
Numerical Algorithms
https://doi.org/10.1007/s11075-021-01228-0

ORIGINAL PAPER

A family of optimal weighted
conjugate-gradient-type methods for strictly convex
quadratic minimization

Harry Oviedo1 ·Roberto Andreani2 ·Marcos Raydan3

Received: 25 February 2021 / Accepted: 25 October 2021 /
© The Author(s), under exclusive licence to Springer Science+BusinessMedia, LLC, part of Springer Nature 2021

Abstract
We introduce a family of weighted conjugate-gradient-type methods, for strictly con-
vex quadratic functions, whose parameters are determined by a minimization model
based on a convex combination of the objective function and its gradient norm.
This family includes the classical linear conjugate gradient method and the recently
published delayed weighted gradient method as the extreme cases of the convex com-
bination. The inner cases produce a merit function that offers a compromise between
function-value reduction and stationarity which is convenient for real applications.
We show that each one of the infinitely many members of the family exhibits q-
linear convergence to the unique solution. Moreover, each one of them enjoys finite
termination and an optimality property related to the combined merit function. In par-
ticular, we prove that if the n×n Hessian of the quadratic function has p < n different
eigenvalues, then each member of the family obtains the unique global minimizer in
exactly p iterations. Numerical results are presented that demonstrate that the pro-
posed family is promising and exhibits a fast convergence behavior which motivates
the use of preconditioning strategies, as well as its extension to the numerical solution
of general unconstrained optimization problems.

� Marcos Raydan
m.raydan@fct.unl.pt

Harry Oviedo
harry.leon@fgv.br

Roberto Andreani
andreani@unicamp.br

1 Escola de Matemática Aplicada, Fundação Getulio Vargas (FGV/EMAp),
Rio de Janeiro, RJ, Brazil

2 Department of Applied Mathematics, IMECC-UNICAMP, University of Campinas,
Distrito Barão Geraldo, 13083-859 Campinas SP, Brazil

3 Centro de Matemática e Aplicações (CMA), FCT, UNL, 2829–516 Caparica, Portugal

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-021-01228-0&domain=pdf
http://orcid.org/0000-0003-0417-7981
mailto: m.raydan@fct.unl.pt
mailto: harry.leon@fgv.br
mailto: andreani@unicamp.br

Numerical Algorithms

Keywords Gradient methods · Conjugate gradient methods · Strictly convex
quadratics · Unconstrained optimization · Moreau envelope

1 Introduction

We are interested in solving the following convex quadratic minimization problem

min
x∈Rn

f (x) = 1

2
x�Ax − x�b, (1)

where A ∈ R
n×n is a symmetric and positive definite matrix and b ∈ R

n is a given
vector. Solving (1) is equivalent to finding the unique solution of the linear system
of equations Ax = b. Many real-life applications require to solve large-scale linear
systems of equations whose very large size makes iterative methods the best choice
due to their simplicity and low computational cost. In addition, problem (1) is a sim-
ple setting to design effective methods for more general unconstrained optimization
problems.

One of the fundamental iterative methods for solving (1) is the gradient method,
which generates a sequence of iterates using the following recursive formula

xk+1 = xk − αk∇f (xk) for k ≥ 0, (2)

where αk > 0 is the step-size. Different ways of choosing αk > 0 lead to different
gradient methods. The classical gradient method to solve (1), originally proposed by
Cauchy [6], computes the step-size in (2) as

αSD
k := arg min

α>0
f (xk − α∇f (xk)) = ||∇f (xk)||22

∇f (xk)�A∇f (xk)
. (3)

The method given by Eqs. (2)–(3) is called the Cauchy method or the steepest descent
(SD) method. Another classical example of step-size selection, associated with the
gradient method (2), is the one that minimizes the gradient 2-norm at xk , given by

αMG
k := arg min

α>0
||∇f (xk − α∇f (xk))||2 = ∇f (xk)

�A∇f (xk)

||A∇f (xk)||22
, (4)

which is called the minimal gradient (MG) step-size.
The SD and the MG gradient-type methods are very inexpensive and intuitive, but

they both suffer from a slow rate of convergence towards the unique solution of (1).
In the last few decades, a wide variety of step-size rules have emerged to improve
the efficiency of gradient-type methods, while preserving their simplicity and low
memory requirements; see, e.g., [2, 5, 7, 8, 10–17, 19, 21, 25, 33, 34]. However,
the-method-of-choice to solve problem (1) is the classical conjugate gradient (CG)
method proposed by Hestenes and Stiefel [18]. The main reason for it to remain as
one of the best low-cost options for solving (1) is its outstanding practical behavior
that relies on its A-orthogonality and optimality properties on an underlying Krylov
subspace. As a consequence, at every k, the CG method generates the iterate xk as the

Numerical Algorithms

minimizer of the objective function f (·) on the k-dimensional already explored sub-
space. For a review on the CG method for strictly convex quadratics and its optimality
properties, we refer the reader to [22, 26, 32].

Recently, in [27], a combination of a smoothing technique with a one-step delayed
gradient scheme was developed as an enriched gradient-type method for solving (1).
The so-called delayed weighted gradient method (DWGM) shows in practice a quite
similar convergence behavior to the one observed in the CG method. Later, in [1], it
was established that indeed the DWGM method has also some key A-orthogonality
and some optimality properties, including the finite termination in at most p iter-
ations, where p is the number of distinct eigenvalues of the matrix A. The main
difference with the CG method is that, instead of minimizing the objective func-
tion f (·) on the entire explored subspace, the DWGM method minimizes the 2-norm
of the gradient vector on the same subspace. A first attempt to extend the DWGM
method was recently presented by Oviedo et al. in [28]. In [28], the authors com-
bine the ideas of the general hybrid methods, introduced in [3, 4], with the DWGM
method, to obtain the so-called hybrid gradient method (HGM). Unfortunately, the
convergence analysis in [28] requires a strong hypothesis on the smallest eigenvalue
of the Hessian matrix A.

As a generalization of the DWGM and HGM methods, in this work, we propose
a family of low-cost methods that, depending on a real parameter μ ∈ [0, 1], goes
from the CG method (μ = 0) to the DWGM method (μ = 1), keeping for all the
infinitely many members of the family some key orthogonality and optimality prop-
erties on a convenient Krylov subspace. The internal cases, i.e., when μ ∈ (0, 1),
produce iterates that are optimal for a properly chosen merit function that offers a
compromise between function-value reduction and gradient-norm reduction (i.e., sta-
tionarity) which is convenient for real applications and also for possible extensions
to the general unconstrained minimization framework. Each member of the proposed
family computes the iterates by a two-step process. At the first step, a prediction of
the new iterate is obtained by performing a gradient-type method with a step-size
selected as the argument that minimizes the merit function. Then, the new iterate is
computed by minimizing the merit function but now over the line that connects the
prediction and the penultimate iterate. Under mild assumptions we prove some stan-
dard global convergence properties of our proposal. Moreover, for any member of the
family, similar orthogonality properties and some optimal properties that hold for the
CG and the DWGM methods are established. Finally, we benchmark our procedure
over a set of sparse problems involving real data and large dimension, and compare
it with the classical conjugate gradient method and the DWGM method.

The remainder of this paper is organized as follows. In Section 2, we introduce
the new first-order algorithm to deal with problem (1). Section 3 is devoted to the
global convergence analysis of our proposal. In Section 4, additional orthogonality
properties are obtained, including finite termination and the minimization property of
all members of the family on the already explored affine subspace. Then, in Section 5,
several numerical tests are performed to assess the behavior of our procedure for
solving real large-scale systems of equations. Finally, conclusions and perspectives
are drawn in Section 6.

Numerical Algorithms

2 Derivation of the new family of methods

In this section, we derive a new family of first-order iterative methods for problem
(1). First, given a fixed parameter μ ∈ [0, 1], we introduce a new merit function

Fμ(x) := (1 − μ)E(x) + μ||∇f (x)||22, (5)

where E(x) := 1
2 (x − x∗)�A(x − x∗) = f (x) + 1

2b�x∗, and x∗ denotes the
unique solution of (1). Hence, Fμ(x) is essentially a convex combination of the
objective function and its gradient norm. Additionally, observe that x∗ = A−1b is
the unique minimizer of Fμ(·), which implies that minimizing f (·) is equivalent to
minimizing (5).

Based on the development of the DWGM in [27], we propose to minimize the
merit function (5) on the linear variety Sk := xk+span{∇f (xk), xk−xk−1} by a two-
step iteration; see also [22, pp. 254-256] for a similar approach that reproduces the
classical CG method for convex quadratics. For that, we compute first a prediction
zk of xk+1 by performing a gradient method step (see (2))

zk = xk − αk∇f (xk),

with the following optimal step-size

αk = arg min
α>0

Fμ(xk − α∇f (xk)) (6)

= ∇f (xk)
�Wμ∇f (xk)

∇f (xk)�WμA∇f (xk)
(7)

= αMG
k

(
(1 − μ)αSD

k + 2μ

(1 − μ)αMG
k + 2μ

)
, (8)

where we have conveniently introduced the symmetric and positive definite matrix

Wμ = (1 − μ)I + 2μA.

