`, ` ∈
I ∪ A+(x∗), ` 6= j1, j2. �

We now state and prove an auxiliary lemma.

Lemma 4.2 Consider the assumptions of Theorem 4.1 and of Lemma 4.1 and let j1, j2
be the special active inequalities given by this Lemma. If d ∈ T(x∗), then there exists two
twice continuously differentiable curves αk : (−Tk, Tk)→ Rn, Tk > 0, k = 1, 2, such that:

(1) αk(0) = x∗, α̇k(0) = d.
(2) f`(αk(t)) = 0,∀t ∈ (−Tk, Tk) and ` ∈ I ∪ A+(x), ` 6= jk.

Proof. For each k = 1, 2, simply apply Lemma 3.1 for the systems

f`(x) = 0, ` ∈ I ∪ A+(x), ` 6= jk.

�

This result is complemented by the lemma below, that gives hints on what happens in
constraint jk when one follows the curve αk(t), t ∈ (−T, T ).

Lemma 4.3 Consider the assumptions and notation of Lemma 4.2. Fix a direction d ∈
T(x∗) and the respective curves αk, k = 1, 2. Define ϕk` (t) = f`(αk(t)), ` ∈ I ∪ A+(x∗).
These functions are twice continuously differentiable, ϕkjk

(0) = ϕ̇kjk
(0) = 0, k = 1, 2, and

ϕ̈1
j1(0) = −γj2

γj1

ϕ̈2
j2(0).

Proof. Using standard calculus rules, since jk ∈ A+(x∗), it is easy to see that

ϕkjk
(0) = fjk

(αk(0)) = f(x∗) = 0,
ϕ̇kjk

(0) = ∇fjk
(αk(0))′d = g′jk

d = 0.

Now let us compute the second derivative. For ` ∈ I ∪ A+(x∗), ` 6= jk, we get that
ϕ̈k` (0) = 0, because the function is constantly 0 in (−Tk, Tk). Hence, standard calculus
rules shows that

0 = ϕ̈k` (0) = d′H`d+ g′`α̈k(0), ` ∈ I ∪ A+(x∗), ` 6= jk. (8)

12
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Finally, for ` = j1, we get

ϕ̈1
j1(0) = d′Hj1d+ g′j1α̈1(0)

= γj1

γj1

d′Hj1d+ γj2

γj1

g′j2α̈1(0) +
∑

`∈I∪A+(x∗)
` 6=j1,j2

γ`
γj1

g′`α̈1(0) [Using (7)]

= γj1

γj1

d′Hj1d−
γj2

γj1

d′Hj2d−
∑

`∈I∪A+(x∗)
6̀=j1,j2

γ`
γj1

d′H`d [Using (8)]. (9)

Analogously, for ` = j2,

ϕ̈2
j2(0) = d′Hj2d+ g′j2α̈2(0)

= γj2

γj2

d′Hj2d+ γj1

γj2

g′j1α̈2(0)−
∑

`∈I∪A+(x∗)
` 6=j1,j2

γ`
γj2

g′`α̈2(0) [Using (7)]

= γj2

γj2

d′Hj2d−
γj1

γj2

d′Hj1d+
∑

`∈I∪A+(x∗)
` 6=j1,j2

γ`
γj2

d′H`d [Using (8)]. (10)

Comparing (9) and (10), the result follows. �

We are now able to prove Theorem 4.1

Proof. (Theorem 4.1) If the gradients of I ∪ A+(x∗) are linearly independent, the result
follows from Theorem 3.2. Otherwise, let d ∈ T(x∗) be a direction of norm 1 such that
g′jd < 0, j ∈ A0(x∗). We show first that

max
(
d′∇2

xxL(x∗, λ1, µ1)d, d′∇2
xxL(x∗, λ2, µ2)d

)
≥ 0.

We start by recalling that d′g` = 0, for all ` ∈ I∪A+(x∗) and g′jd < 0, for all j ∈ A0(x∗).
Let j1 and j2 be the special indexes appearing in the lemmas above and consider the
respective curves α1 and α2. As in Lemma 4.3, define ϕk` (t) := f`(αk(t)), k = 1, 2, ` ∈
I ∪ A(x∗). We already know that, for j ∈ A0(x∗),

ϕkj (0) = 0, ϕ̇kj (0) = g′jd < 0.

Hence, the curves αk are feasible for these constraints and small t. Now, for ` ∈ I ∪
A+(x∗), ` 6= jk, ϕk` (t) = 0, for all t ∈ [0, Tk], k = 1, 2. So, these constraints are also satisfied.
The only constraints that may fail is fj1 along curve α1 and fj2 along α2. Considering
Lemma 4.3, there are only two possibilities:
(1) ϕ̈1

j1(0), ϕ̈2
j2(0) 6= 0. Using again Lemma 4.3, we can see that exactly one of the functions

ϕ̈kjk
, k = 1, 2 has strictly negative second derivative at t = 0. Hence, this function has

to be negative for small t and the respective curve must be feasible. Choosing the
respective multiplier pair (λk, µk), we can now use Lemma 3.2 to see that

d′∇2
xxL(x∗, µk, λk)d ≥ 0.

