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Reformulations of a generalization of a second-order cone complementarity problem (GSOCCP) as

optimization problems are introduced, that preserve differentiability. Equivalence results are proved in the

sense that the global minimizers of the reformulations with zero objective value are solutions to the GSOCCP

and vice versa. Since the optimization problems involved include only simple constraints, a whole range of

minimization algorithms may be used to solve the equivalent problems. Taking into account that optimization

algorithms usually seek stationary points, a theoretical result is established that ensures equivalence between

stationary points of the reformulation and solutions to the GSOCCP. Numerical experiments are presented

that illustrate the advantages and disadvantages of the reformulations.
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Given F,G : Rn → Rn, we consider the following generalized second-order cone complemen-

tarity problem GSOCCP(F,G,K) of finding x ∈ Rn such that

G(x) ∈ K, F (x) ∈ K◦, F (x)T G(x) = 0 (1)

where K is the convex cone

K =

x ∈ Rn | x2
1 ≥

n∑
j=2

a2
jx

2
j , x1 ≥ 0
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and its polar cone K◦ is defined by1

K◦ = {x ∈ Rn | ∀y ∈ K, 〈x, y〉 ≥ 0}.

The case usually considered in the literature is to have ai = 1, for i = 1, . . . , n, that is, K is a

Lorentz cone. In some articles results are obtained for the case where K is the Cartesian product

of Lorentz cones.

If we let, without loss of generality, A = diag(1,−a2
2,−a2

3, . . . ,−a2
p, 0, . . . , 0) (where ai 6= 0

for 2 ≤ i ≤ p), Ā = diag(1,−1/a2
2, . . . ,−1/a2

p, 0, . . . , 0) and M = diag(m1, . . . ,mn), where mi = 0

for 1 ≤ i ≤ p and mi = 1 for i > p, the convex cones considered may be expressed in matrix form

as

K =
{

x ∈ Rn | 1
2
xT Ax ≥ 0, x1 ≥ 0

}
and

K◦ =
{

x ∈ Rn | 1
2
xT Āx ≥ 0, x1 ≥ 0, Mx = 0

}
.

Note that AĀ = diag(1p, 0, . . . , 0) and AM = MA = ĀM = MĀ = 0, where 1p = (1, . . . , 1) ∈ Rp.

Of course, by a convenient scaling of x, we may assume ai = 1, for i = 2, . . . , p. We do adopt this

assumption henceforth to simplify notation even further. Still the cone considered here is more

general, because p may be strictly less than n. This implies, in particular, that K◦ may be different

from K.

The GSOCCP(F,G,K) is a difficult problem because, although K is a convex set, there

isn’t a really “nice” way of defining it. In the widely used definition K = {x ∈ Rn | gN (x) =

−x1 +‖(x2, . . . , xp)‖ ≤ 0}, the function gN in the constraint set is convex but it is not differentiable

at the origin. In the equivalent definition adopted herein, namely K = {x ∈ Rn | x1 ≥ 0, gD(x) =

−x2
1 + ‖(x2, . . . , xp)‖2 ≤ 0}, the two functions that appear in the constraint set are smooth, but gD

is not convex. Furthermore, at the origin we have ∇gD(0) = 0, and thus the origin is not a regular

point. Thus the task of reformulating this problem via nonlinear programming is particularly

challenging.

One important special case of GSOCCP is the Karush-Kuhn-Tucker (KKT) optimality con-

ditions for the second-order cone program (SOCP), that consists in a generalization of the linear

programming problem where the positivity of the variables is substituted by the requirement that

the variables belong to a cone K. On the other hand, if we allow K in (1) to be the Cartesian

product of second-order cones, then the nonlinear complementarity problem (NCP) is also a spe-

cial case of GSOCCP. These problems and their numerous applications are extensively discussed

in [1, 11, 20].

We are interested in reformulations that preserve the smoothness properties of F and G in (1).

