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Abstract
The optimization literature is vast in papers dealing with improvements on the global
convergence of augmented Lagrangian schemes. Usually, the results are based on
weak constraint qualifications, or, more recently, on sequential optimality conditions
obtained via penalization techniques. In this paper, we propose a somewhat different
approach, in the sense that the algorithm itself is used in order to formulate a new
optimality condition satisfied by its feasible limit points. With this tool at hand, we
present several new properties and insights on limit points of augmented Lagrangian
schemes, in particular, characterizing the strongest possible global convergence result
for the safeguarded augmented Lagrangian method.
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1 Introduction

In this paper, we deal with the following problem:

minimize f (x)

subject to h(x) = 0, g(x) � 0, (NLP)

where f : Rn → R, h : Rn → R
m, and g : Rn → R

p are continuously differentiable
functions.

There is a variety of ways in which the quality of a general scheme for solving
(NLP) may be measured. Most often, numerical stability, execution time, conver-
gence rate, or other measures would be employed. However, in this paper, we are
interested in the quality of the limit points of the sequences generated by the scheme,
in the sense of how close they are to being necessarily optimal. This is an impor-
tant complementary analysis of the reliability of an algorithm. Here, we restrict our
analysis and conclusions only to augmented Lagrangian schemes. Usually, in most
descriptions of algorithms for (NLP), the question of the quality of its limit points
is answered in a simple way: a constraint qualification (CQ) such as the linear inde-
pendence CQ or the Mangasarian-Fromovitz CQ is assumed at all feasible points of
(NLP) and it is shown that all feasible limit points of a sequence generated by the
algorithm satisfies the Karush-Kuhn-Tucker (KKT) conditions. Several weaker CQs
have been considered in the recent years yielding stronger global convergence results
based on weaker constraint qualifications such as RCPLD [10], CPG [11], CCP [15],
and Quasinormality [4].

One may restate a global convergence result that a KKT point is achieved under a
given CQ by saying that feasible limit points of an algorithm satisfy “KKT or not-
CQ,” meaning either KKT holds or that particular CQ is violated. This has the
advantage that the latter is a true necessary optimality condition, satisfied at all local
minimizers of (NLP), while KKT on its own may fail for specific problems. This
simple approach has lead to the definition of different but genuine necessary opti-
mality conditions that imply “KKT or not-CQ” but that are more tailored to global
convergence analysis of algorithms. In particular, these have been called sequential
optimality conditions [4, 7, 17, 40] and the sequences needed for checking the valid-
ity of the condition are precisely the primal and dual sequences generated by the
algorithm.

The simplest example of a sequential optimality condition is the so-called Appro-
ximate-KKT (AKKT) condition, which is said to hold at a feasible point x∗ whenever
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one may find a primal sequence {xk} ⊂ R
n, xk → x∗ and a dual sequence

{(λk, μk)} ⊂ R
m × R

p
+ such that

∇f (xk) +
m∑

i=1

λk
i ∇hi(x

k) +
∑

j :gj (x∗)=0

μk
j∇gj (x

k) → 0.

The simple observation that most reasonable algorithms generate sequences with this
property is enough to recover most global convergence results to a KKT point under
a constraint qualification. However, this is a poor analysis of the quality of x∗, as the
sequences generated by the algorithm have a much more specific form. For a con-
crete example, consider the problem of minimizing (x1 − 1)2 + (x2 − 1)2 subject to
x1 � 0, x2 � 0, x1x2 � 0. Here, the only solutions are (1, 0) and (0, 1) but all fea-
sible points satisfy AKKT [4]. However, it is known that an augmented Lagrangian
method can only accumulate around (1, 0), (0, 1), or (0, 0) [32]. Also, even though
an AKKT sequence is always generated, different augmented Lagrangian schemes
will have different convergence properties (see, e.g., [36]) and in this paper we will
investigate the impact on the quality of the limit point in view of several variants
of augmented Lagrangian schemes, in particular taking into account how the dual
sequence is computed.

In some sense, there is a mismatch between the sequences generated by the aug-
mented Lagrangian algorithm and the sequences proved to exist converging to a local
minimizer, since the latter is frequently built using a pure external penalty method
on a regularized problem, and not the augmented Lagrangian. In this paper, we
will use the sequence itself, generated by the augmented Lagrangian algorithm, to
attest optimality of a limit point. More precisely, we show that all local minimizers
are limit points of a sequence generated by the algorithm. This is a somewhat dif-
ferent approach from previous global convergence results via sequential optimality
conditions, in the sense that there is no need to employ an optimality condition dis-
connected from the algorithm. The algorithm itself is used to study the quality of its
limit points. With this tool at hand, we are able to investigate further what are the
important features of the algorithm, in the sense that this property may be lost when
modifying it. Surprisingly, we show that the algorithm may fail to achieve some local
minimizers if exact stationary points are found in each subproblem or exact feasible
points, hence, it is paramount to allow some degree of error when solving the sub-
problems. We also show that some simplified variants of the augmented Lagrangian
method are equivalent to the standard algorithm in terms of the quality of its limit
points, while a variant including a penalty parameter for each constraint induces a
weaker optimality condition.

1.1 Contributions of this article

In this paper, we introduce a mathematical description of all feasible limit points
of an augmented Lagrangian algorithm that also takes into account the sequences it
generates (Definition 1). Then, using this description:
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– we prove that being a feasible limit point of the algorithm is a necessary condition
for local optimality (Theorem 2);

– we characterize the weakest constraint qualification required for proving global
convergence to KKT points (Section 4);

– we prove that a growth control over the penalty parameter does not affect the
quality of its limit points (Section 3.1), even though it provides a computational
gain of stability;

– we provide strong evidences that suggest that the safeguarded augmented
Lagrangian method is equivalent to the classical external penalty method in terms
of the quality of their feasible limit points (Section 3.2 and Corollary 2);

– we show that using a different penalty parameter for each constraint is theoreti-
cally worse than using a common parameter (Section 3.4);

– we discuss the theoretical implications of employing a safeguarding technique
for updating Lagrange multipliers (Theorem 5);

– we show that forcing exact feasibility or stationarity over the subproblems may
possibly cause undesired effects on its convergence;

– we discuss other implementation details and their effects on the quality of limit
points.

1.2 Notation

Our work environment is Rn equipped with the Euclidean norm, which is defined as

‖x‖2
.=

√
x2

1 + · · · + x2
n for every x ∈ R

n. To attest algorithmic convergence, we

employ the norm ‖x‖∞
.= max{|xi | : i ∈ {1, . . . , n}}. The nonnegative orthant of Rn

is denoted by R
n+

.= {x ∈ R
n : xi � 0, ∀i ∈ {1, . . . , n}} and, similarly, its positive

orthant is Rn++
.= {x ∈ R

n : xi > 0, ∀i ∈ {1, . . . , n}}. It is well-known that the pro-
jection of a point x ∈ R

n onto R
n+ is given by [x]+ .= (max{0, x1}, . . . , max{0, xn}),

and that ∇‖[x]+‖2
2 = 2[x]+, for every x.

The Lagrangian function of (NLP) is defined as L(x, λ, μ)
.= f (x) + h(x)T λ +

g(x)T μ, where λ ∈ R
m and μ ∈ R

p
+. Also, its gradient with respect to x is given by

∇xL(x, λ, μ)
.= ∇f (x) + ∇h(x)T λ + ∇g(x)T μ.

We denote sequences labeled by a variable x and indexed by a set J ⊆ N by
{xk}k∈J , and in this context, xk � xj means that xj is the successor of xk , where
j, k ∈ J .

2 The PHR augmented Lagrangian algorithm

There exist many augmented Lagrangian variants in the literature, but the main sub-
ject of our analyses is the one known as the Powell-Hestenes-Rockafellar (PHR)
algorithm [30, 43, 47], which is characterized by the following shifted penalty
function:

Lρ,λ̄,μ̄(x)
.= f (x) + ρ

2

[∥∥∥∥
λ̄

ρ
+ h(x)

∥∥∥∥
2

2
+

∥∥∥∥

[
μ̄

ρ
+ g(x)

]

+

∥∥∥∥
2

2

]
, (1)
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where ρ > 0 and μ̄ � 0. It is worth mentioning that a practical comparison among
65 distinct augmented Lagrangian variants was presented in [20], and the PHR was
observed to have the best performance in their experiments.