Then, we correct this prediction using an over-relaxation scheme with an optimal
weight, that is

xk+1 = βkzk + (1 − βk)xk−1, (9)

where we select the weight βk in (9), by minimizing the merit function Fμ(xk+1), i.e.,

βk = arg min
β

Fμ(βzk + (1 − β)xk−1) (10)

= −∇f (xk−1)
�((1 − μ)sk + 2μyk)

y�
k ((1 − μ)sk + 2μyk)

(11)

= −∇f (xk−1)
�Wμsk

y�
k Wμsk

, (12)

where sk := zk − xk−1 and yk := ∇f (zk) − ∇f (xk−1) = Ask . Notice that the new
iterate can also be written as

xk+1 = xk − βkαk∇f (xk) + (βk − 1)(xk − xk−1). (13)

Numerical Algorithms

From (13), we note that this two-step approach can also be seen as an optimal gradient
method with momentum, and therefore the update formula used by our procedure
is very similar to the one used by the CG method. Now we describe the obtained
generalized DWGM (GDWGM) algorithm in detail.

Let us observe that if we fix μ = 1, then Algorithm 1 reduces to the DWGM
scheme developed in [27]. For the other extreme, it will be established, at the end of
Section 4, that if we fix μ = 0 then Algorithm 1 is equivalent to the CG method for
solving (1). It is also worth mentioning that for the implementation of Algorithm 1 it
is neither necessary nor recommendable for numerical reasons to explicitly build the
matrix Wμ. In fact, note that this matrix is only used to update the step-size αk and the
parameter βk . Thus, in practice, it is numerically convenient to use the formulas (8)
and (11) to compute αk and βk , respectively. However, we present Algorithm 1 using
Wμ in order to simplify the theoretical analysis of the proposed family of methods.

In the rest of this paper, we will denote by {λ1, λ2, . . . , λn} the eigenvalues of A,
where we assume that

λ1 ≥ λ2 ≥ · · · ≥ λn > 0.

In our analysis, we will use the Kantorovich inequality (see, e.g., [22]) applied to the
symmetric and positive definite matrix A, i.e.,

(x�x)2

(x�Ax)(x�A−1x)
≥ 4λ1λn

(λ1 + λn)2
,

for all nonzero vectors x ∈ R
n.

Remark 1 Note that Algorithm 1 is essentially an exact two-step line search method
applied to the minimization of Fμ(·) over Rn. In fact, since ∇Fμ(x) = Wμ∇f (x)

Numerical Algorithms

for all x ∈ R
n, then in the first phase of the method the search direction dk = −gk

satisfies

∇Fμ(xk)
�dk = −(1 − μ)||gk||22 − 2μg�

k Agk < 0, ∀k ∈ N,

and hence dk is a descent direction of Fμ(·) at xk . In the second phase, observe that
using Step 6 in Algorithm 1 and rearranging (9) we have

xk+1 = zk + (βk − 1)sk . (14)

Later on we will establish that g�
k+1Wμsk = 0 for all k (see Lemma 2), and also that

βk > 1 for all k (see Lemma 4), which combined with Steps 5, 7, and 8 in Algorithm
1 yields

∇Fμ(zk)
�sk = ((1 − μ)∇f (zk) + 2μA∇f (zk))

� sk

= r�
k Wμsk = (yk + gk−1)

�Wμsk

= y�
k Wμsk + g�

k−1Wμsk

= y�
k Wμsk − βk y�

k Wμsk = (1 − βk) s�
k AWμsk .

Now, since AWμ = WμA is symmetric and positive definite (it is the sum of two
positive definite matrices), then ∇Fμ(zk)

�sk = (1 − βk) s�
k AWμsk < 0, which

implies that sk is a descent direction for the merit function Fμ(·) at zk . Therefore,
Algorithm 1 can be seen as an optimization procedure that performs two optimal line
searches per iteration to minimize the merit function (5).

Remark 2 There exists an interesting connection between the merit function (5) and
the Moreau envelope of the quadratic objective function (1). For a given function
f : Rn → R and a given parameter r ≥ 0, the Moreau envelope erf : Rn → R (also
known as the Moreau-Yosida regularization) is defined by

erf (x) = inf
y∈Rn

{
f (y) + r

2
‖x − y‖2

2

}
. (15)

The function erf (x) was originally introduced by J. J. Moreau in the mid-1960s [23,
24], and it has been extensively studied in the optimization literature, since it offers
a variety of smoothing and regularization properties for different scenarios; see, e.g.,
[20, 29, 31].

Since (1) can be written as f (x) = 1
2 (x − x∗)�A(x − x∗) − 1

2b�x∗, it suffices
to assume, without any loss of generality, that f (x) = 1

2x�Ax. In this case, x∗ = 0,
∇f (x) = Ax, and

f (x) = 1

2
∇f (x)�A−1∇f (x). (16)

Let us now consider the function L(x, y) = f (y) + r
2‖x − y‖2

2 which is jointly
convex in x and y. Notice that, if we substitute f (y) by its Taylor expansion, L(x, y)

can also be written as

L(x, y) = f (x) + ∇�f (x)(y − x) + 1

2
(y − x)�A(y − x) + r

2
‖x − y‖2

2, (17)

Numerical Algorithms

and it follows that ∇yL(x, y) = ∇f (x) + A(y − x) + r(y − x). If we force
∇yL(x, y) = 0, to identify the solution of the optimization problem involved in (15),
we obtain that

(y − x) = −(A + rI)−1∇f (x). (18)

Combining (15), (17), and (18), we have that

erf (x) = inf
y∈Rn

{
f (x) + ∇�f (x)(y − x) + 1

2
(y − x)�(A + rI)(y − x)

}

= f (x) − ∇f (x)�(A + rI)−1∇f (x) + 1

2
∇f (x)�(A + rI)−1∇f (x)

= f (x) − 1

2
∇f (x)�(A + rI)−1∇f (x).

To explore the link between (5) and (15), we choose a parameter μ ∈ (0, 1) and
recalling (16) we get

erf (x) = (1 − μ)f (x) + μ

2
∇f (x)�A−1∇f (x) − 1

2
∇f (x)�(A + rI)−1∇f (x)

= (1 − μ)f (x) + μ∇f (x)�R ∇f (x),

where R = 1
2A−1 − 1

2μ
(A + rI)−1. The matrix R is clearly symmetric, and it is

positive definite if and only if all its eigenvalues are positive. Since the matrices A

and (A+rI)−1 are diagonalized by the same orthogonal matrix, then the eigenvalues
λ(R)i , 1 ≤ i ≤ n, of R are given by λ(R)i = 1

2λi
− 1

2μ(λi+r)
, where λi , 1 ≤

i ≤ n, are the eigenvalues of A. Therefore, all the eigenvalues of R are positive,

and as a consequence R has a symmetric and positive definite square root R
1
2 , if

μ > λi/(λi + r) for all i. For r = 0 in (15), erf (x) = f (x∗) = 0, and so we focus
in the case r > 0. Moreover, for r > 0, the function ψ(λ) = λ/(λ + r) is increasing
(ψ ′(λ) = r/(λ + r)2 > 0) and hence it is enough that

μ > λ1/(λ1 + r) (19)

to guarantee that R
1
2 is well-defined. Notice that for each given r ∈ (0, +∞) we can

find μ ∈ (0, 1) that satisfies (19), and vice versa. In that case,

erf (x) = (1 − μ)f (x) + μ‖R 1
2 ∇f (x)‖2

2,

and we conclude that the merit function (5) can be seen as a simplified version of the

Moreau envelope of the function (1), for which the weight matrix R
1
2 is the identity

matrix. Therefore, (5) involves a certain type of regularization.

3 Convergence analysis

We now analyze Algorithm 1 by studying the asymptotic behavior of Fμ(xk) and
||∇f (xk)||2 when k goes to infinity. The proposition below and its proof provide
some key properties.

Proposition 1 Consider the iteration given by (2), then

Numerical Algorithms

a. f (xk − αk∇f (xk)) ≤ f (xk), ∀αk ∈ [0, 2αSD
k].

b. ||∇f (xk − αk∇f (xk))||2 ≤ ||∇f (xk)||2, ∀αk ∈ [0, 2αMG
k].

c. If αk = αSD
k in (2) then E(xk+1) ≤ C1E(xk), where C1 =

(
λ1−λn

λ1+λn

)2
.

d. If αk = αMG
k in (2) then f (xk − αk∇f (xk)) ≤ f (xk) and ||∇f (xk −

αk∇f (xk))||22 ≤ C1||∇f (xk)||22.

Proof (a) Using (1) and the fact that ∇f (xk) = Axk − b, we get

f (xk − αk∇f (xk)) = f (xk) − αk||∇f (xk)||22 + α2
k

2
∇f (xk)

�A∇f (xk). (20)

Using the definition of αSD
k in (3) and (20), we obtain that f (xk − αk∇f (xk)) ≤

f (xk) for all αk ∈ [0, 2αSD
k].

(b) By simple algebraic manipulations, we have that

||∇f (xk − αk∇f (xk))||22 = ||∇f (xk)||22 − 2αk∇f (xk)
�A∇f (xk) + α2

k ||A∇f (xk)||22. (21)

Once again, recalling the definition of αMG
k given by (4), we obtain from (21) that

||∇f (xk − αk∇f (xk))||2 ≤ ||∇f (xk)||2 for all αk ∈ [0, 2αMG
k].

(c) The proof of this part appears in detail in [22, Section 7.6].

(d) The first inequality is a direct consequence of (a) and the fact that αMG
k ≤ αSD

k ,
which follows from

(∇f (xk)
�A∇f (xk))

2 ≤ ‖∇f (xk)‖2
2 ‖A∇f (xk)‖2

2 (Cauchy-Schwarz inequality) .