In [3] the authors analyzed the case where K is a polyhedral cone. In [8, 9], smooth merit functions,
1The set K◦ considered here equals the negative of the polar cone defined by Rockafellar [22].
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based on the well known Fischer-Burmeister NCP-function [12], are presented for the second-order

cone complementarity problem (SOCCP): finding orthogonal F (x) and G(x) belonging to K, a self-

dual cone. Notice that this precludes the case p < n. In particular, [8, 9] focus on the case where

K is the Cartesian product of Lorentz cones. The results obtained in these papers are extensions of

the results for the NCP in [10, 15]. Nice properties of the FB-function are extended to the SOCCP

via the Jordan product, see [8]. The authors prove that if ∇F and −∇G are column monotone,

every stationary point of the merit function they propose solves the SOCCP. In [9] similar results

are obtained for a modification of the merit function defined in [8], where the authors extend the

results in [23]. The approach suggested in [8] was implemented and compared with ours.

Hayashi et al [18] focus on the special (SOCCP) where G(x) = x and K is the Cartesian

product of Lorentz cones. They also employ results from Jordan algebra to construct a nondif-

ferentiable merit function. An algorithm is constructed that converges quadratically to a solution

of SOCCP under certain assumptions. The algorithm works with a sequence of approximations

to the original merit function, combining regularization and smoothing strategies. This involves

the introduction of two sequences of parameters that are adjusted throughout the algorithm. The

algorithm is tested on several problems, some randomly generated and one nonlinear SOCCP. We

solve a subset of these problems in Section 4.4 using the approach proposed herein.

In this paper we construct two reformulations of the GSOCCP, using ten and five extra vari-

ables per cone, respectively. Both are nonlinear minimization problems with box constraints. The

merit functions inherit the same degree of differentiability as the original data. Any efficient bound

constrained minimization algorithm for large scale problems can be used to solve the reformulated

problem. Our choice of code for the numerical tests was just a matter of convenience. The strong

points of our second reformulation are the easiness of implementation, smoothness preservation

and good discrimination capacity, i.e., stationary points which are not solutions have high objec-

tive function values (in comparison with the threshold adopted) and thus do not lead to “false

positives.”

The paper is organized as follows. In Section 1 we introduce the first reformulation and prove

a global equivalence result. In Section 2 we discuss some computational aspects and propose a

second alternative reformulation. In Section 3 we give conditions under which a stationary point

of a problem originating from the first reformulation provides a solution of the original GSOCCP.

Section 4 presents numerical experiments and Section 5 is dedicated to final remarks.
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1 An equivalent reformulation

If x∗ is a solution of the generalized cone complementarity problem (1), then G(x∗) and F (x∗) solve

(2) and (3) below, respectively.
min 〈F (x∗), x〉
s.t. x ∈ K

(2)

and
min 〈G(x∗), x〉
s.t. x ∈ K◦.

(3)

An approach that has worked before, e.g. in [3], was to formulate a merit function that

embodies the KKT conditions of either (2) or (3). This role is played by the functions f and

g defined below. Consequently, in addition to the original set of variables, these merit functions

also depend on an extra set, that includes the Lagrange multipliers associated with (2) and (3),

respectively. The ultimate objective is to show that GSOCCP is equivalent to the problem of

minimizing the merit function, in the sense that, if GSOCCP has a solution then the merit function

attains its lower bound of zero and vice-versa. This involves, of course, being able to ascertain the

existence of Lagrange multipliers at the optimal solution to (2), or (3). The difficulty here is that

the origin does not satisfy any type of constraint qualification, see [4, 5], since ∇gD(0) = 0. We

make up for this lack of regularity by uniting the two functions in a convex combination. Notice,

however, that in the special case G(x) = x, matters could be simplified by first verifying whether

F (0) ∈ K◦, in which case x∗ = 0 solves the generalized cone complementarity problem (1). If not,

then the origin is not the solution, and f alone could be used as a merit function.

Let

f(x, λ, µ, z, y) = ‖F (x)− λAG(x)− µe1‖2 +
(

1
2
G(x)T AG(x)− z

)2

+(G1(x)− y)2 + (λz)2 + (µy)2 (4)

and

g(x, ξ, ν, w, s, ζ) = ‖G(x)− ξĀF (x)− νe1 −Mζ‖2 +
(

1
2
F (x)T ĀF (x)− w

)2

+(F1(x)− s)2 + ‖MF (x)‖2 + (ξw)2 + (νs)2, (5)

where x, ζ ∈ Rn, λ, µ, z, y, ξ, ν, w, s ∈ R and e1 = (1, 0, . . . , 0)T ∈ Rn. Setting vf = (λ, µ, z, y)

and vg = (ξ, ν, w, s), we define φ(x, vf , vg, ζ, r) = r f(x, vf ) + (1 − r) g(x, vg, ζ). The optimization

problem
min φ(x, vf , vg, ζ, r)

s.t. 1 ≥ r ≥ 0

vf , vg ≥ 0.