As usual for penalty-type methods, the core idea behind the PHR algorithm is to
minimize Lρ,λ̄,μ̄(x) successively until some stopping criterion is satisfied, increasing

ρ whenever needed, and updating λ̄ and μ̄ in a suitable way. There are many possible
implementations for it, but in this paper our analyses revolve around a consolidated
implementation known as ALGENCAN [2, 22], which has a robust practical imple-
mentation provided by the TANGO project (www.ime.usp.br/∼egbirgin/tango) and a
good track record of applications (for a description of applications in several fields,
we refer to [22]).

The algorithm is usually presented as in Algorithm 1.

Remark 1 Strictly speaking, ALGENCAN allows for additional box-constraints in its
subproblems, which are solved by an active-set strategy. However, this is not relevant
to our analysis, so we abuse the notation by naming Algorithm 1 as ALGENCAN.

In many practical situations, B is defined as a box in the form [λmin, λmax]m ×
[0, μmax]p, where λmin � λmax and μmax � 0 are given. Also, the usual choice of
(λ̄k+1, μ̄k+1) is the projection of (λk .= λ̄k + ρkh(xk), μk .= [μ̄k + ρkg(xk)]+)

onto B, but a priori it can be any other element of B. This technique is often called
safeguarding and, in this context, λ̄k and μ̄k are called safeguarded multipliers. Some
advantages of safeguarding are discussed in Section 3.3. The vector V k defined by
(3) is a joint measure of feasibility and complementarity that is meant to control the
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growth of the penalty parameter through Step 2. In particular, note that ALGENCAN

even allows {ρk}k∈N to be bounded, which is a specially meaningfull feature when
(NLP) is convex [46]. As a matter of fact, there is no universal rule for updating
ρk , but it is important to keep in mind that, from the numerical point of view, the
difficulty of solving the subproblems grows when ρk increases. Also, in situations
where the augmented Lagrangian method is performing well, the penalty parameter
can even be allowed to decrease [21], mainly because moderate values of ρk usually
mean a better behavior of the box-constraint solver for the subproblem. Another work
that deals with the possibility of decreasing the penalty parameter is [25]. This topic
is out of the scope of this paper, but nevertheless we choose to give some degree of
freedom for ρk for the sake of generality.

2.1 The sequences generated by the augmented Lagrangianmethod

In order to build a rigorous analysis of ALGENCAN, it is fundamental to introduce
a consistent mathematical characterization of its output sequences and their limit
points. We get inspiration from the structure of sequential optimality conditions to
encapsulate every feasible outcome of ALGENCAN in the following definition:

Definition 1 We say that x∗ is an Augmented Lagrangian AKKT (AL-AKKT) point
if there exist sequences {xk}k∈N → x∗, {ρk}k∈N ⊂ R++, and bounded sequences
{λ̄k}k∈N ⊂ R

m, {μ̄k}k∈N ⊂ R
p
+, such that

∇xL(xk, λk, μk) → 0 and V k → 0 (2)

where λk .= λ̄k + ρkh(xk), μk .= [μ̄k + ρkg(xk)]+, and

V k .=
(

h(xk), min

{
−g(xk),

μ̄k

ρk

})
. (3)

In this context, we say that {xk}k∈N is a (primal) AL-AKKT sequence associated with
the dual sequence {(λk, μk)}k∈N.

Although it is intuitively clear that Definition 1 is indeed a complete character-
ization of the output sequences of ALGENCAN, this is not obvious whatsoever. To
make this relationship clear, we define an instance of ALGENCAN as a two-phase
procedure consisting of:

1. Choosing the initial parameters: τ, γ, {εk}k∈N, ρ1,B, and (λ̄1, μ̄1);
2. Running ALGENCAN, producing sequences {xk}k∈N and {λk, μk}k∈N.

Also, we say that an instance of ALGENCAN generates a given point x∗ when x∗ is
an accumulation point of its output sequence {xk}k∈N.

In the following lines, we present a formal argument that establishes the corre-
spondence between the algorithmic representation of ALGENCAN and Definition 1.
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Theorem 1 For each AL-AKKT point x∗, there is an instance of ALGENCAN such
that its output sequence {xk}k∈N has x∗ as an accumulation point. Conversely, every
feasible accumulation point generated by ALGENCAN is AL-AKKT.

Proof Let {xk}k∈N be an AL-AKKT sequence convergent to x∗, with associated safe-
guarded multipliers {λ̄k}k∈N and {μ̄k}k∈N, and parameters {ρk}k∈N ⊂ R++. We will
split the proof in two cases: the first one is when {ρk}k∈N → ∞, which means that for
any γ > 1, there is a subsequence of it such that ρk+1 � γρk for every k. We denote
the index set of this subsequence by K = {i1, i2, i3, . . .} ⊂ N. Then, fix τ ∈ (0, 1)

and define the index set

K=
.=

{
ik � 2 |

∥∥∥V ik

∥∥∥ � τ

∥∥∥V ik−1

∥∥∥∞

}
⊂ K .

This set may be finite or infinite. Despite of this, we define a set I and new sequences
{x̃j }j∈I , {λ̃j }j∈I , {μ̃j }j∈I , {ρ̃j }j∈I in the following way:

1. Start with x̃i1 .= xi1 , λ̃i1 .= λ̄i1 , μ̃i1 .= μ̄i1 and ρ̃i1

.= ρi1 ;
2. For each ik ∈ K\{i1},

(a) if ik ∈ K= then define the next elements x̃ik− 1
2

.= xik , λ̃ik− 1
2

.= λ̄ik , μ̃ik− 1
2

.=
μ̄ik and ρ̃

ik− 1
2

.= ρik ;

(b) independently if ik is in K= or not, define the next elements x̃ik .= xik ,
λ̃ik .= λ̄ik , μ̃ik .= μ̄ik and ρ̃ik

.= ρik ,

and I is defined as K with duplicated elements whenever they belong to K=. For
example, if K= = {i2, i3, i6} then

{x̃j }I = { xi1, xi2− 1
2 = xi2, xi2, xi3− 1

2 = xi3, xi3, xi4, xi5, xi6− 1
2 = xi6, xi6 , . . .}

and I = {i1, i2, i2, i3, i3, i4, i5, i6, i6, . . . } (for simplicity, we abuse the notation here
by duplicating indexes). The other sequences are analogous. In other words, we dupli-
cate an element of every sequence whenever its index is in K=. In the next lines, the
vectors Ṽ j are defined as in (3) for those new sequences.

There are the following possibilities for any two consecutive elements:

– x̃ik−1 � x̃ik− 1
2 . In this case, ik ∈ K= and then

∥∥∥Ṽ ik− 1
2

∥∥∥∞ = ‖Ṽ ik‖∞ �
τ‖Ṽ ik−1‖∞. Note that, by definition, ρ̃ik = ρ̃

ik− 1
2
;

– x̃ik− 1
2 � x̃ik . Here, ‖Ṽ ik‖∞ = ‖Ṽ ik− 1

2 ‖∞ > τ‖Ṽ ik− 1
2 ‖∞. The next element is

x̃ik+1 or x̃ik+1− 1
2 . In both cases, (ρ̃

ik+1− 1
2

=)ρ̃ik+1 > ρ̃ik ;

– x̃ik−1 � x̃ik . In this case ik �∈ K= and thus ‖Ṽ ik‖∞ > τ

∥∥∥Ṽ ik−1

∥∥∥∞. Again, the

next element is x̃ik+1 or x̃ik+1− 1
2 , from which (ρ̃

ik+1− 1
2

=)ρ̃ik+1 > ρ̃ik .

