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ABSTRACT
Derivatives are an important tool for single-objective optimization. In
fact, it is commonly accepted that derivative-basedmethods present
a better performance than derivative-free optimization approaches.
In this work, we will show that the same does not always apply to
multiobjective derivative-based optimization, when the goal is to
compute an approximation to the complete Pareto front of a given
problem. The competitiveness of direct multisearch (DMS), a robust
and efficient derivative-free optimization algorithm, will be stated
for derivative-based multiobjective optimization (MOO) problems,
by comparison with MOSQP, a state-of-art derivative-based MOO
solver. We will then assess the potential enrichment of adding first-
order information to the DMS framework. Derivatives will be used
to prune the positive spanning sets considered at the poll step of
the algorithm. The role of ascent directions, that conform to the
geometry of the nearby feasible region, will then be highlighted.
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1. Introduction

Multiobjective optimization (MOO) problems appear frequently in engineering and sci-
entific applications, in such diverse areas as civil engineering, environment, medicine or
aerospace engineering [2,34,38,39], just to cite a few. The major feature of a MOO prob-
lem is the presence of finitely many components in the objective function, associated to
conflicting objectives, that have to be simultaneously optimized. Hardly a single point will
optimize all of them at once, hence a nonstandard notion of optimality is required. The
fundamental optimality concept is that of Pareto optimal point, which is a point such that
no improvement in all the components of the objective function can be achieved bymoving
to another feasible point. The image set of all Pareto optimal points (also called the Pareto
front) is usually a continuum that may have disjoint components. In general, for a prob-
lem with p>1 objectives, the Pareto front is a manifold of dimension p−1. For example,
if p = 2 the Pareto front will be a curve (or a set of curve segments), which provides in a
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compact way all the information required for a user to choose an appropriate Pareto opti-
mal point as a compromise solution between the usually conflicting components of the
objective function. Like in classical single-objective optimization, finding global Pareto
optimal points is difficult, unless additional information is available about the objective
function. Thus, MOO algorithms typically try to find local Pareto optimal points for the
problems, meaning that the definition of Pareto optimality is satisfied in a neighbourhood
of the current point.

There are several classes of MOO algorithms, depending not only on the level of
smoothness of the objective function but also on the time when the user establishes an
order preference for the different components of the objective function [35]. In this work,
we will focus on methods with a posteriori articulation of preferences, which attempt to
capture the whole Pareto front of the problem, never establishing preferences among the
several components of the objective function. Evolutionary algorithms, or other similar
heuristics, belong to this class. However, these algorithms lack a well-established con-
vergence analysis and are usually slow in reaching the Pareto front of a given problem,
requiring a large number of iterations and function evaluations [24]. When derivatives
of the different components of the objective function are available, typical approaches are
based on generating a single sequence of iterates that converges to a point with correspond-
ing image lying on the Pareto front (one at a time); see, e.g. Refs. [9,25,26,28,37].Multistart
approaches [36] or scalarization techniques [23] can help in finding approximations to the
complete Pareto front of a given MOO problem. The first can be computational expensive
and the latter generally fails in detecting nonconvex parts of it [19].

Recently, novel approaches have been developed to approximate the entire Pareto front
using first- and second-order information [14,27]. The first is based on a steepest descent
approach, not necessarily considering all components of the objective functionwhen defin-
ing the search direction. The so-calledMOSQPmethod was proposed in Ref. [27], keeping
a list of nondominated points, which approximates the Pareto front of the MOO problem.
This list is improved both for spread along the Pareto front and optimality by solving single-
objective constrained optimization problemsderived as sequential quadratic programming
(SQP) problems. In Ref. [27], numerical results are reported indicating the superiority of
the MOSQP algorithm when compared to other state-of-the-art multiobjective solvers.

In derivative-free optimization, direct multisearch (DMS) [18] is also able to com-
pute approximations to the complete Pareto front of a given MOO problem. This is a
well-established algorithm, with theoretical results regarding convergence, and consis-
tently used with good results both for benchmark of new solvers [13,33] and in real
applications [7,31].