Therefore, it suffices to prove that ||∇f (xk − αk∇f (xk))||2 ≤ C1||∇f (xk)||2.
Indeed, from (21) and using that αk = αMG

k , we have

||∇f (xk − αk∇f (xk))||22 = (1 − ĉ)||∇f (xk)||22, (22)

where ĉ = (∇f (xk)
�A∇f (xk))

2

||∇f (xk)||22||A∇f (xk)||22
. By applying the Kantorovich inequality to ĉ in (22),

we arrive at

||∇f (xk − αk∇f (xk))||2 ≤
(

λ1 − λn

λ1 + λn

)
||∇f (xk)||2, (23)

which completes the proof.

Lemma 1 Let μ ∈ [0, 1] and {xk} be a sequence generated by Algorithm 1. Then,
{Fμ(xk)} is a convergent sequence.

Numerical Algorithms

Proof It follows from the construction of Algorithm 1, Proposition 1, and the
minimization properties (6) and (10) that

Fμ(xk+1) ≤ Fμ(zk)

≤ Fμ(xk − αMG
k gk)

≤ (1 − μ)E(xk − αMG
k gk) + μC1||gk||22

≤ (1 − μ)E(xk) + μC1||gk||22
< (1 − μ)E(xk) + μ||gk||22 = Fμ(xk). (24)

Thus, {Fμ(xk)} is a monotonically decreasing sequence. Moreover, Fμ(xk) ≥ 0 for
all k ∈ N; therefore, we conclude that {Fμ(xk)} is a convergent sequence.

From Lemma 1, we see that the sequence {xk} generated by Algorithm 1 converges
to the unique solution of (1) whenever Fμ(xk) goes to zero, since both sequences
{E(xk)} and ||gk||2 are non-negative. The following theorem establishes the global
convergence of Algorithm 1.

Theorem 1 Let μ ∈ [0, 1] and {xk} be the sequence generated by Algorithm 1.
Then, the sequence {Fμ(xk)} converges to zero q-linearly with convergence factor(

λ1−λn

λ1+λn

)2
.

Proof First, observe that the step-size αk in Step 3 of Algorithm 1 can be written as

αk = g�
k Wμgk

g�
k WμAgk

. (25)

In addition, since Ax∗ = b, note that

Fμ(x) = 1

2
x�AWμx − x�Wμb + 1

2
b�WμA−1b (26)

= 1

2
(x − x∗)�AWμ(x − x∗). (27)

From the construction of Algorithm 1, Eqs. (26) and (27), and the minimization
properties (6) and (10), we have

Fμ(xk+1) ≤ Fμ(zk),

= Fμ(xk − αkgk)

= Fμ(xk) − αkg
�
k Wμgk + α2

k

2
g�

k AWμgk

= Fμ(xk) − αk

2
g�

k Wμgk

=
(

1 − αk

2

g�
k Wμgk

Fμ(xk)

)
Fμ(xk)

= (1 − c̃k)Fμ(xk), (28)

Numerical Algorithms

where c̃k = αk

2
g�
k Wμgk

Fμ(xk)
.

On the other hand, in view of Eqs. (25) and (27), we obtain

c̃k = (g�
k Wμgk)

2

(g�
k WμAgk)(g

�
k WμA−1gk)

. (29)

Since Wμ is symmetric and positive definite then it has a symmetric and positive def-

inite square root W
1/2
μ , and so WμA = W

1/2
μ AW

1/2
μ and WμA−1 = W

1/2
μ A−1W

1/2
μ ,

and it follows that

c̃k = (p�
k pk)

2

(p�
k Apk)(p

�
k A−1pk)

, (30)

where pk = W
1/2
μ ∇f (xk). Now, applying the Kantorovich inequality in (30), we

arrive at

c̃k ≥ 4λ1λn

(λ1 + λn)2
. (31)

Merging Eqs. (28) and (31), we obtain

Fμ(xk+1) ≤
(

λ1 − λn

λ1 + λn

)2

Fμ(xk). (32)

It follows immediately that {Fμ(xk)} converges to zero q-linearly with convergence

factor
(

λ1−λn

λ1+λn

)2
.

Remark 3 From Theorem 1, we have that limk→∞ Fμ(xk) = 0, which is the sum of
two positive sequences so they both converge to zero, i.e., limk→∞ E(xk) = 0 and
limk→∞ ||gk||2 = 0. Therefore, from this fact and the positive definiteness of A, we
conclude that the sequence {xk} tends to the unique global minimizer of f (·) when k

goes to infinity.

4 Finite termination and optimality properties

In this section, we establish some key Wμ-orthogonality properties that add under-
standing to the fast practical behavior of the GDWGM family of methods, including
the finite termination. Most of these results can be viewed as generalizations of the
A-orthogonality results established for the DWGM method in [1], i.e., for the specific
case μ = 1. In here, the structure and the ordering of the presentation of the theo-
retical results follow the same pattern used in [1]. However, moving from the fixed
case of μ = 1 to handling infinitely many cases (μ ∈ [0, 1]) at once, the required
mathematical arguments as well as the specific details differ from the ones used in [1].

Lemma 2 Let us consider Algorithm 1. Then, we have

a. β0 = 1, and hence x1 = z0, g1 = r0.
The following equalities hold for all k ≥ 0,

b. r�
k Wμgk = 0.

Numerical Algorithms

c. r�
k gk =

(
2μ

(1−μ)αk+2μ

)
r�
k rk .

d. g�
k+1Wμsk = 0.

Proof (a) By Steps 4, 6, and 7 in Algorithm 1, we have that s0 = z0 − x0 = −α0g0
and y0 = r0 − g0 = −α0Ag0. Hence,

β0 = −g�
0 Wμs0

y�
0 Wμs0

= − −α0g
�
0 Wμg0

−α0(−α0g
�
0 AWμg0)

= 1

α0

(
g�

0 Wμg0

g�
0 AWμg0

)
= 1.

Therefore, we obtain x1 = x−1 + β0s0 = x0 + s0 = x0 − α0g0 = z0, and

g1 = g−1 + β0y0 = g0 + y0 = g0 + r0 − g0 = r0.

(b) Using (a) and the definition of αk , we get

r�
k Wμgk = (gk − αkAgk)

�Wμgk = g�
k Wμgk − αkg

�
k AWμgk = 0.

(c) Let us define μ̂ = 2μ/((1 − μ)αk + 2μ). Since (1 − μ)αk + 2μ = 0, for all
μ ∈ [0, 1], then it follows from (b) that

r�
k gk =

(
(1 − μ)αk + 2μ

(1 − μ)αk + 2μ

)
r�
k gk = μ̂ r�

k (rk + αkwk) +
(

(1 − μ)αk

(1 − μ)αk + 2μ

)
r�
k gk

= μ̂ r�
k rk + μ̂ r�

k (αkwk) +
(

(1 − μ)αk

(1 − μ)αk + 2μ

)
r�
k gk

= μ̂ r�
k rk +

(
αk

(1 − μ)αk + 2μ

)
r�
k (2μA + (1 − μ)I)gk

= μ̂ r�
k rk +

(
αk

(1 − μ)αk + 2μ

)
r�
k Wμgk

= μ̂ r�
k rk =

(
2μ

(1 − μ)αk + 2μ

)
r�
k rk .

(d) Again, by construction of Algorithm 1, we have

g�
k+1Wμsk = (gk−1 + βkyk)

�Wμsk

= g�
k−1Wμsk + βky

�
k Wμsk

= g�
k−1Wμsk +

(−g�
k−1Wμsk

y�
k Wμsk

)
y�
k Wμsk = 0,

which proves the lemma.

Lemma 3 Let {gk} be the sequence of gradient vectors generated by Algorithm 1.
Then for all k ≥ 1

g�
k Wμgk−1 = 0. (33)

Proof The proof is by induction. For the case k = 1, we have from Lemma 2 that
g�

1 Wμg0 = r�
0 Wμg0 = 0. Let us now assume the inductive hypothesis on k, namely,

Numerical Algorithms

that g�
k Wμgk−1 = 0 for all k = p ≥ 2. Now, we consider the next iteration, k =

p + 1. By applying Lemma 2 and the inductive hypothesis, we find that

g�
p+1Wμgp = (gp−1 + βpyp)�Wμgp

= (gp−1 + βp(rp − gp−1))
�Wμgp

= (1 − βp)gp−1Wμgp + βpr�
p Wμgp = 0. (34)

Therefore, we have shown that g�
k Wμgk−1 = 0, for all k ≥ 1, and the proof is

complete.

Lemma 4 In Algorithm 1, the following statements hold for all k ≥ 1

a. g�
k Wμ(zk−1 − xk−1) = g�

k−1Wμ(zk − xk) = 0.
b. yk = Ask .

c. y�
k Wμsk = (xk − xk−1)

�WμA(xk − xk−1) − (g�
k Wμgk)

2

g�
k WμAgk

.

d. g�
k+1Wμxk+1 = g�

k+1Wμxk = g�
k+1Wμxk−1.

e. g�
k−1Wμ(xk − xk−1) = −(gk − gk−1)

�Wμ(xk − xk−1).
f. βk > 1.

Proof (a) From Step 4 in Algorithm 1 and Lemma 3, we have

g�
k Wμ(zk−1 − xk−1) = −αk−1 (g�

k Wμgk−1) = 0,

and also

g�
k−1Wμ(zk − xk) = −αk (g�

k−1Wμgk) = 0.