Thus, we conclude that in this case the new sequences satisfy, consecutively, all
requirements of ALGENCAN with safeguarded multipliers {λ̄j }j∈I and {μ̄j }j∈I , pre-
cision parameters εj

.= ∥∥∇xL(x̃j , λj , μj )
∥∥∞, where λj = λ̃j + ρ̃j h(x̃j ) and

μj = [μ̃j + ρ̃j g(x̃j )]+ for every j ∈ I , and any compact set B that contains
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every safeguarded multiplier. Then, since limj→∞ x̃j = x∗, there is an instance of
ALGENCAN that generates x∗. In order to see this, keep in mind that

∇xL(xk, λk, μk) = ∇Lρk,λ̄
k,μ̄k (x

k),

for every k ∈ N.
The second case is when {ρk}k∈N is bounded, which means x∗ satisfies the KKT

conditions since in this case {(λk, μk)}k∈N is bounded and V k → 0 ensures the
fulfilment of the complementarity conditions. Denote its associated Lagrange multi-
pliers by λ̃ and μ̃. Then, choose any compact set B such that (λ̃, μ̃) ∈ B and define
(λ̄k, μ̄k)

.= (λ̃, μ̃), ρ1
.= 1, and xk .= x∗, for every k ∈ N. Thus, there is an instance

of ALGENCAN that generates x∗ in this case, as well.
The converse is trivial, since V k → 0 independently on the boundedness of

{ρk}k∈N.

In light of Theorem 1, AL-AKKT provides an ideal comparison tool between
ALGENCAN and some of its variants, as well as a proper language for analysing the
effects of some particular choices of parameters on the output of the algorithm. This
is the main focus of Section 3. Before that, we discuss from the sequential optimal-
ity conditions perspective, some other interesting properties of ALGENCAN that are
very often difficult to perceive with the algorithmic language.

2.2 AL-AKKT is necessary for optimality

A common approach for building the convergence theory of an algorithm is to ground
it on some universal necessary optimality condition, that is, a condition that is inde-
pendent of the algorithm (whether it is of the sequential type or not). However, such
independence does not add any value for the algorithm at all and it may even turn
into a limitation for its convergence theory. The following theorem shows that AL-
AKKT can be interpreted as a necessary optimality condition, but since it is also an
exact description of the augmented Lagrangian method, it provides the best possible
convergence theory for it.

Theorem 2 Every local minimizer x∗ of (NLP) is an AL-AKKT point, regardless of
the choice of {(λ̄k, μ̄k)}k∈N.

Proof Let x∗ be a local minimizer of (NLP). Then, there is a δ > 0 such that x∗ is
the unique global solution of the localized problem

minimize
x∈Rn

f (x) + 1/2
∥∥x − x∗∥∥2

2

subject to h(x) = 0, g(x) � 0,
∥∥x − x∗∥∥

2 � δ. (4)

The proof relies on arguments that are similar to the ones used in [22, Theorem
5.2]. In summary, the idea is to apply Algorithm 1 to (4), but assuming that we
are able to compute a global solution of each subproblem in Step 1 under the con-
straint ‖x − x∗‖2 � δ, instead of only minimizing the correspondent augmented
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Lagrangian (1) up to first-order stationarity. Then, for each k ∈ N, let xk be a global
solution of the augmented subproblem

minimize
x∈Rn

f (x) + 1

2

∥∥x − x∗∥∥2
2 + ρk

2

m∑

i=1

[ λ̄k
i

ρk

+ hi(x)
]2 + ρk

2

p∑

j=1

[ μ̄k
j

ρk

+ gj (x)
]2

+

subject to
∥∥x − x∗∥∥

2 � δ. (5)

Furthermore, the choice in Step 3 can be made to match any sequence {(λ̄k, μ̄k)}k∈N
chosen a priori, highlighting that our conclusions are independent of this choice.

Let us show that {xk}k∈N converges to x∗. By the optimality of xk and the
feasibility of x∗ we have, for all k, that

f (xk) + 1

2

∥∥∥xk − x∗
∥∥∥

2

2
+ ρk

2

m∑

i=1

[ λ̄k
i

ρk

+ hi(x
k)

]2 + ρk

2

p∑

j=1

[ μ̄k
j

ρk

+ gj (x
k)

]2

+

� f (x∗) +
m∑

i=1

(λ̄k
i )

2

2ρk

+
p∑

j=1

(μ̄k
j )

2

2ρk

. (6)

Then, for all k, we have
(

λ̄k

ρk

+ h(xk) ,
[ μ̄k

ρk

+ g(xk)
]

+

)
=

(
λ̄k

ρk

,
μ̄k

ρk

)
+ Ṽ k,

where Ṽ k .= (h(xk), max{g(xk),−μ̄k/ρk}). Observe that |Ṽ k
� | = |V k

� | for all k ∈ N

and � = 1, . . . , m + p. Thus, by (6), we get that

f (xk) + 1

2

∥∥∥xk − x∗
∥∥∥

2

2
+

m∑

i=1

λ̄k
i Ṽ

k
i +

p∑

j=1

μ̄k
j Ṽ

k
j + ρk

2

∥∥∥Ṽ k
∥∥∥

2

2
� f (x∗). (7)

Now, let us take an accumulation point x̄ of {xk}k∈N. There are two cases to consider:

– if {ρk}k∈N is bounded, then, by Step 2 we have
∥∥∥Ṽ k

∥∥∥
2

= ∥∥V k
∥∥

2 → 0 and

therefore x̄ is feasible. From (7), we have f (x̄)+ (1/2)‖x̄ − x∗‖2
2 � f (x∗). The

optimality of x∗ and the feasibility of x̄ imply x̄ = x∗;
– if {ρk}k∈N → ∞ then dividing (7) by ρk and taking limits lead us to obtain∥∥V k

∥∥
2 =

∥∥∥Ṽ k
∥∥∥

2
→ 0, and thus x̄ is feasible. Again by (7), we have f (x̄) +

(1/2)‖x̄ − x∗‖2
2 � f (x∗) and hence x̄ = x∗.

Thus, xk → x̄ = x∗ and
∥∥xk − x∗∥∥

2 < δ for all k large enough. Then, the optimality
conditions for the penalized problem (5) at xk give us

∇f (xk) + ∇h(xk)[λ̄k + ρkh(xk)] + ∇g(xk)[μ̄k + ρkg(xk)]+ = x∗ − xk → 0.

We also proved that V k → 0 regardless of whether {ρk}k∈N is bounded or not,
concluding the proof.

By Theorem 1, it is possible to say that the kind of convergence analysis provided
by AL-AKKT via Theorem 2 is stronger than all known previous results regarding

Numerical Algorithms (2022) 90:851–877 859



both: optimality conditions in the form “KKT or not-CQ” and sequential conditions.
Indeed, every necessary condition that supports ALGENCAN must be satisfied by
all of its feasible limit points, and consequently implied by AL-AKKT. A detailed
discussion on this topic can be found in Section 4, where we characterize the weakest
CQ needed to establish convergence of ALGENCAN to KKT points, by means of
AL-AKKT.

Remark 2 Similarly to the way Lagrange multipliers attest optimality of a KKT point
in some sense, the sequences provided by an execution of ALGENCAN can be seen as
optimality certificates of an AL-AKKT point. In order to see this, keep in mind that
even though such certificates were generated by a regularized variant of the method
in the proof of Theorem 2, they are also valid outputs of ALGENCAN with a suitable
choice of parameters.

We highlight that Theorems 1 and 2 also mean that the mere fact of being a feasi-
ble limit point of ALGENCAN is itself a necessary optimality condition, which to the
best of our knowledge, is novelty. While the usual convergence statement of ALGEN-
CAN tells us that the method is expected to converge to a local minimizer under some
conditions, Theorem 1 complements it by stating that every local minimizer is likely
to be found. This attribute should not be ignored in nonconvex problems with mul-
tiple local minima, since some local minimizers may be more interesting than the
others (for instance, the global minimizer, when it does exist). In fact, whether this
is an advantage for the method may be a situational issue, but the existence of some
solutions that can be avoided by the method without specifying it should always raise
a red flag. For instance, this is the case of an augmented Lagrangian for Generalized
Nash Equilibrium problems. See the discussion in [24].