(6)

is a reformulation of the GSOCCP(F,G,K) in the sense spelled out in the following theorem.
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Theorem 1 If (x∗, v∗f , v∗g , ζ
∗, r∗) is a global minimizer of (6) with objective value zero then x∗ is a

solution to GSOCCP(F,G,K).

Conversely, if x∗ is a solution to GSOCCP(F,G,K), then there exist

v∗f , v∗g ≥ 0, 1 ≥ r∗ ≥ 0 and ζ∗

such that (x∗, v∗f , v∗g , ζ
∗, r∗) is a global minimizer of (6) with objective value zero.

Proof. First of all, notice that, for fixed x, vf , vg, ζ, the objective function value, for feasible values

of r, is the convex combination of f(x, vf ) and g(x, vg, ζ), that is, a number inside the line segment

[min(f(x, vf ), g(x, vg, ζ)),max(f(x, vf ), g(x, vg, ζ))] .

But the minimum value inside this line segment is achieved at its left end. Therefore, minimizing

the convex combination of f(x, vf ) and g(x, vg, ζ) is equivalent to minimizing the minimum of

f(x, vf ) and g(x, vg, ζ).

Now, since f and g are nonnegative, the objective value is zero only if

f(x∗, v∗f ) = 0 or g(x∗, v∗g , ζ
∗) = 0.

First consider the case f(x∗, v∗f ) = 0. Clearly G(x∗) ∈ K. Moreover,

F (x∗)T ĀF (x∗) = (λ∗AG(x∗) + µ∗e1)T Ā(λ∗AG(x∗) + µ∗e1)

= λ∗2G(x∗)T AĀAG(x∗) + 2λ∗µ∗G(x∗)T AĀe1 + µ∗2eT
1 Āe1

= λ∗2G(x∗)T AG(x∗) + 2λ∗µ∗G1(x∗) + µ∗2

= 2λ∗2z∗ + 2λ∗µ∗y∗ + µ∗2 ≥ 0.

Also,

F1(x∗) = λ∗G1(x∗) + µ∗ = λ∗y∗ + µ∗ ≥ 0

and, for i > p, Fi(x∗) = λ∗aiiGi(x∗) = 0.

Therefore F (x∗) ∈ K◦. It remains to show that the complementarity condition is satisfied:

F (x∗)T G(x∗) = (λ∗AG(x∗) + µ∗e1)T G(x∗)

= λ∗G(x∗)T AG(x∗) + µ∗G1(x∗)

= 2λ∗z∗ + µ∗y∗ = 0.

Now, assuming g(x∗, v∗g , ζ
∗) = 0, it follows easily that F (x∗) ∈ K◦. In order to verify that

G(x∗) ∈ K, we calculate

G(x∗)T AG(x∗) =
(
ξ∗ĀF (x∗) + ν∗e1 + Mζ∗

)T
A
(
ξ∗ĀF (x∗) + ν∗e1 + Mζ∗

)
5



= ξ∗2F (x∗)T ĀAĀF (x∗) + ν∗2eT
1 Ae1 + ζ∗T MAMζ∗

+2ξ∗ν∗F (x∗)T ĀAe1 + 2ξ∗F (x∗)T ĀAMζ∗ + 2ν∗eT
1 AMζ∗

= ξ∗2F (x∗)T ĀF (x∗) + ν∗2 + 0 + 2ξ∗ν∗F1(x∗) + 0 + 0

= 2ξ∗2w∗ + ν∗2 + 2ξ∗ν∗s∗ = ν∗2 ≥ 0.

The nonnegativity of G(x∗)’s first component follows analogously

G1(x∗) = ξ∗F1(x∗) + ν∗ = ξ∗s∗ + ν∗ ≥ 0,

completing the proof that G(x∗) ∈ K.

Checking the complementarity condition:

F (x∗)T G(x∗) = F (x∗)T
(
ξ∗ĀF (x∗) + ν∗e1 + Mζ∗

)
= ξ∗F (x∗)T ĀF (x∗) + ν∗F1(x∗) + F (x∗)T Mζ∗

= 2ξ∗w∗ + ν∗s∗ + 0 = 0.