(b) Using several steps in Algorithm 1 it follows that

yk = rk −gk−1 = gk −gk−1−αkAgk = A(xk −xk−1−αkgk) = A(zk −xk−1) = Ask .

(c) From Steps 3, 4, 5, and 7 in Algorithm 1 and Lemmas 2 and 3, we obtain

y�
k Wμsk = (rk − gk−1)

�Wμ(zk − xk−1)

= (gk − gk−1 − αkwk)
�Wμ(xk − xk−1 − αkgk)

= (gk − gk−1)
�Wμ(xk − xk−1) − αkw

�
k Wμ(xk − xk−1)

−αk(gk − gk−1)
�Wμgk + α2

kw
�
k Wμgk

= (gk − gk−1)
�Wμ(xk − xk−1) − αkw

�
k Wμ(xk − xk−1)

= (gk − gk−1)
�Wμ(xk − xk−1) − αkg

�
k Wμ(gk − gk−1)

= (gk − gk−1)
�Wμ(xk − xk−1) − αkg

�
k Wμgk

= (xk − xk−1)
�WμA(xk − xk−1) − (g�

k Wμgk)
2

g�
k WμAgk

. (35)

(d) Using Steps 4 and 6 in Algorithm 1, Lemma 2, and Lemma 3, we get

g�
k+1Wμ(xk − xk−1) = g�

k+1Wμ(sk + αkgk)

= g�
k+1Wμsk + αkg

�
k+1Wμgk = 0.

Numerical Algorithms

Hence, g�
k+1Wμxk = g�

k+1Wμxk−1. Now, it follows from Step 9 in Algorithm 1 and
Lemma 2 that

g�
k+1Wμ(xk+1 − xk) = g�

k+1Wμ(xk−1 − xk + βksk)

= g�
k+1Wμ(xk−1 − xk) + βkg

�
k+1Wμsk

= g�
k+1Wμ(xk−1 − xk) = 0,

which yields
g�

k+1Wμxk+1 = g�
k+1Wμxk = g�

k+1Wμxk−1.

(e) By using the previous item, it follows that

0 = g�
k Wμ(xk − xk−1)

= (gk − gk−1 + gk−1)
�Wμ(xk − xk−1)

= (gk − gk−1)
�Wμ(xk − xk−1) + g�

k−1Wμ(xk − xk−1),

which implies that

g�
k−1Wμ(xk − xk−1) = −(gk − gk−1)

�Wμ(xk − xk−1). (36)

(f) First, let us note that we can rewrite the parameter βk as follows

βk = g�
k−1Wμ(xk−1 − zk)

y�
k Wμsk

= g�
k−1Wμ(xk−1 − xk + αkgk)

y�
k Wμsk

= g�
k−1Wμ(xk−1 − xk)

y�
k Wμsk

. (37)

Now combining (35), (36), and (37), we have

βk = (gk − gk−1)
�Wμ(xk − xk−1)

(gk − gk−1)�Wμ(xk − xk−1) − αk (g�
k Wμgk)

, (38)

or equivalently,

βk = (xk − xk−1)
�WμA(xk − xk−1)

(xk − xk−1)�WμA(xk − xk−1) − αk (g�
k Wμgk)

. (39)

Using (b) and (c), and the fact that AWμ is a symmetric positive definite matrix, we
conclude that the denominator in (39) satisfies

(xk − xk−1)
�WμA(xk − xk−1) − αk (g�

k Wμgk) = y�
k Wμsk = sT

k AWμsk > 0,

which means that

(xk − xk−1)
�WμA(xk − xk−1) > αk (g�

k Wμgk) > 0.

Therefore, we conclude that the numerator of βk in (39) is strictly bigger than the
denominator and they are both positive. Hence, βk > 1 for all k ≥ 1, and the result
is established.

Numerical Algorithms

4.1 Finite termination

Our next result plays a fundamental role to establish the finite termination of the
GDWGM family of methods.

Theorem 2 Algorithm 1 generates the sequences {gk} and {rk} such that

a. For k ≥ 2, g�
k Wμgj = 0, for all −1 ≤ j ≤ k − 2.

b. For k ≥ 2, r�
k Wμgj = 0, for all −1 ≤ j ≤ k − 2.

Proof The proof is by induction. Concerning (a), since g−1 = g0, x1 = z0, and
α0 > 0, using (d) in Lemma 4 and step 4 of Algorithm 1, we have

g�
2 Wμg−1 = g�

2 Wμg0

= 1

α0
g�

2 Wμ(x0 − z0) (40)

= 1

α0
g�

2 Wμ(x0 − x1) = 0, (41)

and the result is obtained for k = 2. Concerning (b), since α0 > 0, g−1 = g0,
using (a) in Lemma 2, Lemma 3, steps 4 and 5 of GDWGM, (41) and the fact that
AWμ = WμA, we obtain

r�
2 Wμg0 = 1

α0
r�

2 Wμ(x0 − z0)

= 1

α0
r�

2 Wμ(x0 − x1) = − 1

α0
r�

2 Wμ(x1 − x0) + 0

= − 1

α0
r�

2 Wμ(x1 − x0) + 1

α0
g�

2 Wμ(x1 − x0)

= 1

α0
(g2 − r2)

�Wμ(x1 − x0)

= α2

α0
g�

2 AWμ(x1 − x0) = α2

α0
g�

2 Wμ(g1 − g0)

= α2

α0
[g�

2 Wμg1 − g�
2 Wμg0] = 0.

In addition, since r�
2 Wμg−1 = r�

2 Wμg0, then the result is established for k = 2.
Let us now assume, by induction on k, that (a) and (b) hold up to k = k̂ ≥ 3, and

consider the next iteration. Hence, we need to show that g�
k̂+1

Wμgj = 0, and also

that r�
k̂+1

Wμgj = 0, for all −1 ≤ j ≤ k̂ − 1.

For −1 ≤ j ≤ k̂ − 2, using Lemma 3, Steps 7 and 10 in Algorithm 1, and the
inductive hypothesis associated with (a) and (b), we have that

g�
k̂+1

Wμgj = (g
k̂−1 + β

k̂
(r

k̂
− g

k̂−1))
�Wμgj

= (1 − β
k̂
) g�

k̂−1
Wμgj + β

k̂
r�
k̂

Wμgj = 0.

Numerical Algorithms

For j = k̂ − 1, using step 4, adding and subtracting x
k̂−2, and then using the fact

that z
k̂−1 − x

k̂−2 = (x
k̂
− x

k̂−2)/βk̂−1 (obtained from Steps 6 and 9 in Algorithm 1),
we get

g�
k̂+1

Wμg
k̂−1 = − 1

α
k̂−1

g�
k̂+1

Wμ(z
k̂−1 − x

k̂−1)

= − 1

α
k̂−1

g�
k̂+1

Wμ(z
k̂−1 − x

k̂−2 + x
k̂−2 − x

k̂−1)

= − 1

α
k̂−1

g�
k̂+1

Wμ

(
1

β
k̂−1

(x
k̂
− x

k̂−2) + x
k̂−2 − x

k̂−1

)

= − 1

α
k̂−1

[
1

β
k̂−1

g�
k̂+1

Wμ(x
k̂
− x

k̂−2) + g�
k̂+1

Wμ(x
k̂−2 − x

k̂−1)

]
.

Now, adding and subtracting g�
k̂+1

Wμx
k̂−1, and using (d) in Lemma 4, we arrive at

g�
k̂+1

Wμg
k̂−1 = − 1

α
k̂−1

[
g�

k̂+1
Wμ(x

k̂
−x

k̂−1)+g�
k̂+1

Wμ(x
k̂−1−x

k̂−2)

β
k̂−1

+g�
k̂+1

Wμ(x
k̂−2−x

k̂−1)

]

= − 1

α
k̂−1

[
1

β
k̂−1

g�
k̂+1

Wμ(x
k̂−1 − x

k̂−2) + g�
k̂+1

Wμ(x
k̂−2 − x

k̂−1)

]

= γ
k̂
g�

k̂+1
Wμ(x

k̂−1 − x
k̂−2), (42)

where γ
k̂

= (β
k̂−1 − 1)/(α

k̂−1βk̂−1) is well-defined since βk > 1 for all k and

αk = g�
k Wμgk

g�
k WμAgk

= (W
1/2
μ gk)

�(W
1/2
μ gk)

(W
1/2
μ gk)�A(W

1/2
μ gk)

,

is an inverse Rayleigh-quotient of A, i.e., αk ≥ 1
λ1

> 0 for all k.

By using Steps 5, 7, and 10 in Algorithm 1, Lemma 3, Lemma 4, the inductive
hypothesis, and the fact that AWμ = WμA, we obtain

g�
k̂+1

Wμg
k̂−1 = γ

k̂
g�

k̂+1
Wμ(x

k̂−1 − x
k̂−2)

= γ
k̂
(g

k̂−1 + β
k̂
(r

k̂
− g

k̂−1))
�Wμ(x

k̂−1 − x
k̂−2)

= γ
k̂
(1 − β

k̂
) g�

k̂−1
Wμ(x

k̂−1 − x
k̂−2) + γ

k̂
β

k̂
r�
k̂

Wμ(x
k̂−1 − x

k̂−2)

= γ
k̂
β

k̂
r�
k̂

Wμ(x
k̂−1 − x

k̂−2)

= γ
k̂
β

k̂
(g

k̂
− α

k̂
Ag

k̂
)�Wμ(x

k̂−1 − x
k̂−2)

= γ
k̂
β

k̂
g�

k̂
Wμ(x

k̂−1 − x
k̂−2) − γ

k̂
β

k̂
α

k̂
g�

k̂
AWμ(x

k̂−1 − x
k̂−2)

= −γ
k̂
β

k̂
α

k̂
g�

k̂
AWμ(x

k̂−1 − x
k̂−2)

= −γ
k̂
β

k̂
α

k̂
g�

k̂
Wμ(g

k̂−1 − g
k̂−2)

= −γ
k̂
β

k̂
α

k̂
[g�

k̂
Wμg

k̂−1 − g�
k̂

Wμg
k̂−2] = 0.