Remark 3 Every KKT point is AL-AKKT as well. The reasoning is similar to the
second case of the proof of Theorem 1: if x∗ is KKT, let us say, with associated
Lagrange multipliers λ̃ and μ̃, then taking xk .= x∗, ρk

.= k, λ̄k .= λ̃, and μ̄k .= μ̃,
for every k ∈ N, is enough to conclude that x∗ is also AL-AKKT.

Remark 4 If x∗ is an AL-AKKT point and {(λk, μk)}k∈N is bounded (in particular,
if {ρk}k∈N is bounded), then it is a KKT point. In fact, in this case any accumula-
tion point of {(λk, μk)}k∈N serves as Lagrange multipliers, and V k → 0 ensures the
complementarity condition.

A consequence of Theorem 2 and Remark 3 is that every possible point of interest
for (NLP) is in the range of convergence of ALGENCAN.

2.3 About inexactly solving the subproblems

Note that Step 1 only requires xk to be an approximate stationary point of the
Lagrangian function, Lρk,λ̄

k,μ̄k (x). This is done in order to maintain some degree of

loyalty to what happens in practice, since either way xk is likely to be obtained by
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some iterative method for solving an unconstrained subproblem, that declares con-
vergence when the Lagrangian residue is small enough. Thus, we stress that we do
not require any use of global methods for solving the subproblems, and similarly, no
convexity assumptions are enforced.

However, it is natural to expect that the introduction of any kind of error tol-
erance might have negative influence over the outcome of the method. In [35],
the authors study five relaxation methods for mathematical problems with equilib-
rium constraints, in particular, they compare the effects of forcing exactness on the
subproblems (that is, an analogue of setting εk = 0 for every k in ALGENCAN) with
the effects of allowing the subproblems to be solved inexactly. One of those methods
was proven to keep the same convergence properties regardless of the exactness of
the subproblems, whereas the others presented a strictly worse notion of convergence
with inexactly solved subproblems.

Surprisingly, concerning ALGENCAN (via AL-AKKT), forcing exact stationarity
by means of setting εk = 0 for every k may lead to unexpected and possibly undesired
results, such as the exclusion of some local/global minimizers from the range of
convergence of the method. The following example illustrates this fact:

Example 1 In R
2, consider the minimization problem:

minimize − x2 subject to x2
2 � 0, x2

1x2
2 � 0.

Clearly, x∗ .= (1, 0) is a global minimizer. Now, assume that there exists a sequence

of stationary points of the Lagrangian xk .= (xk
1 , xk

2 ) converging to x∗ for some μ̄k
1,

μ̄k
2 ∈ R+. Thus, ∇Lρk,μ̄k (xk) is equal to

[
0

−1

]
+ (μ̄k

1 + ρk(x
k
2 )2)+

[
0

2xk
2

]
+ (μ̄k

2 + ρk(x
k
1 )2(xk

2 )2)+
[

2xk
1(xk

2 )2

2xk
2(xk

1 )2

]
=

[
0
0

]
.

From the first line of the expression above, we see that 2xk
1 (xk

2 )2 = 0 or (μ̄k
2 +

ρk(x
k
1 )2(xk

2 )2) = 0, for all k ∈ N. In any case, since xk
1 → 1, we get xk

2 = 0 for all k,
contradicting the second expression.

Hence, the notion of convergence provided by Theorems 1 and 2 can be weakened
under exactness, in contrast with our previous discussion. Moreover, Example 1 sug-
gests that we should raise our caution for choosing the precision parameters εk , for
the behavior of the method due to this choice is not trivially predictable. We refer
to [18, 27] for some efficient strategies for choosing εk .

Similarly, it is also possible to prove that the augmented Lagrangian scheme can
be incompatible with feasible sequences. In fact, forcing V k = 0 for all k may not
only remove minimizers from the range of convergence of ALGENCAN, but can also
induce complete failure in the method. The following example illustrates this fact:

Example 2 In R, consider the minimization problem:

minimize x1 subject to x2
1 � 0.
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Clearly x∗ .= 0 is the only global minimizer. Now, assume that there exists a sequence
of exact admissible points xk converging to x∗ and multipliers μ̄k ∈ R+, such that
1 + [μ̄k + ρk(x

k
1 )2]+xk

1 → 0. Forcing V k = 0 we get that xk
1 = 0, which is a

contradiction with 1 + [μ̄k + ρk(x
k
1 )2]+xk

1 → 0.

Note that this issue does not depend on the choice of μ̄k . In fact, it is well-known
that the feasibility of the limit point is a paramount issue for numerical methods
based on penalty approaches, which is a huge contrast with interior-point and active-
set methods, where feasibility is always maintained. Example 2 indicates that any
attempt of resolving this issue by forcing feasibility in ALGENCAN may actually
hinder its theoretical convergence.

In some situations, one may be interested in computing the Lagrange multipliers
associated with a KKT point. Even though the KKT point itself can always be found
by ALGENCAN, the choice of parameters may have direct influence on whether its
Lagrange multipliers are computed along with it or not. The example below illustrates
a scenario where a KKT point is found by ALGENCAN, but its Lagrange multiplier
is not.

Example 3 In R
2, consider the minimization problem:

minimize − x2
1 subject to x2

1x2 = 0.

Observe that x∗ .= (0, 0) is a KKT point whose set of multipliers is the whole R.
Consider xk

1
.= 1/k, xk

2
.= xk

1 , ρk
.= (2xk

1xk
2 )−2 and λ̄k .= 0. For this choice, we see

that [ −2xk
1

0

]
+ ρk(x

k
1 )2xk

2

[
2xk

1xk
2

(xk
1 )2

]
→

[
0
0

]
.

However, observe that the approximate multiplier diverges:

λk .= ρk(x
k
1 )2xk

2 = 1

2xk
2

→ ∞.

Thus, since {(xk
1 , xk

2 )}k∈N is a valid AL-AKKT sequence certified by {ρk}k∈N and
{λ̄k}k∈N, we can suppose without loss of generality, by the proof of Theorem 1, that
the whole sequences {xk}k∈N and {λk}k∈N are valid outputs of ALGENCAN where x∗
is found, but its Lagrange multiplier is not.

The next section deepens the discussion about implementation details of ALGEN-
CAN by formally comparing some modifications and parameter choices that are often
considered in practice, by means of AL-AKKT.

3 Comparing some augmented Lagrangian variants

There are various traits that distinguish ALGENCAN from other similar penalty-based
algorithms, such as the classical external penalty method [42, Framework 17.1] and
the shifted external penalty method [38, Algorithm 3.1]. However, a theoretical com-
parison among them in terms of their limit points has not been made yet, to the best of
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our knowledge. Nevertheless, ALGENCAN is often preferred over such variants since
it allows for ρk to remain bounded under some circumstances, which indicates that
it is numerically more stable than the others. In this section, we address this ques-
tion via AL-AKKT. We also investigate the use of safeguarding and the effects of
employing a different penalty parameter for each constraint.

3.1 The shifted external penalty method

The shifted external penalty method is a variant of ALGENCAN without the admis-
sibility control for controlling the growth of ρk , that is, where Step 2 is replaced by
Step 2-b. In this section, we call this variant SHIFTED-EP.

In practice, ALGENCAN is expected to be numerically more stable than SHIFTED-
EP due to more control on the growth of ρk . In theoretical terms, however, we see
that there is no difference between them, which is somewhat surprising.

In order to make our argument clear, we present an alternative characterization of
AL-AKKT:

Proposition 1 A feasible point x∗ is AL-AKKT if, and only if, there exist some
sequences {xk}k∈N → x∗, {ρk}k∈N → ∞, and bounded sequences {λ̄k}k∈N ⊂ R

m,
{μ̄k}k∈N ⊂ R

p
+, such that ∇xL(xk, λk, μk) → 0, where λk .= λ̄k + ρkh(xk) and

μk .= [μ̄k + ρkg(xk)]+.