The purpose of the current work is twofold. Our first objective is to compare the perfor-
mance of the derivative-free DMS method and the derivative-based MOSQP algorithm.
In single-objective optimization, it is common to say that if derivatives are available or
can be obtained at a reasonable cost (e.g. using finite-differences), then derivative-based
optimization is preferable to derivative-free optimization methods [4, p. 6]. We will pro-
vide numerical results on a large set of benchmark MOO problems that allow to assess
the numerical performance of derivative-based and derivative-free optimization solvers,
when computing approximations to the complete Pareto fronts of derivative-based MOO
problems. Our second objective is to assess the potential enrichment of adding first-order
information, when derivatives are available, to the DMS framework. We will describe and
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analyze several different combined techniques that maintain the search/poll paradigm of
DMS, while adding in a convenient way gradient information to the poll step. Again, the
value of the proposed strategies will be assessed through numerical experiments.

The remaining of this document is organized as follows. In Section 2, we present the
MOO problem and briefly revise the derivative-free optimization method DMS, since it
will be later modified to incorporate first-order information. Section 3 is devoted to a full
numerical comparison between DMS and MOSQP methods. Section 4 details the use of
first-order information to eliminate directions in the poll step of DMS and assesses the
corresponding numerical performance. In Section 5, the usefulness of ascent directions is
motivated by illustrating their performance on one properly chosen biobjective problem.
Results are then reported in the complete test set. Finally, in Section 6, we present some
concluding remarks.

2. DMS at a glance

We consider multiobjective minimization problems of the form

min
x∈�

F(x) ≡ (f1(x), . . . , fp(x))�, (1)

where p ≥ 2, � ⊆ R
n represents the feasible region, typically defined as a box � = {x ∈

R
n : l ≤ x ≤ u}, and for each i (1 ≤ i ≤ p) fi : � → R ∪ {+∞} denotes a component of

the objective function, which we assume to be strictly differentiable in� (continuity of the
partial derivatives is not required).

The DMS method was originally proposed in Ref. [18], generalizing directional direct
search to multiobjective derivative-free optimization. For a review on single objective
derivative-free optimization methods, we recommend Refs. [4,15]. The algorithm has also
been successfully extended to global multiobjective derivative-free optimization [17], by
coupling it with a multistart initialization technique, where not all the initialized searches
are conducted until the end.

Being a directional direct search method, each iteration of DMS conforms to the
search/poll paradigm. The search step is optional, since the convergence results derive
from the poll step of the algorithm. In fact, in the original presentation of the method [18],
it was left empty and this will be the approach followed in the present work. Recently,
the minimization of quadratic polynomial models, which have always played a key role
in derivative-free methods for single objective optimization, was used for successfully
defining a search step for DMS [6]. First-order information can surely be used to define
appropriate search steps, following the strategies proposed in Ref. [6], but that will not be
the subject of the present work, which will focus on the poll step.

We present a simplified description of the DMS framework, where only the poll step
is considered, and where the globalization strategy is based on the use of integer lattices,
meaning that all the points generated by the algorithm lie on an implicit mesh. For a more
general description, we refer to the original work [18].

The algorithm initializes with a list of feasible, nondominated points (possibly just one)
and corresponding stepsize parameters. Making use of the strict partial order induced by
the cone R

p
+, we say that point x dominates point y when F(x) ≺F F(y), i.e. when F(y) −

F(x) ∈ R
p
+ \ {0}. Given a list of feasible points, pairwise comparisons, using the previous
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definition of dominance, allow to define the set of nondominated points, comprising all
points which are not dominated by any other point in the list. This list, representing the
current approximation to the Pareto front of the MOO problem, will be updated at every
iteration by generating new feasible points which are compared with the points already
stored in it, only keeping the nondominated ones.

At each iteration, a feasible nondominated point stored in the list and the associated
stepsize parameter will be selected. Different strategies can be considered in the selection
of this poll center. Currently it is based on a spread metric [18], in an attempt of reducing
the gaps between consecutive points lying in the current approximation to the Pareto front
of the problem.

The poll step of the algorithm consists on a local search around the selected poll center,
by testing a set of directions with an adequate geometry, scaled by the corresponding step-
size parameter. Typically, positive spanning sets are considered [20] that should conform
to the geometry of the nearby active constraints of the current poll center [32].