Numerical Algorithms

Therefore, (a) is established for all k ≥ 2 and for −1 ≤ j ≤ k − 2.
On the other hand, concerning (b), for −1 ≤ j ≤ k̂ − 1, using Steps 7 and 10 in

Algorithm 1, Lemma 3, item (a) which has now been established, and that βk > 1
for all k, we obtain

r�
k̂+1

Wμgj = 1

β
k̂+1

(g
k̂+2 + (β

k̂+1 − 1)g
k̂
)�Wμgj

= 1

β
k̂+1

g
k̂+2Wμgj + β

k̂+1 − 1

β
k̂+1

g�
k̂

Wμgj = 0,

and (b) is also established, which completes the proof.

In summary, combining Lemma 3 with item (a) from Theorem 2, it follows that
for all k, gk is Wμ-orthogonal to all previous gradient vectors, i.e., for all k ≥ 1

g�
k Wμgj = 0, for all j ≤ k − 1. (43)

Theorem 3 For any initial guess x0 ∈ R
n, Algorithm 1 generates the iterates xk ,

k ≥ 1, such that xn = A−1b.

Proof Using (43), we have that the first n gradient vectors gk (0 ≤ k ≤ n − 1)
generated by Algorithm 1 form a Wμ-orthogonal set, which implies that they form
a linearly independent set of n vectors in R

n. As a consequence, to satisfy (43), the
next gradient vector gn ∈ R

n must be zero. Thus, xn = A−1b.

Concerning the finite termination of Algorithm 1, as it has been already estab-
lished for the extreme cases: μ = 0 (CG, see, e.g., [26, 32]) and μ = 1 (DWGM, see
[1]), all the infinitely many members of the GDWGM family actually terminate in at
most p ≤ n iterations where p is the number of distinct eigenvalues of the matrix
A. To establish this fundamental result, we first need to show that for all k ≥ 1 the
vector gk generated by GDWGM belongs to the Krylov subspace

Kk+1(A, g0) := span{g0, Ag0, A
2g0, . . . , A

kg0}.

Lemma 5 In Algorithm GDWGM, for all k ≥ 1, gk ∈ Kk+1(A, g0).

Proof The proof is identical to the proof of Lemma 7 in [1].

Theorem 4 If A has only p < n distinct eigenvalue, then for any initial guess x0 ∈
R

n Algorithm 1 generates the iterates xk, k ≥ 1 such that xp = A−1b.

Proof The proof is identical to the proof of Theorem 9 in [1].

4.2 Minimization of Fμ(·) on the explored affine subspace

We now focus our attention on the minimization property of the map Fμ(·), at each
iteration, on the already explored affine subspace. For that, we need to establish
for any μ ∈ [0, 1] the Wμ-orthogonality of the current gradient gk with all the

Numerical Algorithms

previously explored search directions, which are given by the vectors (xj −xj−1) for
1 ≤ j ≤ k.

Theorem 5 For any μ ∈ [0, 1], Algorithm 1 generates the sequences {gk} and {xk}
such that for k ≥ 2

g�
k Wμ(xj − xj−1) = 0, for 1 ≤ j ≤ k. (44)

Proof The proof is by induction. For k = 2, using (d) in Lemma 4, we have that

g�
2 Wμ(x2 − x1) = g�

2 Wμ(x1 − x1) = 0.

Let us now assume that (44) holds up to k = p, and let us consider the next iteration.
When j = p, using again (d) in Lemma 4, we obtain

g�
p+1Wμ(xp+1 − xp) = g�

p+1Wμ(xp − xp−1) = 0.

It remains to consider 1 ≤ j ≤ p − 1. Using the inductive hypothesis, Steps 7 and
10 in Algorithm 1, and Theorem 2, we have that

g�
p+1Wμ(xj − xj−1) = (gp−1 + βpyp)�Wμ(xj − xj−1)

= −((βp − 1)gp−1 − βprp)�Wμ(xj − xj−1)

= βpr�
p Wμ(xj − xj−1)

= βp(gp − αpAgp)�Wμ(xj − xj−1)

= −βpαp(Agp)�Wμ(xj − xj−1)

= −βpαpg�
p WμA(xj − xj−1)

= −βpαpg�
p Wμ(gj − gj−1) = 0.

Let us notice that, at iteration k, the explored affine subspace Vk is given by

Vk =
⎧⎨
⎩x ∈ R

n | x = x0 +
k∑

j=1

ηj (xj − xj−1) and η = (η1, η2 . . . , ηk) ∈ R
k

⎫⎬
⎭ .

(45)

Corollary 1 For all k ≥ 1, the iterate xk generated by Algorithm 1 is the argument
that minimizes the merit function Fμ(·) on Vk .

Proof Let us consider the following convex minimization problem

min Fμ(x) subject to x ∈ Vk ⊆ R
n. (46)

Clearly, the constrained problem (46) is equivalent to the following unconstrained
minimization problem

min
η∈Rk

Gμ(η) = Fμ(x(η)), (47)

where x : Rk → R
n is a linear function defined by x(η) := x0+∑k

j=1 ηj (xj −xj−1),
and ηj denotes the j -th entry of η. Now, observe that the cost function Gμ(·) is clearly

Numerical Algorithms

a strictly convex function in R
k . This fact implies that (47) has a unique solution, say

η∗ ∈ R
k . Then, η∗ must satisfy the first-order necessary optimality conditions

∂Gμ(η)

∂ηj

= ∇f (x(η))�Wμ(xj − xj−1) = 0, for 1 ≤ j ≤ k, (48)

which are also sufficient due to the convexity of problem (47).
Hence, it follows that ∇f (x(η∗)) is Wμ-orthogonal to the subspace generated by

the set {xk − xk−1, . . . , x1 − x0}. In view of Theorem 5, we have that gk is also Wμ-
orthogonal to the subspace generated by the set {xk − xk−1, . . . , x1 − x0}. Moreover,
note that selecting η = (1, 1, . . . 1) ∈ R

k we obtain that xk = x(η) ∈ Vk and also
∇f (x(η)) = gk . Therefore, by the uniqueness of the solution of (47), we find that
gk = ∇f (x(η∗)). Then, applying the equivalence of the minimization problems (46)
and (47), we have that the iterate xk , generated by Algorithm 1, can be written as

xk = x(η∗) = x0 +
k∑

j=1

η∗
j (xj − xj−1),

which completes the proof.

Remark 4 The subspace generated by the vector set {xk − xk−1, . . . , x1 − x0}, which
appears in (45), coincides with the Krylov subspace Kk(A, g0). Indeed, since both
subspaces have the same dimension, it suffices to show that

(xj − xj−1) ∈ Kj (A, g0) for each j ≥ 1. (49)

For j = 1, using Lemma 2 and Step 4 in Algorithm 1, we know that

x1 − x0 = −α0g0 ∈ K1(A, g0).

Let us now assume, by induction on j , that (49) holds up to j = k, and consider the
next iteration. From (13), we have that

xk+1 − xk = (βk − 1)(xk − xk−1) − βkαkgk .

Using now the inductive hypothesis (49), we get that (xk − xk−1) ∈ Kk(A, g0), and
using Lemma 5, we obtain that gk ∈ Kk+1(A, g0). Hence, xk+1 −xk ∈ Kk+1(A, g0).
From the fact that the two mentioned subspaces are identical, combined with Corol-
lary 1, we conclude that for all k ≥ 1 the iterate xk generated by Algorithm 1
is the argument that minimizes the merit function Fμ(·) on the affine subspace
x0 + Kk(A, g0).

We are now ready to show that the iterate xk generated by the CG method for solv-
ing (1) coincides at each k with the k-th iterate generated by Algorithm 1 when μ =
0, as long as both methods start at the same initial point x0. For that, let us first recall a
couple of key properties of the CG method for solving (1): at each iteration k, the sub-
space generated by all the already explored directions (say span{d0, d1, . . . , dk−1})
coincides with the Krylov subspace Kk(A, g0), and also that the iterate xk is the min-
imizer of the strictly convex quadratic E(x) = f (x) + 1

2b�x∗ on the entire explored
affine subspace, i.e., on the affine subspace given by x0 + Kk(A, g0); see, e.g., [22,
26, 32].

Numerical Algorithms

On the other hand, when μ = 0 in Algorithm 1, the merit function Fμ(·) reduces
to the strictly convex quadratic function E(·), and based on Remark 4, we conclude
that both methods generate iterates that minimize the same function E(·) on the same
affine subspace. Since E(·) is a strictly convex function then it has a unique global
minimizer on that affine subspace, which imply that if we start the CG method and
Algorithm 1 with μ = 0 from the same initial guess x0, then they produce the same
iterates for all k.