Proof If x∗ is AL-AKKT, then there are sequences {xk
0 }k∈N → x∗, {ρk,0}k∈N ⊂

R++, {λ̄k
0}k∈N ⊂ R

m, and {μ̄k
0}k∈N ⊂ R

p
+, such that (2) holds. If ρk,0 → ∞, there

is nothing left to prove. Otherwise x∗ satisfies the KKT conditions (Remark 4) with,
let us say, multipliers λ̃ and μ̃. Consequently, due to Remark 3, x∗ is AL-AKKT
associated with the new sequences defined by xk .= x∗, ρk

.= k(→ ∞), λ̄k .= λ̃, and
μ̄k .= μ̃, for every k ∈ N. The converse is straightforward from the feasibility of x∗
along with the fact V k → 0 when ρk → ∞.

This characterization turns out to be simpler than Definition 1 since it does not
rely on the computation of V k . However, Definition 1 is not completely replaceable
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because when (NLP) is convex, the augmented Lagrangian is guaranteed to globally
converge with a fixed value of ρ > 0, hence the admissibility criterion of Step 2
of ALGENCAN is always satisfied when k is large enough and {ρk}k∈N is always
bounded [46]. Even so, the characterization of Proposition 1 is strongly related to
SHIFTED-EP, which allows us to conclude the following:

Theorem 3 For each AL-AKKT point x∗, there is an instance of SHIFTED-EP such
that its output sequence {xk}k∈N has x∗ as an accumulation point. Conversely, every
feasible accumulation point generated by SHIFTED-EP is AL-AKKT.

Proof Analogous to Theorem 1, in view of Proposition 1.

However, the same conclusion is not necessarily valid for the classical external
penalty method, which is the main focus of the next section.

3.2 The classical external penalty method

The classical external penalty method, which we call CLASSICAL-EP in this section,
is precisely SHIFTED-EP with B = {0}. In the previous section, we proved that
ALGENCAN is equivalent to SHIFTED-EP in terms of their feasible limit points, so it
is natural to question whether the same holds true for CLASSICAL-EP. The answer
might seem obvious, for it is tempting to conclude that ALGENCAN and CLASSICAL-
EP behave similarly, just because the shifts λ̄k/ρk and μ̄k/ρk of ALGENCAN are
small when ρk is large, but this is not entirely correct. The following example shows
that the collection of all possible limit points of ALGENCAN contains, but may not be
contained in the set of limit points of CLASSICAL-EP, and these extra points may be
infeasible, even when ρk → ∞. This is not necessarily a negative trait since we are
mainly interested in feasible points. The purpose of the example is to emphasize that
even when the shift is small, minimizing a shifted penalty function is not the same as
minimizing the original penalty function.

Example 4 Consider the following problem

minimize − x subject to sin(x) = 0, cos(x) = 0,

which is infeasible, which means that the admissibility test of Step 2 of ALGENCAN

will succeed only a finite number of times, so {ρk}k∈N → ∞. In this scenario, a point
x∗ can be reached by ALGENCAN when there is some sequence {xk}k∈N → x̄ and a
bounded {λ̄k}k∈N such that

− 1 + cos(xk)(λ̄k
1 + ρk sin(xk)) − sin(xk)(λ̄k

2 + ρk cos(xk)) → 0, (8)

which holds if, and only if, cos(xk)λ̄k
1 − sin(xk)λ̄k

2 → 1. This is never satisfied
when λ̄k = 0, so CLASSICAL-EP will never converge when applied to this problem.
However, for every x∗ ∈ R, it is always possible to choose λ̄k such that x∗ is reached
by ALGENCAN.

Knowing that the behaviors of ALGENCAN and CLASSICAL-EP may differ when
taking infeasible points into consideration, what is left is to compare their feasible
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limit points, but this is also not trivial, and a careful analysis must be done. A direct
consequence of Theorem 2 is that the set of common limit points between ALGEN-
CAN and CLASSICAL-EP contains at least every local minimizer. Next, we show that
the same conclusion is also true for KKT points.

Theorem 4 If x∗ is a KKT point, there is some instance of CLASSICAL-EP such that
its output sequence {xk}k∈N has x∗ as an accumulation point.

Proof Let x∗ be a KKT point of (NLP), and consider the sets

K(x)
.= {∇h(x)λ + ∇g(x)μ | μ � 0, μj = 0 if gj (x

∗) < 0} (9)

and
K(x, ρ)

.= {∇h(x)[ρh(x)] + ∇g(x)[ρg(x)]+}, (10)

where ρ > 0. Clearly, the fact that x∗ is a KKT point is equivalent to −∇f (x∗) ∈
K(x∗). Note that x∗ is a limit of a sequence {xk}k∈N generated by CLASSICAL-EP if
xk → x∗ and

∇f (xk) + ∇h(xk)[ρkh(xk)] + ∇g(xk)[ρkg(xk)]+ → 0

for a certain sequence {ρk}k∈N → ∞. In other words, the classical external penalty
is capable of reaching x∗ if

−∇f (x∗) ∈ lim sup
x→x∗, ρ→∞

K(x, ρ).

So, in order to prove that x∗ can be reached by CLASSICAL-EP, it is sufficient to prove that

K(x∗) ⊂ lim sup
x→x∗, ρ→∞

K(x, ρ).

Let T (x∗) be the tangent cone to the feasible set of (NLP) at x∗, and let L(x∗) be
its linearized cone. It is always true that T (x∗) ⊂ L(x∗), which implies K(x∗) =
L(x∗)◦ ⊂ T (x∗)◦. Now, given w∗ ∈ K(x∗), Lemma 4.3 of [15] ensures that there
are sequences {wk}k∈N → w∗ and {x̃k}k∈N → x∗ such that

wk = ∇h(x̃k)[kh(x̃k)] + ∇g(x̃k)[kg(x̃k)]+.

As wk ∈ K(x̃k, k) for all k, we have w∗ ∈ lim supx→x∗, ρ→∞ K(x, ρ), concluding the proof.

To the best of our knowledge, the fact that CLASSICAL-EP may converge to any
KKT point (Theorem 4) is new in the literature. As an immediate consequence of
this fact, we see that if {(λk, μk)}k∈N remains bounded in Definition 1 (in particular,
if {ρk}k∈N is bounded), then ALGENCAN and CLASSICAL-EP are indistinguishable
in terms of the quality of their limit points. Formally:

Corollary 1 If x∗ is an AL-AKKT point such that {(λk, μk)}k∈N is bounded, then
there is an associated AL-AKKT sequence {xk}k∈N with (λ̄k, μ̄k)

.= (0, 0) for all
k. That is, in this case every feasible limit point of ALGENCAN can be reached by
CLASSICAL-EP and vice-versa.
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Proof Since {(λk, μk)}k∈N is bounded, x∗ is a KKT point (Remark 4). So, the
conclusion follows from Theorem 4.

It is still not clear, for an arbitrary choice of λ̄k and μ̄k , whether every limit point of
ALGENCAN is reachable by an instance of CLASSICAL-EP or not. Nevertheless, we
conjecture they are equivalent regarding their feasible limit points. Some facts that sup-
port our belief are discussed in Section 3.4 and in Section 4, within Theorem 6 and
Corollary 2.