Conversely, suppose x∗ is a solution to the GSOCCP(F,G,K). The possible cases are

G(x∗) = 0 and G(x∗) 6= 0. They are treated separately:

(a) Assume G(x∗) = 0. Let w∗ = 1/2 F (x∗)T ĀF (x∗), s∗ = F1(x∗), and set all remaining variables

to zero. Using the fact that F (x∗) ∈ K◦, we conclude that w∗, s∗ ≥ 0 and g(x∗, v∗g , ζ
∗) = 0.

Thus the objective value will be r∗f(x∗, v∗f )+(1−r∗)g(x∗, v∗g , ζ
∗) = g(x∗, v∗g , ζ

∗) = 0, a global

minimum, since f and g are nonnegative.

(b) Suppose G(x∗) 6= 0 and consider the optimization problem (2), rewritten below for conve-

nience.
Minimize F (x∗)T u

s.t.
1
2
uT Au ≥ 0

u1 ≥ 0

(7)

Since F (x∗) ∈ K◦, the objective function is nonnegative for a feasible u. Given that x∗ is

a solution to the GSOCCP(F,G,K), u∗ = G(x∗) satisfies the constraints and is an optimal

solution to (7). Notice that u∗1 > 0, thus there is at most one active constraint at u∗. If

(u∗)T Au∗ > 0 then both constraints are superfluous and the gradient of the objective must

be zero at u∗, that is, F (x∗) = 0. If (u∗)T Au∗ = 0, then the gradient of the unique active

constraint is Au∗ = (u∗1, . . .)
T 6= 0, forming, thus, a linearly independent set, implying that

constraint qualifications hold at u∗. In both cases there exist Lagrange multipliers λ∗ ≥ 0

and µ∗ = 0 (since u∗1 > 0) such that

F (x∗)− λ∗AG(x∗)− µ∗e1 = 0
λ∗

2
G(x∗)T AG(x∗) = 0

G1(x∗)µ∗ = 0
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Let z∗ = G(x∗)T AG(x∗)/2, y∗ = G1(x∗), r∗ = 1 and set all remaining variables to zero.

Taking into account that G(x∗) ∈ K, it follows that z∗ ≥ 0, y∗ ≥ 0 and f(x∗, v∗f ) = 0. Since the

function g assumes nonnegative values only, r∗f(x∗, v∗f )+(1− r∗)g(x∗, v∗g , ζ
∗) = f(x∗, v∗f ) = 0

is the global minimum of (6).

Therefore, given a solution to the GSOCCP(F,G,K), we are able to construct an optimal

solution to (6) with objective value zero.

Notice that Theorem 1 is easily generalized for the case where K is a Cartesian product of

cones. In this case φ would be replaced by a sum of like terms, one for each cone.

2 A simple instance and an alternative formulation

The reformulation (6) was tested for the following instance of GSOCCP(F,G,K):

F (x) =

(
x1 + 1

x2 + 2

)
, G(x) =

(
x1

x2

)
and A = Ā =

(
1 0

0 −1

)
. (8)

Figure 1 below gives a graphical representation of this instance. The lighter cone identifies

the region {x | F (x) ∈ K◦}, the region {x | G(x) ∈ K} corresponds to the intermediate shade of

gray and their overlapping is indicated by the darkest shade. The circle with center (−1/2,−1) and

radius
√

5/2 is the loci of points satisfying the orthogonality condition F (x)T G(x) = 0. Clearly,

the unique solution to this instance is the vertex of the darkest cone: (1/2,−1/2).

-1.5-1-0.5 0.5 1 1.5

-3

-2

-1

1

2

-1.5-1-0.5 0.5 1 1.5

-3

-2

-1

1

2

x1

x2

Figure 1: Simple instance

ITBOX FE ITQUA MVP φ∗

minimum 7 9 35 56 0

average 284.2 409.5 2366.4 3193.2

maximum 1020 1470 24658 29207 2E-6

Table 1: Results for instance (8) - reformulation (6).