5 Numerical results

In order to give further insight into the GDWGM family of methods, we present the
results of some numerical experiments. We test our algorithm on some well-known
real large-scale strictly convex quadratic problems. All experiments have been per-
formed on an intel(R) CORE(TM) i7-4770, CPU 3.40 GHz with 500GB HD and
16GB RAM. The algorithm was coded in Matlab (version 2017b) with double pre-
cision. The running times are always given in CPU seconds. The implementation of
our algorithm is available in http://www.optimization-online.org/DB HTML/2020/
09/8039.html.

We analyze the numerical behavior of the GDWGM algorithm to approximate the
solution of randomly generated dense linear systems of equations, and also of some
sparse linear systems of equations with real data. In our numerical tests, we run all
the algorithms up to K = 150000 iterations and stop them at iteration k < K if
||∇f (xk)||2 < ε||∇f (x0)||2. For comparison purposes, we compare the numerical
performance of our GDWGM family of methods with the classical conjugate gra-
dient method (CG) and the recently published delayed weighted gradient method
(DWGM). For the GDWGM family that depends on the parameter μ, we present
the numerical results associated with the best value of μ taken exhaustively in the
following set Ω = {0, 0.05, 0.1, 0.15, . . . , 0.95, 1}.

The first set of test problems includes randomly generated dense positive definite
matrices assembled as A = QDQ�, where

Q =
(

I − 2
v1v

�
1

||v1||22

)(
I − 2

v2v
�
2

||v2||22

)(
I − 2

v3v
�
3

||v3||22

)
,

where v1, v2, v3 ∈ R
n×n are random vectors, D = diag(d1, . . . , dn) is a diagonal

matrix where d1 = 1e-5, d2, d3, . . . dn/5 are distributed in [1, 100], and the rest of
the di’s numbers follow a uniform distribution in the interval [κ(A)

2 , κ(A)], where
κ(A) = λ1/λn. This random and dense experiment design was originally proposed
in [16], and has also been employed in [8, 19, 34]. In particular, we set κ(A) = 104

and use three values for the tolerance ε ∈ {1e-8, 1e-10, 1e-12}. The vector b ∈ R
n

and the initial point x0 ∈ R
n were generated with the following Matlab commands:

b = 20 ∗ rand(n, 1) − 10; x0 = zeros(n, 1).

For each pair (n, ε), we randomly generate 100 independent simulations and, in
Table 1, we report the average number of iterations (IT), the average number of total

http://www.optimization-online.org/DB_HTML/2020/09/8039.html
http://www.optimization-online.org/DB_HTML/2020/09/8039.html

Numerical Algorithms

Table 1 Numerical results for randomly generated dense problems

n ε CG DWGM GDWGM

IT CT Res IT CT Res IT CT Res μ

1e-8 97 0.0014 5.86e-09 108 0.0021 7.55e-09 91 0.0018 4.68e-09 0.145

100 1e-10 140 0.0018 5.61e-11 164 0.0030 6.45e-11 98 0.0018 6.56e-11 0.212

1e-12 167 0.0022 5.08e-13 181 0.0032 7.07e-13 117 0.0020 8.19e-13 0.43

1e-8 283 0.0080 7.12e-09 282 0.0096 8.22e-09 280 0.0089 8.22e-09 0.124

500 1e-10 328 0.0099 7.41e-11 378 0.0127 8.41e-11 302 0.0097 8.20e-11 0.136

1e-12 440 0.0136 7.07e-13 456 0.0163 8.17e-13 324 0.0111 8.82e-13 0.322

1e-8 380 0.0397 7.79e-09 377 0.0434 8.72e-09 374 0.0412 8.84e-09 0.137

1000 1e-10 415 0.0433 7.93e-11 451 0.0511 9.24e-11 403 0.0451 8.94e-11 0.163

1e-12 569 0.0601 8.11e-13 588 0.0662 8.79e-13 438 0.0472 9.15e-13 0.224

computational time (CT), and the average number of the residual (Res) defined by
Res(x̂) = ||∇f (x̂)||2/||∇f (x0)||2, where x̂ is the estimated solution achieved by
each method. In addition, for our GDWGM method, we report the average value of
μ. From Table 1, we notice that GDWGM outperforms the DWGM and CG methods
for intermediate values of the parameter μ, that is for μ ∈ (0, 1). For these types of
experiments, the selection of an appropriate μ ∈ (0, 1) shows its potential as can be
seen in Fig. 1. In particular, we can observe in Fig. 1 that, for some specific values of
μ, our approach requires less iterations than the CG and DWGM methods to achieve
convergence. We also note that the best possible μ ∈ (0, 1) is different for each pair
(n, ε), and so it is problem dependent.

In our second experiment, we consider the application of Algorithm 1 to approx-
imate the solution of 40 sparse symmetric and positive definite linear system of
equations Ax = b, where the matrices A ∈ R

n×n are taken from the SuiteS-
parse Matrix Collection [9]1; meanwhile, the vector b ∈ R

n and the initial point
x0 ∈ R

n are generated by the following Matlab commands: b = A ∗ ones(n, 1)

and x0 = zeros(n, 1), respectively. This particular design of experiments was also
considered in [5]. In this experiment, we use ε = 1e-6.

The numerical results concerning this experiment are summarized in Table 2. In
this table, “Fres” denotes the final residual objective value, i.e., Fres = |f (x̂) −
f (x∗)|, where x̂ denotes the approximated solution obtained by each method and
x∗ = A−1b; “CT”and “IT” denote the total computing time in seconds and the num-
ber of iterations, respectively. We also report, in the last column of Table 2, the value
of μ ∈ Ω , for which GDWGM reaches the required precision in the gradient norm in
the fewest possible number of iterations. As shown in Table 2, in most cases, both the
DWGM and GDWGM methods reach the desired gradient-norm accuracy, in fewer
iterations than the CG method. However, the CG method obtains a lower value of

1The SuiteSparse Matrix Collection tool–box is available in https://sparse.tamu.edu/.

https://sparse.tamu.edu/

Numerical Algorithms

Fig. 1 Convergence history of the three algorithms for the randomly generated dense matrices, when
n = 100, 500, 1000 and ε = 1e-12. For GDWGM, we use a μ = 0.2, b μ = 0.3, and c μ = 0.1. The
y-axis represents the logarithm of the relative gradient norm, that is log(||∇f (xk)||2/||∇f (x0)||2)

the residual Fres than the other methods. This means that DWGM and its general-
ization reduce the gradient norm faster than CG, while CG approaches the optimal
value f (x∗) faster than the other two methods. Furthermore, from Table 2, we see
that in most cases, it was possible to find a value of μ ∈ (0, 1), for which GDWGM
converges in fewer iterations than the DWGM and the CG methods.

In Fig. 2, we illustrate the behavior of Algorithm 1 by varying μ, for the matri-
ces “1138 bus” and “cfd1.” These figures show that Algorithm 1 can converge to
the solution of the system of linear equations in a different number of iterations for
different values of μ. Additionally, for these two special sparse matrices, we note
that values close to μ = 1, in Algorithm 1, achieve convergence in less number of
iterations.

On the other hand, in Figs. 3 and 4, we plot the convergence history of CG,
DWGM, and GDWGM, from the same initial point, considering the following three
measures: |f (xk) − f (x∗)|, ||∇f (xk)||2, and |Fμ(xk) − Fμ(x∗)|, for the instances
“apache1” with μ = 0.15, and “1138bus” with μ = 0.3, respectively. From these
figures, we can see that CG is superior to the other methods minimizing the objective

Numerical Algorithms

Ta
bl
e
2

N
um

er
ic

al
re

su
lts

fo
r

so
lv

in
g

lin
ea

r
sy

st
em

s
fr

om
th

e
Su

ite
Sp

ar
se

M
at

ri
x

C
ol

le
ct

io
n

N
am

e
n

C
G

D
W

G
M

G
D

W
G

M

IT
C

T
Fr

es
IT

C
T

Fr
es

IT
C

T
Fr

es
μ

11
38

bu
s

11
38

17
52

0.
02

4.
65

e-
8

16
37

0.
02

81
3.

81
e-

6
16

21
0.

02
44

2.
66

e-
6

0.
8

2c
ub

es
sp

he
re

10
14

92
16

83
1

41
.6

33
4

1.
62

e+
5

18
88

5.
61

72
1.

60
e+

7
18

86
5.

52
44

1.
60

e+
7

0.
05

af
0

k1
01

50
36

25
30

09
61

.4
31

8
4.

17
e+

2
11

01
27

.3
08

9
4.

07
e+

3
11

01
27

.8
89

3
4.

00
e+

3
0.

25

af
sh

el
l3

50
48

55
14

50
28

.4
40

2
3.

30
e-

3
94

8
23

.3
28

7.
43

e-
1

94
4

23
.2

05
7.

28
e-

1
0.

55

af
sh

el
l7

50
48

55
14

41
29

.1
21

4
3.

40
e-

3
94

7
21

.0
27

2
7.

43
e-

1
94

1
22

.4
37

4
7.

38
e-

1
0.

75

ap
ac

he
1

80
80

0
14

90
1.

20
2

2.
51

e-
10

14
58

1.
64

42
1.

11
e-

9
14

54
1.

57
36

6.
33

e-
10

0.
15

bc
ss

tk
09

10
83

17
8

0.
00

55
2.

38
e-

2
16

8
0.

00
68

4.
41

e-
1

16
8

0.
00

59
4.

41
e-

1
0.