3.3 Onmultiplier updates and safeguards

We presented ALGENCAN with a safeguarding procedure, where λ̄k and μ̄k are taken
from a compact set, but the original augmented Lagrangian algorithm proposed by
Hestenes and Powell [30, 43] employs a different strategy. In their work, they use

C1. λ̄k+1 .= λ̄k + ρkh(xk) and μ̄k+1 .= [μ̄k + ρkg(xk)]+ for every k ∈ N,

that is, (λ̄k+1, μ̄k+1)
.= (λk, μk) for every k, regardless of B, which means {λ̄k}k∈N

and {μ̄k}k∈N are not necessarily bounded.
Clearly, there is no difference between employing C1 and safeguarding when B

is large enough and the sequences {μ̄k}k∈N and {μ̄k}k∈N converge to some Lagrange
multipliers λ̃ and μ̃, respectively. This holds, for instance, when (x̄, λ̃, μ̃) is a KKT
point that satisfies the second-order sufficient optimality condition (SOSC) and the
augmented Lagrangian scheme starts sufficiently close to (x∗, λ̃, μ̃), with a penalty
parameter ρ1 large enough and εk appropriately controlled (see [27, Theorem 3.4]).
On the other hand, without such assumptions, the behaviour of ALGENCAN with C1
can be very different from ALGENCAN with safeguards, as it was shown in [36] by
means of a simple example, with a unique minimizer that was also a KKT point.
In their example, the safeguarded method was proven to generate sequences whose
feasible limit points are exactly the minimizer of the problem, whilst the method that
employs C1 was proven to be unable to converge to it. Hence, in terms of reliability,
using safeguarded multipliers is better than using C1, at least theoretically.

Continuing the discussion from [36], we are led to investigate the effects of remov-
ing safeguards from ALGENCAN, but without limiting the choices of λ̄k and μ̄k to
C1, that is, we consider B = R

m × R
p
+. First, note that a modest control over the

parameters, such as
∥∥xk − x∗∥∥

2

ρk

→ 0 (11)

is enough to establish a reasonable convergence theory for ALGENCAN with B =
R

m × R
p
+, which goes in the exact same lines as the proofs of Theorems 1 and 2. In

order to highlight this fact, we state it in a theorem environment as follows:

Theorem 5 Let x∗ be a local minimizer of (NLP). Then, x∗ is reachable by ALGEN-
CAN with B = R

m × R
p
+, regardless of the choices of the sequences {λ̄k}k∈N ⊂ R

m,
and {μ̄k}k∈N ⊂ R

p
+, as long as (11) holds.
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Note that (11) holds whenever {λ̄k}k∈N, {μ̄k}k∈N are bounded and {ρk}k∈N → ∞,
or when ‖λ̄k, μ̄k‖2 = O(ρ

β
k ), for every β ∈ (0, 1). Thus, it allows a certain freedom

in the growth of the approximate multipliers. However, the following example shows
that it is not possible to relax (11) even further, for instance assuming

∥∥xk − x∗∥∥
2 =

O(ρk), without losing the property described in Theorem 5.

Example 5 In R
2, consider the minimization problem:

minimize − x2 subject to x2
1x2 � 0.

Note that x∗ .= (1, 0) is a local minimizer. Assume that there exists a sequence
xk .= (xk

1 , xk
2 ) with xk → x∗ and some approximate multiplier μ̄k with μ̄k/ρk � α,

where α > 0, for all k large enough, with ρk → ∞, such that

∇Lρ,μ̄(x) =
[

0
−1

]
+ [μ̄k + ρk(x

k
1 )2(xk

2 )]+
[

2xk
1xk

2
(xk

1 )2

]
→

[
0
0

]
.

Thus, [μ̄k+ρk(x
k
1 )2(xk

2 )]+ → 1. Then, [(μ̄k/ρk)+(xk
1 )2(xk

2 )]+ → 0 and this implies
μ̄k/ρk → 0, which is a contradiction.

3.4 Independent penalty parameters

Here, we consider the possibility of different penalty parameters ρ’s, one for each
constraint. At first glance, this modification appears to make ALGENCAN more flex-
ible, but it is of common sense that the use of different ρ’s leads to sightly worse
computational results (see [2]). In this section, we show in a formal way that using
a common ρ is indeed better than using different ρ’s. We refer to the variant of
ALGENCAN with independent penalty parameters by the name SEP-ALGENCAN.
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In order to make a proper analysis, we deal with the following version of AL-
AKKT with separate ρ’s:

Definition 2 We say that x∗ is a Sep-AL-AKKT point if there are sequences
{xk}k∈N → x∗, {ρk}k∈N ⊂ R

m+p
++ , and bounded sequences {λ̄k}k∈N ⊂ R

m,
{μ̄k}k∈N ⊂ R

p
+, such that

∇xL(xk, λk, μk) → 0, and V k → 0

where λk
i

.= λ̄k
i + ρk

i hi(x
k) for all i = 1, . . . , m, μk

j

.= [μ̄k
j + ρk

m+j gj (x
k)]+ for all

j = 1, . . . , p, and V k is defined as in (12).

A procedure analogous to the proof of Theorem 1 is enough to conclude that
every feasible limit point of an instance of SEP-ALGENCAN must be Sep-AL-AKKT,
and that every Sep-AL-AKKT point is an accumulation point of an instance of SEP-
ALGENCAN. Thus, the task of comparing ALGENCAN with SEP-ALGENCAN reduces
to comparing Definitions 1 and 2.

Evidently, every AL-AKKT sequence is a Sep-AL-AKKT one, since the former is
a particular case of the latter. However, the next example shows that the converse is
not necessarily true.

Example 6 Let us consider the problem

minimize x2 subject to x2
1x2 = 0, x1 = 0,

adapted from [4, Example 3]. Using ρ1 and ρ2 for first and second constraints,
respectively, we have

∇Lρ,λ̄(x) =
[

0
1

]
+ [λ̄1 + ρ1x

2
1x2]

[
2x1x2

x2
1

]
+ [λ̄2 + ρ2x1]

[
1
0

]
. (13)

It is straightforward to verify that the feasible point x∗ .= (0, 0) is Sep-AL-AKKT
with

x̃k .= (1/k2, −1/k3), λ̄k .= (0, 0), ρ̃k .= (k11, k).

Now, we will show that x∗ is not AL-AKKT. As the gradient of the first constraint
vanishes at x∗, the bounded multiplier sequence {λ̄k

1}k∈N does not matter in our anal-
ysis. Thus, we omit it. Suppose that {xk}k∈N → x∗ is an AL-AKKT sequence with
the associated sequence {ρk}k∈N and {λ̄k

2}k∈N. From (13) with ρk
1 = ρk

2
.= ρk , we

must have

2ρk(xk
1 )3(xk

2 )2 + ρkxk
1 + λ̄k

2 → 0 and 1 + ρk(xk
1 )4xk

2 → 0. (14)

From the second expression of (14), we have |ρkxk
1 | → ∞, and then using the first

expression, ρkxk
1 [2(xk

1 )2(xk
2 )2 + 1] + λ̄k

2 → 0, which leads to a contradiction.

That is, methods that employ a common ρ for all constraints are better,
at least regarding the quality of the limit points. Also, note that the counter-
part of CLASSICAL-EP with different penalty parameters is equivalent to SEP-
ALGENCAN, which complements the discussion of Section 3.2. Indeed, if x∗ satisfies
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Sep-AL-AKKT with sequences {xk}k∈N → x∗, {μ̄k}k∈N, {λ̄k}k∈N, and {ρk}k∈N, we
can define new parameters

ρ̄k
i

.=
{

λ̄k
i

hi (x
k)

+ ρk
i if hi(x

k) �= 0

ρk
i otherwise

, ρ̄k
m+j

.=
⎧
⎨

⎩

μ̄k
j

[gj (xk)]+ + ρk
m+j if [gj (x

k)]+ �= 0

ρk
m+j otherwise

,

for all i ∈ {1, . . . , m} and all j ∈ {1, . . . , p}, so that x∗ is also a limit point of
CLASSICAL-EP with different ρ’s. An immediate consequence of this fact is that the
property of being Sep-AL-AKKT is invariant to the choice of {λ̄k}k∈N and {μ̄k}k∈N.

4 Tightest global convergence theory of the safeguarded
augmented Lagrangianmethod to KKT points

One of the signature features of sequential optimality conditions is the presence of a
companion strict constraint qualification (SCQ), which is basically the weakest CQ
that guarantees equivalence between a given sequential optimality condition and the
KKT conditions (see [16] for details). They are useful when compared with classical
CQs, such as MFCQ [37] and Abadie’s CQ [1], for acting like a measurement tool
for the strength of the sequential optimality condition associated with them.