The code easy was used for this and all subsequent nonlinear optimizations. This is a Fortran

double-precision code for solving nonlinear programming problems, based on augmented Lagrangian

[19], trust region [13] and projected gradients combined with a mild active set strategy [6]. It is

available at http://www.ime.unicamp.br/∼martinez. The trust-region augmented Lagrangian

implemented in easy formulates a quadratic model of the augmented Lagrangian, which, in the
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case of the reformulations considered herein, coincides with the objective function since there are

no explicit constraints (only simple bounds), and updates the model and the trust-region at each

outer iteration. Roughly speaking, the quadratic model uses a numerical approximation of the

Hessian at the current point. This quadratic model is optimized by the quadratic solver, which

combines conjugate gradient with a mild active set strategy. The computational effort is expressed

by the number of iterations of the trust-region algorithm for simple-bounded minimization, func-

tional evaluations performed, iterations of the inner quadratic solver and matrix-vector products

computed, denoted by ITBOX, FE, ITQUA and MVP, respectively. This choice of code was purely a

matter of convenience, it should be stressed that any other code for bound constrained nonlinear

optimization could be used.

Table 1 contains the outcomes obtained running easy on reformulation (6) of problem (8)

with 200 initial points (x0, v0
f , v0

g , ζ
0, r0), with x0 ramdomly generated in the box [−10, 10]×[−10, 10]

and remaining variables set to 0.5. The stopping criterion was norm of projected gradient less than

10−8, achieved for 82% of the tests. The remaining 18% stopped with too small a step (less than

10−8), meaning that possibly the end point is close to a local minimizer. The column with header

φ∗ contains the final objective function value of (6).

The three types of end points obtained were I(0.5,−0.5), II(−1.0021,−1.9958), and

III(0.0000,−0.0387), with φ∗I , φ∗II and φ∗III of order 10−20, 10−6 and 10−7, resp. The unique solu-

tion (point I) was obtained in 59% of the tests. The remaining ended in points close to (−1,−2)

(17% to point II) or to (0, 0) (25% to point III). It is worth mentioning that of the 13% of tests that

stopped with a too small step, 4.5% ended at the solution, whereas the remaining 13.5% ended at

point III.

Despite the very small objective function values reached at points II and III, they are not

feasible for GSOCCP(F,G,K). At these points we have approximately orthogonality and mem-

bership in exactly one (but not both) of the cones. In fact, they are far from the feasible set (the

darkest cone in Figure 1).

Consider, for instance, point II obtained in 17% of the tests. We observed that, for this

point, the corresponding final value r∗ = 0 was always achieved, and so the objective value

was equal to g(−1.0021,−1.9958) ≈ 10−6. The second and third terms in the expression (5) of

g(−1.0021,−1.9958) enforce the membership of F (x) in the polar cone. Orthogonality is enforced

by the terms (ξw)2 and (νs)2. But membership of G(x) in K is enforced only indirectly by the

first term, ‖G(x)− ξĀF (x)−Mζ‖2. We can drive this term to zero (this was achieved by lowering

the parameter used as stopping criterion in easy) and still have G(x) outside K. For point III,

since the corresponding value r∗ = 1 was obtained and f(0.0000,−0.0387) ≈ 10−7, the previous

reasoning holds with g and G replaced by f and F , respectively.

Given that we are dealing with a difficult problem, with possibly many local optima, it is

not so bad to end in a point that is not a solution, but it is very bad to end at a point that looks
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as if it is a solution, because the objective value is very small. After all, algorithms for nonlinear

problems will seldom arrive at the exact solution. In this case, solutions with objective values close

to zero may seem to be close to the global solution. It would be preferable to have higher objective

function values associated with solutions II and III.

This phenomenon motivated the following equivalent reformulation. Given

Ξ(x, λ, z, y, w, s) = 1
2

(
‖λF (x)− (1− λ)AG(x)‖2 + (λw)2 + ((1− λ)z)2

+
(

1
2G(x)T AG(x)− z

)2 + (G1(x)− y)2

+
(

1
2F (x)T ĀF (x)− w

)2 + (F1(x)− s)2 + ‖MF (x)‖2
)

,

define
min Ξ(x, λ, z, y, w, s)

s.t. 1 ≥ λ ≥ 0

z, y, w, s ≥ 0.

(9)

By removing the multiplication factors r and 1−r, membership in both cones is directly enforced in

the objective function. Next we state the equivalence between GSOCCP(F,G,K) and problem (9).

Extension to Cartesian product of cones is straightforward.