For convergence purposes, the poll step can be performed either in a complete or an
opportunistic way. In the latter, the polling procedure is stopped once a new feasible non-
dominated point is found. The complete approach tests all the poll directions, only adding
to the list the new feasible nondominated points found (and removing from the list all
the dominated ones). We will follow this last approach, which is the one corresponding
to the original algorithmic implementation of DMS [18], in an attempt of maximizing the
number of feasible nondominated points generated at each iteration.

The final step of each iteration is the update of the stepsize parameter, which is increased
or kept constant for successful iterations and decreased for unsuccessful ones. An iter-
ation is said to be successful if the list changes, meaning that at least one new feasible
nondominated point was found. Unsuccessful iterations keep the list unchanged.

A simplified description of the DMS framework is provided in Algorithm 2.1. For a
complete description , see Ref. [18].

Algorithm 2.1: A simplified description of DMS

Initialization
Choose a set of nondominated points {xiini ∈ �, i ∈ I} with fj(xiini) < +∞,∀j ∈
{1, . . . , p}, ∀ i ∈ I, αi

ini > 0, i ∈ I initial stepsizes, 0 < β1 ≤ β2 < 1 the coefficients
for stepsize contraction and γ ≥ 1 the coefficient for stepsize expansion. Let D be
a set of positive spanning sets. Initialize the list of feasible nondominated points and
corresponding stepsize parameters L0 = {(xiini;αi

ini), i ∈ I}.
For k = 0, 1, 2, . . .

(1) Selection of an iterate point: Order the list Lk according to some criteria and
select the first item (x;α) ∈ Lk as the current iterate and stepsize parameter (thus
setting (xk;αk) = (x;α)).

(2) Poll step: Choose a positive spanning set Dk from the set D. Evaluate F at the
feasible poll points belonging to {xk + αkd : d ∈ Dk}. Compute Ltrial by remov-
ing all dominated points from Lk ∪ {(xk + αkd;αk) : d ∈ Dk ∧ xk + αkd ∈ �}.
If Ltrial �= Lk, declare the iteration (and the poll step) successful and set Lk+1 =



OPTIMIZATION METHODS & SOFTWARE 5

Ltrial. Otherwise, declare the iteration (and the poll step) unsuccessful and set
Lk+1 = Lk.

(3) Stepsize parameter update: If the iteration was successful then maintain
or increase the corresponding stepsize parameters, by considering αk,new ∈
[αk, γαk] and replacing all the new points (xk + αkd;αk) in Lk+1 by (xk +
αkd;αk,new). Replace also (xk;αk), if in Lk+1, by (xk;αk,new).
Otherwise, decrease the stepsize parameter, by choosing αk,new ∈ [β1αk,β2αk],
and replace the poll pair (xk;αk) in Lk+1 by (xk;αk,new).

The convergence of DMS has been established in Ref. [18], closely following the argu-
ments used in the analysis of single-objective directional direct search methods. After
stating the existence of a subsequence of stepsize parameters converging to zero, this prop-
erty is used for establishing Pareto-Clarke Karush–Kuhn–Tucker(KKT) criticality. The
result is formalized in Theorem 2.3 for limit points of convergent refining subsequences.

Definition 2.1: A subsequence {xk}k∈K of iterates corresponding to unsuccessful poll steps
is said to be a refining subsequence if {αk}k∈K converges to zero.

The concept of refining direction is associated with convergent refining subsequences
and is formalized in Definition 2.2.

Definition 2.2: Let x∗ be the limit point of a convergent refining subsequence {xk}k∈K .
If the limit limk∈K′ dk/‖dk‖ exists, where K ′ ⊆ K and dk ∈ Dk, and if xk + αkdk ∈ �, for
sufficiently large k ∈ K ′, then this limit is said to be a refining direction for x∗.

Assuming the density of the set of refining directions in the Clarke tangent cone to
� computed at limit points of refining subsequences [12], the convergence of DMS is
established.

Theorem 2.3 (see Ref. [18]): Consider a refining subsequence {xk}k∈K converging to x∗ ∈
�. Assume that F is strictly differentiable at x∗ and that the interior of the tangent cone to �

at x∗ is nonempty. If the set of refining directions for x∗ is dense in the Clarke tangent cone to
� at x∗, then x∗ is a Pareto-Clarke-KKT critical point, i.e.

∀d ∈ TCl
� (x∗), ∃j(d) ∈ {1, 2, . . . , p} : ∇fj(d)(x∗)�d ≥ 0.