05

bc
ss

tk
10

10
86

16
90

0.
03

48
1.

40
e-

1
10

26
0.

02
67

2.
02

e+
1

10
24

0.
02

32
2.

02
e+

1
0.

4

bc
ss

tk
11

14
73

16
36

0.
05

26
1.

77
e+

2
69

8
0.

02
66

1.
39

e+
4

69
7

0.
03

04
1.

39
e+

4
0.

45

bc
ss

tk
13

20
03

10
54

2
0.

70
83

3.
06

e+
5

22
39

0.
16

31
2.

19
e+

7
22

12
0.

15
91

2.
19

e+
7

0.
95

bc
ss

tk
14

18
06

30
96

0.
15

45
1.

23
e+

3
12

12
0.

07
11

4.
67

e+
5

12
09

0.
06

67
4.

67
e+

5
0.

95

bc
ss

tk
16

48
84

22
8

0.
06

2
3.

79
e+

1
20

7
0.

05
68

4.
47

e+
1

20
6

0.
06

37
4.

52
e+

1
0.

95

bc
ss

tk
17

10
97

4
95

73
3.

83
72

2.
75

e+
2

40
63

2.
07

02
3.

38
e+

4
40

51
2.

03
3

3.
38

e+
4

0.
6

bc
ss

tk
21

36
00

41
73

0.
16

4
1.

40
e+

1
74

4
0.

04
45

5.
65

e+
3

74
3

0.
04

5
5.

67
e+

3
0.

1

bc
ss

tk
23

31
34

78
0

0.
04

32
4.

34
e+

10
53

3
0.

04
07

5.
75

e+
11

52
9

0.
03

92
5.

79
e+

11
0.

15

bc
ss

tk
24

35
62

99
3

0.
13

37
7.

71
e+

7
55

5
0.

08
37

7.
21

e+
8

55
0

0.
07

76
7.

21
e+

8
0.

55

bc
ss

tk
25

15
43

9
18

64
0.

61
84

3.
57

e+
8

85
7

0.
33

97
2.

27
e+

9
84

1
0.

33
1

2.
29

e+
9

0.
55

bc
ss

tk
27

12
24

57
5

0.
02

91
4.

58
e-

4
47

7
0.

02
53

1.
98

e-
2

47
6

0.
02

01
1.

98
e-

2
0.

6

bc
ss

tk
28

44
10

13
20

8
1.

97
73

2.
50

e-
4

11
50

4
2.

19
91

3.
55

e+
1

11
37

1
2.

11
31

3.
43

e+
1

0.
4

bc
ss

tk
36

23
05

2
14

00
6

21
.5

35
1

2.
97

e+
1

31
78

5.
11

3
1.

43
e+

3
31

63
6.

19
65

1.
42

e+
3

0.
3

bc
ss

tk
38

80
32

11
26

0.
34

3
2.

10
e+

5
32

8
0.

11
33

6.
71

e+
6

32
3

0.
11

28
6.

72
e+

6
0.

45

Numerical Algorithms

Ta
bl
e
2

(c
on

tin
ue

d)

N
am

e
n

C
G

D
W

G
M

G
D

W
G

M

IT
C

T
Fr

es
IT

C
T

Fr
es

IT
C

T
Fr

es
μ

bc
ss

tm
08

10
74

38
0.

00
24

9.
86

e-
1

42
0.

00
2

1.
15

e+
0

41
0.

00
44

1.
04

e+
0

0.
1

bc
ss

tm
11

14
73

20
0.

00
23

9.
49

e-
6

21
0.

00
18

9.
53

e-
6

20
0.

00
4

9.
49

e-
6

0

bc
ss

tm
23

31
34

94
7

0.
02

01
1.

23
e+

0
68

4
0.

02
83

3.
08

e+
1

67
8

0.
02

59
2.

92
e+

1
0.

1

bc
ss

tm
24

35
62

69
2

0.
01

67
3.

23
e-

1
44

2
0.

01
81

3.
09

e+
0

43
9

0.
02

01
3.

07
e+

0
0.

75

cf
d1

70
65

6
13

07
2.

94
33

1.
85

e-
8

11
75

3.
52

96
3.

37
e-

6
11

75
3.

67
09

3.
37

e-
6

1

ex
15

68
67

95
6

0.
09

19
1.

45
e+

2
74

6
0.

08
57

1.
29

e+
3

74
3

0.
08

58
1.

28
e+

3
0.

2

m
sc

04
51

5
45

15
35

17
0.

27
37

8.
15

e-
1

25
98

0.
24

44
1.

76
e+

3
25

96
0.

25
97

1.
76

e+
3

0.
85

m
sc

23
05

2
25

05
2

14
12

7
21

.1
26

6
1.

17
e+

2
31

60
5.

36
99

5.
70

e+
3

31
57

5.
00

11
5.

70
e+

3
0.

75

na
sa

47
04

47
04

10
97

9
0.

93
19

1.
52

e-
2

74
26

0.
76

43
1.

27
e+

1
74

18
0.

75
83

1.
21

e+
1

0.
4

na
sa

sr
b

54
87

0
15

35
4

44
.0

80
7

1.
41

e+
2

34
77

11
.0

30
8

1.
65

e+
5

34
75

11
.2

23
8

1.
65

e+
5

0.
1

st
s4

09
8

40
98

58
11

0.
41

12
1.

88
e+

1
17

56
0.

15
59

1.
41

e+
3

17
47

0.
15

61
1.

41
e+

3
0.

5

bm
w

7s
t

1
14

13
47

90
0.

70
4

2.
47

e+
10

72
0.

62
42

4.
40

e+
10

70
0.

59
82

4.
38

e+
10

0.
35

cb
uc

kl
e

13
68

1
18

20
1.

26
05

5.
30

e-
3

14
93

1.
17

64
1.

32
e-

1
14

91
1.

35
83

1.
23

e-
1

0.
95

ct
20

st
if

52
32

9
20

84
5.

51
23

7.
19

e+
5

10
82

3.
36

89
1.

11
e+

7
10

77
3.

39
58

1.
11

e+
7

0.
1

ex
13

25
68

72
3

0.
04

51
1.

56
e+

0
69

8
0.

04
81

1.
11

e+
1

69
6

0.
04

79
1.

12
e+

1
0.

45

gy
ro

17
36

1
10

56
8

10
.7

31
9

1.
10

e+
3

31
36

3.
53

15
2.

16
e+

5
31

27
3.

52
23

2.
16

e+
5

0.
2

L
FA

T
50

00
19

99
4

10
38

83
15

.1
98

7.
31

e+
5

49
70

1.
07

6
8.

47
e+

7
49

52
1.

04
96

8.
47

e+
7

0.
75

na
sa

18
24

18
24

32
55

0.
10

19
2.

00
e-

3
23

99
0.

08
48

3.
66

e-
1

23
90

0.
08

44
3.

59
e-

1
0.

55

na
sa

29
10

29
10

52
08

0.
61

28
1.

90
e-

3
37

43
0.

49
4

6.
68

e-
1

37
19

0.
49

14
6.

68
e-

1
0.

75

Numerical Algorithms

Fig. 2 Behavior of Algorithm 1 varying μ for the matrices a “1138 bus” and b “cfd1”

function, DWGM is the best method optimizing the gradient norm, while GDWGM
is superior to the rest of the methods reducing the merit function Fμ(·), which agrees
with the theoretical result established in Corollary 1. In addition, we observe that

Fig. 3 Convergence history of the three considered algorithms for the matrix “apache1.” For GDWGM, we
use μ = 0.15. In all cases, the y-axis is in logarithmic scale. We report iterations versus: a |f (xk)−f (x∗)|,
b ||∇f (xk)||2, and c |Fμ(xk) − Fμ(x∗)|

Numerical Algorithms

Fig. 4 Convergence history of all the algorithms using μ = 0.3 for the matrix “1138 bus.” The y-axis is in
logarithmic scale. We report iterations versus: a |f (xk)−f (x∗)|, b ||∇f (xk)||2, and c |Fμ(xk)−Fμ(x∗)|

the CG method shows an oscillatory pattern in terms of reducing ||∇f (xk)||2 and
|Fμ(xk) − Fμ(x∗)|, and presents a smooth decrease in terms of reducing f (·), while
DWGM and GDWGM reduce in a smooth way the three considered measures. The
connection between GDWGM and the Moreau-Yosida regularization, described in
Remark 2, is one way of accounting for the observed smooth behavior.

6 Concluding remarks and perspectives

We have proposed and analyzed a family of optimal first-order methods for the min-
imization of strictly convex quadratic functions. Similar to the CG method, each
member of the family has certain orthogonality properties. Specifically, we proved
that the gradient vector at the current iteration is Wμ-orthogonal to all the previ-
ous gradient vectors, which implies directly the finite termination of the method for
all μ ∈ [0, 1]. Moreover, we demonstrated that if the matrix A ∈ R

n×n has only
p < n distinct eigenvalues, then the proposed algorithm obtains the desired solution
in exactly p iterations. In addition, we show that any member of the family constructs

Numerical Algorithms

a sequence of points {xk}, such that xk verifies an optimality condition related to the
problem of minimizing the merit function Fμ(·) over the linear manifold generated
by all the explored previous search directions. We also establish that the sequence
{Fμ(xk)} converges to zero q-linearly when k tends to infinity for all μ ∈ [0, 1],
which implies that the sequence {xk} converges to the unique global minimizer of
f (·). Finally, we have tested our procedure on a variety of dense and sparse large-
scale symmetric positive definite linear systems of equations, in order to illustrate its
performance.