Since AL-AKKT can be viewed as a sequential optimality condition, it also has a
companion SCQ, which is the main focus of this section. Let us recall the cones (9)
and (10), related to the KKT conditions and CLASSICAL-EP, respectively. For a
feasible x∗ and ρ > 0, we have

K(x) = {∇h(x)λ + ∇g(x)μ | μ � 0, μj = 0 if gj (x
∗) < 0}

and

K(x, ρ) = {∇h(x)[ρh(x)] + ∇g(x)[ρg(x)]+}.
From the proof of Theorem 4, we have K(x∗) ⊂ lim supx→x∗, ρ→∞ K(x, ρ). The
reverse inclusion is not always true (since we will show in Section 4.1 that this prop-
erty strictly implies Abadie’s CQ). This gap is exactly what characterizes the SCQ
associated with AL-AKKT.

Definition 3 We say that a feasible point x∗ satisfies the AL-regularity condition if

lim sup
x→x∗, ρ→∞

K(x, ρ) ⊂ K(x∗).

We use the name “AL-regularity” in the same fashion as [16]. The following
result is a formal statement that AL-regularity is indeed the SCQ associated with
AL-AKKT.

Theorem 6 Every AL-AKKT point satisfying the AL-regularity condition is KKT.
Conversely, if an AL-AKKT point x∗ is also KKT, for every objective function f , then
x∗ satisfies the AL-regularity condition.
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Proof Let x∗ be an AL-AKKT point with associated sequences {xk}k∈N, {ρk}k∈N
and {(λ̄k, μ̄k)}k∈N. If {ρk}k∈N is bounded, x∗ is KKT independently of the presence
of AL-regularity (see Remark 4). Thus, from now on suppose that ρk → ∞. For
simplicity, we denote

r(z, a, b)
.= ∇h(z)a + ∇g(z)b.

Observe that

r(xk, λ̄k +ρkh(xk), [μ̄k +ρkg(xk)]+) = r(xk, ρkh(xk), [ρkg(xk)]+)+r(xk, λ̄k, μ̃k)

(15)
where μ̃k := [μ̄k + ρkg(xk)]+ − ρkg(xk)+ � 0. Clearly, r(xk, ρkh(xk), [ρkg(xk)]+) ∈
K(xk, ρk) and, from the boundedness of {(λ̄k, μ̄k)}k∈N, we also have, taking a
subsequence if necessary, that r(xk, λ̄k, μ̃k) converges to some element in K(x∗).
Furthermore, observe that the left-hand side of (15) converges to −∇f (xk). Thus, by
the validity of AL-regularity at x∗, we conclude that

−∇f (x∗) ∈
[

lim sup
x→x∗, ρ→∞

K(x, ρ)

]
+ K(x∗) ⊂ K(x∗) + K(x∗) = K(x∗),

that is, x∗ is a KKT point.
Conversely, let w∗ ∈ lim supx→x∗, ρ→∞ K(x, ρ). Then, there exist sequences

{xk}k∈N → x∗, {wk}k∈N → w∗ and {ρk}k∈N → ∞ such that

wk = r(xk, ρkh(xk), ρkg(xk)+) ∈ K(xk, ρk)

for all k. Defining f (x) = −(w∗)T x, the above expression gives

∇f (xk) + ∇h(xk)[ρkh(xk)] + ∇g(xk)[ρkg(xk)+] = −w∗ + wk → 0.

Thus, we conclude that x∗ is an AL-AKKT point with (λ̄k, μ̄k) = 0 for all k. By
hypothesis, it is also KKT. This implies w∗ = −∇f (x∗) ∈ K(x∗), and thus AL-
regularity holds at x∗.

An immediate use of AL-regularity is to give a partial answer to the question about
the equivalence between CLASSICAL-EP and ALGENCAN. Recall that the sequences
generated by CLASSICAL-EP are exactly AL-AKKT sequences with (λ̄k, μ̄k) = 0,
for all k, and ρk → ∞. Thus, in view of Theorem 6, we conclude that AL-regularity
is also the weakest CQ that guarantees convergence of CLASSICAL-EP to KKT
points.

Corollary 2 Every AL-AKKT point with (λ̄k, μ̄k)
.= 0 for all k and ρk → ∞ satis-

fying the AL-regularity condition is KKT. Conversely, if an AL-AKKT point x∗ with
(λ̄k, μ̄k)

.= 0 for all k and ρk → ∞ is also KKT, for every objective function f , then
x∗ satisfies the AL-regularity condition.

Proof The first statement follows from Theorem 6. Conversely, the reader may notice
that, in the proof of Theorem 6, we take (λ̄k, μ̄k) = 0 for all k.

The above discussion strongly suggests that the feasible accumulation points of
sequences generated by ALGENCAN and those generated by CLASSICAL-EP are
exactly the same; however, this should be investigated thoroughly in a future work.
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We strongly emphasize that AL-regularity has a deeper meaning concerning the
augmented Lagrangian because it describes the weakest CQ qualification required to
prove convergence of ALGENCAN to KKT points. What follows is a formal statement
of this fact.

Corollary 3 Let x∗ be a feasible accumulation point of a sequence generated by
ALGENCAN. If x∗ satisfies AL-regularity then it also satisfies the KKT conditions.

Proof This is a direct consequence of Theorems 1 and 6.

Thus, the best possible global convergence theory for ALGENCAN is the one
built around Definition 1, Theorems 1 and 2, and Corollary 3. That means the only
way of obtaining a stronger theory is imposing additional conditions over Step 1
of the method. For example, requiring xk to satisfy some approximate second-order
necessary condition, in the sense of [8], is likely to lead to better results.

4.1 Relations of AL-regularity with other constraint qualifications

From the perspective of sequential optimality conditions, a natural question that
arises is about the relation between other SCQs and AL-regularity outside the con-
text of ALGENCAN. To the best of our knowledge, among the strongest sequential
optimality conditions existent in the literature there are the Positive AKKT (PAKKT)
condition and the Approximate Gradient Projection (AGP) condition, presented in [4]
and [40], respectively. This means their associated SCQs are among the weakest
possible. We are interested in both of them because they are independent of each
other [4].

The AGP condition from [40] holds at a feasible point x∗ when there exists some
sequence {xk}k∈N → x∗ such that

∥∥∥Ṽ ik− 1
2

∥∥∥∞ → 0, (16)

where

�(x)
.= {z ∈ Rn | ∇h(x)T (z − x) = 0, min{0, g(x)} + ∇g(x)T (z − x) � 0},

which can be viewed as a linearization of the feasible set of (NLP) at x ∈ R
n. Note

that AGP does not explicitly require a Lagrange multiplier approximation to be veri-
fied. For this reason, it is suitable for proving convergence of numerical methods that
do not provide multiplier approximations, such as inexact restoration methods [39].
Recently, however, it was proved that there is an equivalent version of AGP with
Lagrange multipliers [3, Theorem 2.7].

According to [4, Definition 2.1], the PAKKT condition holds at a feasible point x∗
of (NLP) when there are sequences {xk}k∈N → x∗, {λk}k∈N ⊆ R

p and {μk}k∈N ⊆
R

m+ such that ∇xL(xk, λk, μk) → 0, min{−g(xk), μk} → 0, and additionally,

lim
k→∞

|λk
i |

δk
> 0 ⇒ λk

i hi(x
k) > 0, and lim

k→∞
μk

i

δk
> 0 ⇒ μk

i gi(x
k) > 0,

for all k sufficiently large, where δk .= ‖(1, λk, μk)‖∞, for every k ∈ N. It was
born as an improvement for the AKKT condition where the sign of the multipliers
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are controlled, even the ones associated with equality constraints. The difference
with AKKT becomes very evident when considering complementarity constraints in
(NLP). With regard to ALGENCAN, [4, Theorem 4.1] states that all of its feasible
limit points must satisfy PAKKT with no additional assumption.