Recently, worst-case complexity boundswere provided forDMS, but considering a glob-
alization strategy that requires sufficient decrease for accepting new points [16]. For a
particular algorithmic instance, which considers a stricter criterion for accepting new non-
dominated points, DMS presents a worst-case complexity bound ofO(ε−2), similar to the
one of steepest descent.

3. Comparing DMS andMOSQP

Derivatives are a keystone for optimization. As previously mentioned, in single-objective
optimization, when in the presence of smooth functions, derivative-based methods are
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Table 1. The test set considered in the numerical experiments. Here, n represents the number of
variables and p is the number of components of the objective function.

Problem n p Problem n p Problem n p Problem n p

BK1 2 2 DTLZ4n2 2 2 lovison3 2 2 MOP7 2 3
CL1 4 2 DTLZ6 22 3 lovison4 2 2 SK1 1 2
Deb41 2 2 DTLZ6n2 2 2 lovison5 3 3 SK2 4 2
Deb513 2 2 ex005 2 2 lovison6 3 3 SP1 2 2
Deb521b 2 2 Far1 2 2 LRS1 2 2 SSFYY1 2 2
DG01 1 2 Fonseca 2 2 MHHM1 1 3 SSFYY2 1 2
DPAM1 10 2 IKK1 2 3 MHHM2 2 3 TKLY1 4 2
DTLZ1 7 3 IM1 2 2 MLF1 1 2 VFM1 2 3
DTLZ1n2 2 2 Jin1 2 2 MLF2 2 2 VU1 2 2
DTLZ2 12 3 Jin3 2 2 MOP1 1 2 VU2 2 2
DTLZ2n2 2 2 L2ZDT2 30 2 MOP2 4 2 ZDT2 30 2
DTLZ3 12 3 L3ZDT2 30 2 MOP3 2 2 ZLT1 10 3
DTLZ3n2 2 2 lovison1 2 2 MOP5 2 3
DTLZ4 12 3 lovison2 2 2 MOP6 2 2

preferable to derivative-free optimization algorithms, even if one has to spend some time
and effort to obtain good quality derivatives (see Ref. [15, p. 7] or Ref. [4, p. 6]). In this
section, we will assess the situation for multiobjective derivative-based optimization, when
the goal is to compute approximations to complete Pareto fronts.

For that, DMS algorithm [18] will be numerically tested againstMOSQP [27]. The latter
is a recent solver proposed for multiobjective derivative-based optimization, making use
of a SQP approach and for which a Matlab implementation is publicly available. MOSQP
keeps a list of nondominated points that is improved both for spread along the Pareto
front and optimality by solving single-objective constrained optimization problems. Thus,
MOSQP is able to generate approximations to complete Pareto fronts, an advantage over
classical derivative-based MOO solvers, which compute a single Pareto point. At the time
of the release, extensive numerical results were provided for MOSQP, including a compar-
ison with a classical scalarization approach for biobjective problems [27]. The good results
obtained allowed the authors to conclude that MOSQP should be ‘the preferred solution
framework for MOO problems when derivatives of objective and constraint functions are
available’ [27], which justifies our algorithmic choice as baseline against DMS. Default
parameters were considered for both solvers, with exception to the maximum number of
function evaluations allowed, which was set to 20,000. In some cases, a small budget of
500 function evaluations was additionally considered to ensure that the conclusions drawn
were not dependent on the large number of function evaluations allowed.

As test set, we considered the collection of 100 bound constrained MOO problems
available at http://www.mat.uc.pt/dms. This collection was previously used to test DMS
and MOSQP, at the time of their first release [18,27]. From this collection, we selected
a total of 54 problems, for which we were able to guarantee the existence of derivatives.
Table 1 reports the resulting test set, which comprises problems with 2 or 3 components
in the objective function and a number of variables, n, between 1 and 30. We notice that
MOOproblems withmore than three components in the objective function are commonly
denoted by ‘many-objective optimization’ problems [10] and are not the focus of any of
the solvers considered in the present work, requiring specific techniques to be efficiently
addressed [8,30,41].

http://www.mat.uc.pt/dms
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For performance assessment, we considered typical metrics from the MOO literature,
like is the case of purity and spread metrics, as defined in Ref. [18], and also the hyper-
volume indicator [42,44]. While other metrics could have been considered [5,11,40], these
are typical choices in recent works [3,6,13].