13



February 20, 2015 Optimization Methods & Software second_order

(2) ϕ̈1
j1(0) = ϕ̈2

j2(0) = 0. In this case, along α1 all constraints but fj1 are satisfied. If fj1 is
also satisfied along α1, then this curve is feasible and we proceed as above. If α1 does
not satisfy fj1 , as ϕ1

j1(0) = ϕ̇1
j1(0) = ϕ̈1

j1(0) = 0, this infeasibility is of order two. In
particular, there is a sequence xk → x∗ such that

xk − x∗

‖xk − x∗‖
→ d, 0 < fj1(xk) = o(‖xk − x∗‖2). (11)

Now, as the full feasible set conforms to Mangasarian-Fromovitz condition, it conforms
to an error bound. Therefore, there is a feasible sequence {x̄k} and a constant M > 0
such that ‖x̄k − xk‖ ≤Mfj1(xk) = o(‖xk − x∗‖2). Let us study {x̄k}.
First observe that,

x̄k − x∗

‖x̄k − x∗‖
= x̄k − x∗

‖x̄k − x∗‖

= x̄k − xk

‖x̄k − x∗‖
+ xk − x∗

‖x̄k − x∗‖

= o(‖xk − x∗‖2)
‖x̄k − x∗‖+ o(‖xk − x∗‖2) + xk − xk

‖xk − x∗‖+ o(‖xk − x∗‖2)
→ d.

Moreover, for ` ∈ I ∪ A+(x∗), ` 6= j1

f`(x̄k) = f`(xk) +∇f`(xk)(x̄k − xk)
= 0 + o(‖xk − x∗‖2).

And for j1,

fj1(x̄k) = fj1(xk) +∇fj1(xk)(x̄k − xk)
= o(‖xk − x∗‖2) + o(‖xk − x∗‖2)
= o(‖xk − x∗‖2).

Then, we can use again Lemma 3.2 to see that

d′∇2
xxL(x∗, µk, λk)d ≥ 0.

Finally, any direction d ∈ τ(x∗) can be approximated by directions like the ones consid-
ered above, hence the continuity of the functions involved imply that

∀d ∈ τ(x∗), max
(
d′∇2

xxL(x∗, λ1, µ1)d, d′∇2
xxL(x∗, λ2, µ2)d

)
≥ 0.

As τ(x∗) is a subspace, Yuan’s Lemma shows that there is a multiplier (λ, µ) which is a
convex combination of (λ1, µ1) and (λ2, µ2) such that WSOC holds. �

A very similar proof can also be used to demonstrate a direct generalization of the main
result in [8], which involves a strong second order condition. Here, the generalized strict
complementarity assumption can not be dropped as it is essential to apply Yuan’s Lemma
to the strong critical cone, which is not necessarily a subspace. This results is also related

14
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to the conjecture in the end of [3, Section 5] where instead of using an assumption of the
kind “full rank minus 1” we employ an assumption with weaker flavour, that is implied by
“constant rank of the full set of gradients minus 1”.

Theorem 4.2 Let x∗ be a local minimum of (1). Suppose that MFCQ and GSCS hold at
x∗, and that all the systems with the form

f`(x) = 0, ` ∈ I ′,

where I ′ ⊂ I ∪ A+(x∗), #I ′ = #(I ∪ A+(x∗))− 1, conform to C2-KTCQ . Then, SSOC
holds at x∗ for at least one multiplier pair.

Proof. Just follow the proof of Theorem 4.1. At the last part we can still use Yuan’s
Lemma since GSCS condition implies that the critical cone is a first order cone as shown
in the proof of [8, Theorem 5.1]. �

We end this section with an interesting example that shows the usefulness of the results
above. Consider the following optimization problem:

min x2

s.t.
1
2x

2
1 − x2 ≤ 0

x2
1 − x2 ≤ 0 (12)

(x1 − x2)2 − x1 − x2 ≤ 0
(x1 + x2)2 + x− x2 ≤ 0.

Its feasible set is displayed in Fig. 2.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
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Figure 2. Feasible set of problem (12).

The minimum is, clearly, the origin, where the feasible set is very well behaved. It con-
forms to the Mangasarian-Fromovitz constraint qualification. The second order condition

15
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also holds. Actually, the critical cones are composed only by the origin, so the second order
conditions hold trivially.
In spite its simple nature, the result from Baccari and Trad can not be used to ensure the

validity of a second order condition. The reason for this is that the assumptions of [8, The-
orem 5.1 and 7.7] require the existence of 3, the total number of active constraints minus
one, linearly independent gradients. This is impossible in R2. On the other hand, Theo-
rems 4.2 and 4.1 both can be applied, as the last two gradients are linearly independent
and span the whole plane.

5. Conclusions

In this paper we proved the validity of the classical weak and strong second- order
necessary optimality conditions under assumptions weaker than regularity. Abadie-type
assumptions yield SOCs that hold for every Lagrange multiplier pair, while conditions
based on MFCQ-type assumptions ensure SOCs for at least one Lagrange multiplier pair.
In our future research, we plan to study the possibility of using such conditions, or other
related ideas, to extend the convergence theory of algorithms specially tailored to find
second order stationary points as the methods described in [3, 14].
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