Now, since every AL-AKKT point is a feasible limit point of ALGENCAN

(Theorem 1), which in turn satisfies both AGP and PAKKT, it follows that:

Theorem 7 AL-AKKT implies both AGP and PAKKT.

Following [4, Definition 2.3], the SCQ associated with PAKKT, namely PAKKT-
regularity, consists in an upper semicontinuity-like of the mapping

KP (x, α, β)
.=

{
r(x, λ, μ) ∈ K(x)

∣∣∣ λihi(x) � α if |λi | > β
∥∥xk − x∗∥∥

2
μjgj (x) � α if μj > β

∥∥xk − x∗∥∥
2

}
,

that is, PAKKT-regularity holds at x∗ when

lim sup
x→x∗, α↓0, β↓0

KP (x, α, β) ⊂ K(x∗),

which is similar to Definition 3 in some sense. Furthermore, the SCQ associated
with the AGP condition from [16, Definition 1], namely AGP-regularity, is charac-
terized by the upper semicontinuity of the normal cone of �(x). That is, we say that
a feasible point x∗ is AGP-regular when

lim sup
x→x∗, ε→0

N�(x)(x + ε) ⊂ N�(x∗)(x
∗).

In order to compare AL-regularity with the strict constraint qualifications associ-
ated with PAKKT and AGP, it suffices to keep in mind the following characterization,
presented in [4, Theorem 2.4] and [16, Theorem 1]:

Theorem 8 A feasible point x∗ of (NLP) satisfies PAKKT-regularity (respectively,
AGP-regularity) if, and only if, for every continuously differentiable objective
function, the fact of x∗ being PAKKT (respectively, AGP) implies that x∗ is KKT.

Hence, their relation with AL-regularity follows from Theorem 7:

Corollary 4 Both AGP-regularity and PAKKT-regularity imply AL-regularity.

Proof Let x∗ be a feasible point of (NLP) satisfying AGP-regularity. Then, for every
continuously differentiable objective function we have that: if x∗ is AGP, then it is
also KKT. Hence, we also have that for every continuously differentiable objective
function, if x is AL-AKKT, it is also AGP (due to Theorem 7) and, consequently,
KKT. Now, it follows from Theorem 6 that x∗ satisfies AL-regularity. Thus, AGP-
regularity implies AL-regularity. Analogously, it is possible to prove that PAKKT-
regularity also implies AL-regularity.

It is important to note that the implications given by Corollary 4 are strict, since
PAKKT and AGP are independent [4].
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Finally, we present the relation between Abadie’s CQ and AL-regularity. Let us
denote the tangent cone to the feasible set of (NLP) at x∗ by T (x∗), and its linearized
cone by L(x∗). We say that Abadie’s CQ holds at x∗ if T (x∗) = L(x∗). See [1].

Theorem 9 AL-regularity implies Abadie’s CQ.

Proof The proof is analogous to that of [15, Theorem 4.4], since for the sequences
{xk,l(k)}k∈N and {wk,l(k)}k∈N considered in that proof, wk,l(k) ∈ K(xk,l(k), l(k)) holds
true for all k, and limk→∞ l(k) = ∞.

The implication in Theorem 9 is strict, as the next example shows.

Example 7 (Abadie’s CQ does not imply AL-regularity) As in [19, Example 7.3], let
us consider the constraints in R

2

x6
1 + x3

2 � 0, x2 � 0

and the feasible point x∗ .= (0, 0). It is straightforward to verify that T (x∗) =
L(x∗) = R × R−, and thus x∗ conforms to Abadie’s CQ. On the other hand, AL-
regularity does not hold at x∗ since K(x∗) = {0} × R+ and, defining the sequences
ρk

.= k11 and xk .= (1/k, 0) for all k ∈ N, we see that K(x∗) �� (6, 0) ∈
lim supx→x∗, ρ→∞ K(x, ρ).

We summarize the relation among several known CQs from the literature and AL-
regularity in Fig. 1.

LICQ

MFCQ [37]

CPLD [44] CRCQ [33]

Linear/affine constraints

RCRCQ [41]RCPLD [10]

CRSC [11] CPG [11]

AKKT-regularity (or CCP) [15,16]

Pseudonormality [19]

Quasinormality [31]

PAKKT-regularity [4]

AGP-regularity [16]AL-regularity

Abadie’s CQ [1] Guignard’s CQ [29]

Fig. 1 Updated landscape of constraint qualifications for standard nonlinear programming. AL-regularity
and every more stringent CQ are associated with the global convergence of ALGENCAN
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5 Conclusions

Over the last years, the convergence of ALGENCAN has been enhanced by means of
the so-called sequential optimality conditions (see [3, 4, 16, 17]), and the best results
so far are related to the independent sequential conditions PAKKT [4] and AGP [6].
As a rule, sequential optimality conditions must be indeed necessary for optimality,
but not only that: they must imply the KKT conditions under some mild constraint
qualifications, and there must be at least one relevant algorithm whose feasible limit
points satisfy them, in order to illustrate its usability. In this paper, we defined a
new sequential optimality condition, called AL-AKKT, which not only satisfies the
three properties we just mentioned (Theorems 2, 6, and 1, respectively), but also
completely characterizes all feasible limit points of ALGENCAN. Consequently, its
associated strict constraint qualification characterizes the weakest possible constraint
qualification under which ALGENCAN is guaranteed to converge to KKT points. In
particular, since AL-AKKT strictly implies both conditions PAKKT and AGP (The-
orem 7), Theorem 6 improves the global convergence result from [4, Theorem 4.1],
as well as guarantees that ALGENCAN converges to AGP points.

From a practical point of view, we recall that there are many distinct variants of the
augmented Lagrangian method, with potentially different performances depending
on the problem they are applied to. In a real world application, one may find suitable
to use different implementations of the method to solve the same problem and then
select the best solution among their outputs, afterwards. But should this be impossible
or inconvenient, the results of this paper can be taken into consideration for deciding,
beforehand, which implementation might be the best for a general problem, regarding
the quality of the solutions that it may return. Based on our findings, we believe
that the most reasonable implementation of the augmented Lagrangian, that balances
theory and practice, is characterized by:

– The use of projected (bounded, safeguarded) Lagrange multipliers in the under-
lying problems of the method, since this leads to solutions with the same quality
as the pure external penalty method (see Corollary 1 and the discussion in
Section 3.3);

– The use of a penalty parameter growth control, since it has a positive effect
over the numerical stability of the method (see, for instance, [2]) without any
drawback on its convergence theory (Theorem 3);

– The use of a single penalty parameter ρ for all constraints, as suggested in
Section 3.4.

Besides, it is reasonable that the set B of projected multipliers be large, for this
increases the likelihood of λ̄ and μ̄ to converge to actual Lagrange multipliers (when
they exist), hence avoiding unnecessary increments of ρ. See also [2, Section 5] and
the book [22]. As a matter of fact, the most similar variant to what we just described
is the ALGENCAN implementation.

As for the optimality condition AL-AKKT, we remark that it contrasts with other
sequential conditions, which are meant for unifying convergence theories of differ-
ent algorithms, since it is intrinsic to AL strategies. Nevertheless, we believe our
approach, which consists of characterizing a specialized sequential condition from
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an algorithm, may be useful for building convergence theories of other algorithms,
for comparing some of their variants, and ultimately, for comparing different algo-
rithms, from a theoretical point of view. For instance, in [14], the authors prove
that the Newton–Lagrange method may not generate even AKKT sequences, which
is the weakest form of sequential optimality condition in the literature. Moreover,
some promising results were presented recently in [9] assessing the use of a stop-
ping criterion for augmented Lagrangian methods based on a scaled KKT residual.
This indicates that a convergence analysis of these algorithms based on an analogue
of AL-AKKT should bring to light some interesting aspects of them. We also expect
other algorithms to be analysed with the ideas introduced in this paper, together with
extensions to other types of optimization frameworks [5, 6, 12, 13, 23, 24, 26, 28, 34,
45].
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