In a simplified view, purity measures the percentage of nondominated points generated
by a given solver. For problem p̂ ∈ P and solver s ∈ S , purity is defined by the ratio

t̄p̂,s = |Fp̂,s ∩ Fp̂|
|Fp̂,s|

,

where Fp̂,s denotes the approximation to the Pareto front computed for problem p̂ ∈ P
by solver s ∈ S and Fp̂ is a reference Pareto front for problem p̂ ∈ P. This reference Pareto
front is computed by joining the final approximations computed by any of the solvers tested
and removing from it all the dominated points. A value of purity near one indicates that the
majority of the points generated by the corresponding solver is nondominated. However,
these could be concentrated in a single part of the true Pareto front. Spread metrics are
required to have a fair assessment of the solver’s performance.

Since the goal is to build an approximation to the complete Pareto front of each prob-
lem, the computation of spread metrics initiates with the computation of the so-called
‘extreme points’ of the Pareto front (see Ref. [18]). The spread � measures the maxi-
mum gap between consecutive points lying in the approximated Pareto front. The metric
�p̂,s > 0 for problem p̂ ∈ P and solver s ∈ S is given by

�p̂,s = max
j∈{1,...,p}

(
max

i∈{0,...,N}
{δi,j}

)
, (2)

where δi,j = (fj(xi+1) − fj(xi)), x1, x2, . . . , xN represent the points generated by solver s ∈
S for problem p̂ ∈ P , and x0, xN+1 correspond to the ‘extreme points’. Implicitly, we are
assuming that the objective function values have been sorted by increasing order for each
objective j ∈ {1, . . . , p}.

The spreadmetric	 [21] measures the uniformity of the gaps across the approximation
to the Pareto front:

	p̂,s = max
j∈{1,...,p}

(
δ0,j + δN,j +

∑N−1
i=1 |δi,j − δ̄j|

δ0,j + δN,j + (N − 1)δ̄j

)
, (3)

where δ̄j, for j = 1, . . . , p, represents the average of the distances δi,j, i = 1, . . . ,N − 1.
The fourth metric considered is the hypervolume indicator [44], which measures the

volume of the portion of the objective function space that is dominated by the computed
approximation to the Pareto front of the problem, and upper bounded by a given reference
point Up̂ ∈ R

p. This reference point should be dominated by all points belonging to the
approximations computed for the Pareto front of a given problem p̂ ∈ P . Formally, it can
be defined as

HVp̂,s = Vol{y ∈ R
p| y ≤ Up̂ ∧ ∃x ∈ Fp̂,s : x ≤ y} = Vol

⎛
⎝ ⋃

x∈Fp̂,s
[x,Up̂]

⎞
⎠ ,
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Figure 1. Performance profiles for purity and hypervolumemetrics, comparing the original DMS imple-
mentation and MOSQP (maximum budget of 20,000 function evaluations).

where Vol(.) denotes the Lebesgue measure of a p-dimensional set of points and [x,Up̂]
denotes the interval box with lower corner x and upper cornerUp̂. The approach proposed
in Ref. [29] was used for its practical computation and the resulting hypervolume values
were scaled to the interval [0, 1], following the procedure described in Ref. [6].

Additionally, computational time is also used as a performance metric. In this case,
since it is not deterministic, results respect to average computational time, obtained from
a sample of 30 runs for each solver on each problem.

Performance profiles [22] will be depicted for the fivemetrics considered. Let tp̂,s denote
the performance of solver s ∈ S on problem p̂ ∈ P , assuming that lower values of tp̂,s
indicate a better performance. Each performance profile represents the curve

ρs(τ ) = 1
|P| |{p̂ ∈ P : rp̂,s ≤ τ }|,

with rp̂,s = tp̂,s/min{tp̂,s̄ : s̄ ∈ S}. In the case of purity and hypervolume metrics, larger
values indicate better performance. Thus, when computing performance profiles for these
two metrics, we set tp̂,s = 1/tp̂,s as proposed in Ref. [18].

Figures 1–3 compare DMS against MOSQP, when a maximum budget of 20,000 func-
tion evaluations is considered.