The attractiveness of the proposed family is based mainly on its strong global
convergence properties similar to the mathematical magic that the conjugate gradi-
ent method has for the minimization of quadratic cost functions, and its simplicity
characterized by low storage requirements and a very low computational cost per
iteration. These good features make each member of this family a very nice candi-
date to tackle the solution of large-scale positive definite linear systems of equations.
Another fundamental feature of this novel approach is that it provides a collection of
optimal methods that allows the user to choose a suitable weight μ ∈ (0, 1), in order
to favor the reduction of f (·), or to promote the decrease of gradient norm towards
stationarity, according to his practical requirements. This special characteristic is very
important since generally, in several practical problems, it is only necessary to obtain
an approximation of the solution x∗ = A−1b with low precision.

The theoretical result stated in Corollary 1 roughly suggests that each member of
the proposed family is as good as any other method of the family, since all the meth-
ods satisfy an analogous optimality condition. However, observe that Algorithm 1
with μ = 1 (DWGM) has the advantage that it minimizes the gradient norm, which
is precisely the usual stopping rule for iterative algorithms in the general nonlin-
ear optimization field. This peculiarity can lead the DWGM method to achieve the
solution in fewer iterations than the rest of the choices. On the other hand, the best
method in terms of computational complexity is obtained when μ = 0 (CG method),
since CG is the method that requires to compute the fewest number of inner products
per iteration. In this scenario, the selections μ ∈ (0, 1) in Algorithm 1 generate the
worst methods, in terms of the amount of floating-point operations needed per iter-
ation. Nevertheless, as shown in our preliminary numerical experiments, for some
specific intermediate values of the parameter μ ∈ (0, 1), the corresponding general-
ized method is able to converge to stationary points faster than the CG and DWGM
methods for the minimization of large-scale strictly convex quadratic problems with
a dense or sparse Hessian matrix.

Finally, it remains to investigate topics concerning extensions of the pro-
posed algorithm for general unconstrained optimization problems as well as box-
constrained optimization problems. A possible extension can be derived by incor-
porating the new scheme within the framework of the trust-region methods (by
following the ideas of Steihaug’s method [30]), while another possible generalization
is suggested by Remark 1, whose extension can be obtained by performing a couple
of inexact line searches per iteration. For all these possible extensions, the connec-
tion with the Moreau envelope described in Remark 2 could be helpful. These ideas
will be investigated and analyzed in future researches.

Numerical Algorithms

Acknowledgements The authors are very grateful to two anonymous referees whose constructive remarks
have improved the quality of the paper. In particular, one referee suggested considering dense matrices in
Section 5, and the connection to the Moreau envelope developed in Remark 2 was inspired by a comment
from the other referee.

Funding The first author was financially supported by FGV (Fundação Getulio Vargas) through the
excellence post–doctoral fellowship program. The second author was financially supported by FAPESP
(Projects 2013/05475-7 and 2017/18308-2) and CNPq (Project 301888/2017-5). The third author was
financially supported by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science
and Technology) through the project UIDB/MAT/00297/2020 (Centro de Matemática e Aplicações).

Declarations

Conflict of interest The authors declare no competing interests.

References

1. Andreani, R., Raydan, M.: Properties of the delayed weighted gradient method. Comput. Optim. Appl.
78, 167–180 (2021)

2. Barzilai, J., Borwein, J.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148
(1988)

3. Brezinski, C.: Hybrid methods for solving systems of equations. NATO ASI Ser. C Math. Phys. Sci.-
Adv. Study Inst. 508, 271–290 (1998)

4. Brezinski, C., Redivo-Zaglia, M.: Hybrid procedures for solving linear systems. Numer. Math. 67,
1–19 (1994)

5. Burdakov, O., Dai, Y.-H., Huang, N.: Stabilized Barzilai-Borwein method. J. Comput. Math. 37, 916–
936 (2019)

6. Cauchy, A.: Méthode générale pour la résolution des systemes d’équations simultanées. Comptes
Rendus Sci. Paris 25, 536–538 (1847)

7. Dai, Y.-H., Fletcher, R.: On the asymptotic behaviour of some new gradient methods. Math. Program.
Ser. A 13, 541–559 (2005)

8. Dai, Y.-H., Huang, Y., Liu, X.: A family of spectral gradient methods for optimization. Comput.
Optim. Appl. 74, 43–65 (2019)

9. Davis, T.-A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw.
38, 1–25 (2011)

10. De Asmundis, R., Di Serafino, D., Riccio, F., Toraldo, G.: On spectral properties of steepest descent
methods. IMA J. Numer. Anal. 33(4), 1416–1435 (2013)

11. De Asmundis, R., Di Serafino, D., Hager, W., Toraldo, G., Zhang, H.: An efficient gradient method
using the Yuan steplength. Comput. Optim. Appl. 59, 541–563 (2014)

12. Di Serafino, D., Ruggiero, V., Toraldo, G., Zanni, L.: On the steplength selection in gradient methods
for unconstrained optimization. Appl. Math. Comput. 318, 176–195 (2018)

13. Fletcher, R.: On the Barzilai-Borwein method. In: Qi, L., Teo, K., Yang, X. (eds.) Optimization and
Control with Applications, vol. 96, pp. 235–256. Series in Applied Optimization, Kluwer (2005)

14. Fletcher, R.: A limited memory steepest descent method. Math. Program. Ser. A 135, 513–436 (2012)
15. Frassoldati, G., Zanni, L., Zanghirati, G.: New adaptive stepsize selections in gradient methods. J. Ind.

Manag. Optim. 4(2), 299–312 (2008)
16. Friedlander, A., Martı́nez, J.M., Molina, B., Raydan, M.: Gradient method with retards and general-

izations. SIAM J. Numer. Anal. 36(1), 275–289 (1999)
17. Gonzaga, C., Schneider, R.M.: On the steepest descent algorithm for quadratic functions. Comput.

Optim. Appl. 63(2), 523–542 (2016)
18. Hestenes, M.R., Stiefel, E.: Method of conjugate gradient for solving linear system. J. Res. Nat. Bur.

Stand. 49, 409–436 (1952)
19. Huang, Y., Dai, Y.-H., Liu, X.-W., Zhang, H.: Gradient methods exploiting spectral properties. Optim.

Meth. Soft. 35(4), 681–705 (2020)

Numerical Algorithms

20. Lemaréchal, C., Sagastizábal, C.: Practical aspects of the Moreau–Yosida regularization: theoretical
preliminaries. SIAM J. Optim. 7(2), 367–385 (1997)

21. Liu, Z., Liu, H., Dong, X.: An efficient gradient method with approximate optimal stepsize for the
strictly convex quadratic minimization problem. Optimization 67(3), 427–440 (2018)

22. Luenberger, D. Introduction to Linear and Nonlinear Programming, 2nd ed. Addison Wesley,
Amsterdam (1984)

23. Moreau, J.-J.: Propriétés des applications “prox”. C. R. Acad. Sci. Paris 256, 1069–1071 (1963)
24. Moreau, J.-J.: Proximité et dualité dans un espace Hilbertien. Bull. Soc. Math. France 22, 5–35 (1965)
25. Nocedal, J., Sartenaer, A., Zhu, C.: On the behavior of the gradient norm in the steepest descent

method. Comput. Optim. Appl. 22, 5–35 (2002)
26. Nocedal, J., Wright, S. Numerical Optimization, 2nd ed. Springer, New York (2006)
27. Oviedo-Leon, H.F.: A delayed weighted gradient method for strictly convex quadratic minimization.

Comput. Optim. Appl. 74, 729–746 (2019)
28. Oviedo, H., Dalmau, O., Herrera, R.: A hybrid gradient method for strictly convex quadratic pro-

gramming, to appear in Numerical Linear Algebra with Applications, 28(4), https://doi.org/10.1002/
nla.2360 (2020)

29. Planiden, C., Wang, X.: Proximal Mappings and Moreau Envelopes of Single-Variable Convex
Piecewise Cubic Functions and Multivariable Gauge Functions. In: Hosseini, S., Mordukhovich,
B., Uschmajew, A. (eds.) Nonsmooth Optimization and Its Applications, International Series of
Numerical Mathematics, vol. 170, pp. 89–130. Springer Nature, Birkhäuser (2019)

30. Steihaug, T.: The conjugate gradient method and trust regions in large scale optimization. SIAM J.
Numer. Anal. 20, 626–637 (1983)

31. Stella, L., Themelis, A., Patrinos, P.: Forward–backward quasi-Newton methods for nonsmooth
optimization problems. Comput. Optim. Appl. 67, 443–487 (2017)

32. Trefethen, L.N., Bau, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997)
33. Yuan, Y.: A new stepsize for the steepest descent method. J. Comput. Math. 24, 149–156 (2006)
34. Zhou, B., Gao, L., Dai, Y.-H.: Gradient methods with adaptive step-sizes. Comput. Optim. Appl. 35,

69–86 (2006)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1002/nla.2360
https://doi.org/10.1002/nla.2360

	A family of optimal weighted conjugate-gradient-type methods for strictly convex quadratic minimization
	Abstract
	Introduction
	Derivation of the new family of methods
	Convergence analysis
	Finite termination and optimality properties
	Finite termination
	Minimization of F() on the explored affine subspace

	Numerical results
	Concluding remarks and perspectives
	References