The two solvers present a similar performance in terms of robustness for purity and 	

metrics, with DMS being more efficient in terms of purity andMOSQP with respect to the
	 metric. However, there is a huge gain in performance with DMS when hypervolume or
the � metrics are considered. In terms of average computational time, there are clear gains
of MOSQP. The sorting procedure performed by DMS at each iteration, associated to the
selection of the poll center, is mainly responsible for this bad performance. In fact, if the
total budget of function evaluations is reduced to only 500, the good performance of DMS
when compared against MOSQP appears not only associated to hypervolume and spread
� but also for purity and computational time (see Figures 4–6).
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Figure 2. Performance profiles for � and 	 metrics, comparing the original DMS implementation and
MOSQP (maximum budget of 20,000 function evaluations).

Figure 3. Performance profile for computational time (average of 30 runs), comparing the original DMS
implementation and MOSQP (maximum budget of 20,000 function evaluations).

The benefits of an enriched set of directions are clear (and will be even clearer in the fol-
lowing sections). If derivative-based solvers are preferable to derivative-free optimization
methods for single-objective optimization, the same does not necessarily apply to MOO.

4. Pruning the poll set

At each iteration of DMS, a positive spanning set is selected as poll set. The poll points cor-
respond to directions in the poll set scaled by the stepsize parameter. The objective function
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Figure 4. Performance profiles for purity and hypervolumemetrics, comparing the original DMS imple-
mentation and MOSQP (maximum budget of 500 function evaluations).

Figure 5. Performance profiles for � and 	 metrics, comparing the original DMS implementation and
MOSQP (maximum budget of 500 function evaluations).

will then be evaluated at all the feasible poll points, independently of corresponding or not
to descent directions.

The following result is well known for positive spanning sets (see Theorem 2.3 in
Ref. [15]).

Theorem 4.1: If {v1, . . . , vr}, with vj �= 0 for all j ∈ {1, . . . , r}, positively spans R
n then for

every nonzero vector d ∈ R
n there is an index j ∈ {1, . . . , r} such that d�vj > 0.

Considering strict differentiability of each component of the objective function F, and
setting d = ∇fi(x) or d = −∇fi(x), for i ∈ {1, . . . , p}, Theorem 4.1 allows us to conclude
that in every positive spanning set, for each component of the objective function, we can
find at least one ascent and one descent direction.

Thus, at each iteration, for i ∈ {1, . . . , p}, if ∇fi(xk) �= 0, dk = −∇fi(xk) can be used to
prune the positive spanning set, only keeping directions that are descent according to at
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Figure 6. Performance profile for computational time (average of 30 runs), comparing the original DMS
implementation and MOSQP (maximum budget of 500 function evaluations).

least one component of the objective function. Since we are only discarding directions that
are ascent according to all components of the objective function, the convergence results
of Section 2 still hold. The pruned set of directions,DP

k , to be considered as poll directions
for DMS at Step 2 of Algorithm 1 will then be

DP
k =

⋃
i∈{1,...,p}

{d ∈ Dk : −∇fi(xk)�d > 0}.

This strategy can be ineffective when the number of components of the objective function
is high (p>3), what is commonly known as many-objective optimization [10]. However,
for problems comprising two or three components in the objective function, it could lead
to considerable savings in function evaluations at each poll step.

The idea of pruning positive spanning sets was already proposed in single objective
derivative-free optimization [1]. In this setting, it is easy to see that the cardinality of the
pruned set will be 1 ≤ |DP

k | ≤ |Dk| − 1. The authors were even able to provide a particular
enriched positive spanning set, that always reduces to a singleton after pruning.

If the goal is to generate an approximation to the complete Pareto front of a given prob-
lem, we do not wish to reduce the poll directions to a singleton, as we do not wish to
use opportunistic approaches, which would generate at most a new feasible nondominated
point at each iteration.Moreover, inMOO, due to the presence of conflicting objectives, we
cannot ensure the presence of a descent direction, according to all the components of the
objective function [18]. In fact, it is possible to build examples where the cone of descent
directions, considering all components of the objective function, can be as narrow as one
would desire.



12 R. ANDREANI ET AL.

Figure 7. Performance profiles for purity and hypervolumemetrics, comparing the original DMS imple-
mentation and a new version, where poll directions are pruned using first-order information (maximum
budget of 20,000 function evaluations).

Figure 8. Performance profiles for� and	metrics, comparing the original DMS implementation and a
new version, where poll directions are pruned using first-order information (maximumbudget of 20,000
function evaluations).

The proposed strategy was implemented and numerically tested against the original
DMS algorithm [18]. Figures 7–9 report the corresponding comparison, for a budget of
20,000 function evaluations.

In its current form, it is clear that the pruning strategy is not successful. In fact, there is a
considerable decrease in performance regarding the hypervolume and � metrics. While it
could seem surprising, as we will see in Section 5, ascent directions play an important role
when the goal is to compute an approximation to the complete Pareto front of a givenMOO
problem. The computation of derivatives also causes a decrease in the efficiency associated
to the version of DMS that uses the pruning strategy.

Comparisons were also performed between DMS with the pruning strategy and
MOSQP, for the same maximum budget of function evaluations. Since the results are
very similar to the ones reported in Section 3, we are not presenting the corresponding
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Figure 9. Performance profile for computational time (average of 30 runs), comparing the original
DMS implementation and a new version, where poll directions are pruned using first-order information
(maximum budget of 20,000 function evaluations).

profiles. The clear advantage of DMS, now using the pruning strategy, over MOSQP still
prevails, even if in terms of hypervolume the two solvers are closer than when compar-
ing to the original version of DMS. Regarding computational time, the pruning strategy
allows a slight improvement in the performance of DMS, but it is still far from the one
of MOSQP.

5. The role of ascent directions

In the presence of constraints, pruning the ascent directions is not always a good strategy.
Consider the biobjective minimization problem ZDT2, with n = 30 [43]. In this case, if
we provide as initialization one Pareto critical point, the algorithm stalls, being unable to
generate other Pareto critical points in the Pareto front. This behaviour is accordingly to
the convergence results derived for DMS, which only guarantee convergence to a single
Pareto critical point. By providing ascent directions, that conform to the geometry of the
nearby feasible region, the algorithm is able to proceed and generate a large number of
Pareto critical points. Figure 10 illustrates the situation.

Thus, the approach taken was to return to the original positive spanning setDk (without
pruning) at some iterations. Assume that at a given iteration, the original positive span-
ning set was pruned and DP

k was used as poll set, but the algorithm was unable to proceed
because every poll point was infeasible. At the next iteration, pruning will not be applied,
and the original positive spanning set Dk will be considered as the set of poll directions.
Again, sincewe are only disregarding directions that are ascent according to all components
of the objective function, and only at some iterations, the convergence results of Section 2
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Figure 10. Final approximations to the Pareto front of problem ZDT2, generated by two different algo-
rithmic variants of DMS. On the left, positive spanning sets are pruned to sets only comprising descent
directions. On the right, ascent directions are considered at some iterations.

Figure 11. Performance profiles for purity and hypervolume metrics, comparing the original DMS
implementation and a new version, where poll directions are pruned using first-order information, but
not at all the iterations (maximum budget of 20,000 function evaluations).

continue to hold. Figures 11–13 report performance profiles comparing this new approach
with the original implementation of DMS.

Now, the two variants of DMS are extremely close in terms of performance regarding the
quality of the solutions produced, but the new approach brings some advantage in terms
of the� metric. However, considering the average computational time, the computation of
derivatives always decreases the performance of the DMS variant that makes use of it. The
advantages of the new approach are clearer if the computational budget is reduced from
20,000 to only 500 functions evaluations (see Figures 14–16).

Savings in function evaluations allow clear improvements in terms of efficiency, both for
purity and hypervolume. Regarding the� metric, there is a clear advantage of the new vari-
ant over the classical DMS approach. As expected, the computation of derivatives continues
to decrease the performance in terms of average computational time.
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Figure 12. Performance profiles for� and	metrics, comparing the original DMS implementation and
a new version, where poll directions are pruned using first-order information, but not at all the iterations
(maximum budget of 20,000 function evaluations).

Figure 13. Performance profile for computational time (average of 30 runs), comparing the original
DMS implementation and a new version, where poll directions are pruned using first-order information,
but not at all the iterations (maximum budget of 20,000 function evaluations).

Comparing with MOSQP, again considering a budget of only 500 function evalua-
tions, there is also a clear advantage of the new variant in three of the five metrics
considered, namely purity, hypervolume and � metric, with an equal performance for
the 	 metric and average computational time. Figures 17–19 report the results. Thus,
the good performance of DMS variants over MOSQP is not the result of large budgets
of function evaluations, but a consequence of richer sets of directions, including ascent
ones.
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Figure 14. Performance profiles for purity and hypervolume metrics, comparing the original DMS
implementation and a new version, where poll directions are pruned using first-order information, but
not at all the iterations (maximum budget of 500 function evaluations).

Figure 15. Performance profiles for� and	metrics, comparing the original DMS implementation and
a new version, where poll directions are pruned using first-order information, but not at all the iterations
(maximum budget of 500 function evaluations).

Considering that the experiments of the previous sections indicate that there could be a
large difference in the computational time required by each solver to address the different
problems, again we compared this final version of DMS against MOSQP, this time con-
sidering a budget of only 1 second of computational time as stopping criterion. Similarly
to previous tests, 30 runs were performed and average results are reported in Figures 20
and 21.

In this case,MOSQP improves the performance in the puritymetric, with a clear advan-
tage over the DMS variant. In fact, MOSQP achieves convergence (i.e. it successfully
completes its required iterations) in all the considered problems within 1 second, whereas
the same does not apply to DMS version. However, the advantages of performance of this
final DMS version for the hypervolume and the � spread metrics continue to be clear.
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Figure 16. Performance profiles for computational time (average of 30 runs), comparing the original
DMS implementation and a new version, where poll directions are pruned using first-order information,
but not at all the iterations (maximum budget of 500 function evaluations).

Figure 17. Performance profiles for purity and hypervolume metrics, comparing MOSQP and the new
versionofDMS,wherepoll directions areprunedusingfirst-order information, but not at all the iterations
(maximum budget of 500 function evaluations).

6. Concluding remarks

DMSwas proposed inRef. [18] as a robust and efficient algorithm, able to generate approxi-
mations to the complete Pareto front ofMOOproblems. Surprisingly, the numerical exper-
iments conducted showed that it can be a strong competitor against the derivative-based
solver MOSQP, evidencing that inMOO, when the goal is to generate an approximation to
the complete Pareto front of a given problem, even if first-order derivatives are available,
derivative-free solvers can be good alternatives to derivative-based approaches.
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Figure 18. Performance profiles for � and	 metrics, comparing MOSQP and the new version of DMS,
where poll directions are pruned using first-order information, but not at all the iterations (maximum
budget of 500 function evaluations).

Figure 19. Performance profiles for computational time (average of 30 runs), comparing MOSQP and
the new version of DMS, where poll directions are pruned using first-order information, but not at all the
iterations (maximum budget of 500 function evaluations).

Derivatives can be used to prune the positive spanning sets to be considered as poll
directions. However, care should be taken because ascent directions, that conform to
the geometry of the nearby feasible region, can have an important role in the ability of
generating a complete approximation to the Pareto front of a given problem.

The new variant of DMS, which prunes the poll set of directions, but that at some itera-
tions considers its enrichment with ascent directions, showed to be competitive both with
the derivative-based solver MOSQP and with the original implementation of DMS. For
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Figure 20. Performance profiles for purity and hypervolume metrics, comparing MOSQP and the new
versionofDMS,wherepoll directions areprunedusingfirst-order information, but not at all the iterations
(1 second of computational time).

Figure 21. Performance profiles for � and	 metrics, comparing MOSQP and the new version of DMS,
where poll directions are pruned using first-order information, but not at all the iterations (1 second of
computational time).

low computational budgets of function evaluations, it allows an increase in the percentage
of nondominated points generated in the approximation to the Pareto front of the MOO
problem and also a reduction in the largest gap across the generated Pareto front, when
compared with the original implementation of DMS. In the case ofMOSQP, there are addi-
tional advantages regarding the hypervolume associated to the computed approximation
to the Pareto front. Nevertheless, in general, DMS variants are expected to require more
computational time to solve a problem than MOSQP.

Future work could include the definition of a search step taking advantage of first-order
information for building Taylormodels, which will beminimized considering an approach
similar to the one proposed and analyzed in Ref. [6].
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