Theorem 2 If (x∗, λ∗, z∗, y∗, w∗, s∗) is a global minimizer of (9) with objective value zero then x∗

is a solution to GSOCCP(F,G,K). Conversely, if x∗ is a solution to GSOCCP(F,G,K), then there

exist

z∗, y∗, w∗, s∗ ≥ 0, and 1 ≥ λ∗ ≥ 0

such that (x∗, λ∗, z∗, y∗, w∗, s∗) is a global minimizer of (9) with objective value zero.

Proof. The proof is analogous to the one of Theorem 1. Only the converse statement merits a

few comments. First we recall that in the proof of Theorem 1 we showed that, if G(x∗) 6= 0 at a

solution x∗, then there exists ε∗ ≥ 0 such that F (x∗) = ε∗AG(x∗). Adapting that reasoning to the

case F (x∗) 6= 0, it can be shown that there exist ξ∗ ≥ 0 and ζ∗ such that G(x∗) = ξ∗ĀF (x∗)+Mζ∗.

Multiplying the last equality by A we obtain AG(x∗) = ξ∗diag(1p, 0 . . . , 0)F (x∗), which is the same

as AG(x∗) = ξ∗F (x∗), if F (x∗) ∈ K◦. Thus, at a solution x∗ to GSOCCP(F,G,K), the two cases

may be combined in the equality aF (x∗) = bAG(x∗), where both numbers a and b are nonnegative,

and at least one may be assumed to be nonzero. Dividing both sides by the positive number a + b

we obtain λ∗ = a/(a + b) ∈ [0, 1] that will give part of the solution to (9). The assignment of the

other variables follows the scheme in the proof of Theorem 1.

Some of the extra variables in reformulation (6) were interpreted as Lagrange multipliers of

auxiliary optimization problems (2) and (3). In the interest of brevity, Theorem 2 was proved using

an adequate adaptation of the proof of Theorem 1. There is, however, a purely algebraic motivation

behind the λ variable in the first term of the second reformulation (9), which could have been used

instead in the proof of the converse part of Theorem 2, see the Appendix.
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3 Conditions on stationary points

From a practical point of view, once a solution of a reformulation is attained, one can easily check

whether its x-part is (close to) a solution to the original problem (1). Now, most algorithms for

nonlinear programming, when successful, end in stationary points. Hence it is interesting, from the

theoretical point of view, to establish conditions under which a stationary point of the reformulation

will have objective function zero, and thus be a global solution thereof, containing a solution of (1).

The next theorem tackles this problem, regarding the first reformulation.

Theorem 3 Let (x∗, v∗f , v∗g , ζ
∗, r∗) be a stationary point of (6), and define

Hg = ∇F (x∗)−1∇G(x∗)− ξ∗Ā and Hf = ∇G(x∗)−1∇F (x∗)− λ∗A.

(a) If r∗ = 1 and Hf is positive definite then x∗ is a solution to GSOCCP.

(b) If r∗ = 0, and Hg is positive definite then x∗ is a solution to GSOCCP.

(c) If 0 < r∗ < 1 then φ(x∗, v∗f , v∗g , ζ
∗, r) is constant for 0 ≤ r ≤ 1 and

(i) if Hg or Hf are positive definite then x∗ is a solution to GSOCCP.

or

(ii) (∇xf(x∗, v∗f ), 0, . . . , 0) is a descent direction for φ from (x∗, v∗f , v∗g , ζ
∗, 1) and

(∇xg(x∗, v∗g , ζ
∗), 0, . . . , 0) is a descent direction for φ from (x∗, v∗f , v∗g , ζ

∗, 0).

Proof. Let
`1 = F (x∗)− λ∗AG(x∗)− µ∗e1

`2 = 1
2G(x∗)T AG(x∗)− z∗

`3 = G1(x∗)− y∗

`4 = G(x∗)− ξ∗ĀF (x∗)− ν∗e1 −Mζ∗

`5 = 1
2F (x∗)T ĀF (x∗)− w∗

`6 = F1(x∗)− s∗

`7 = MF (x∗).

The first order necessary optimality conditions (KKT) of (6) are

f(x∗, v∗f )− g(x∗, v∗g , ζ
∗)− γ1 + γ2 = 0 (10)

γ1r = 0, γ2(1− r) = 0, γ1 ≥ 0, γ2 ≥ 0, 0 ≤ r ≤ 1 (11)

r∇xf(x∗, v∗f ) + (1− r)∇xg(x∗, v∗g , ζ
∗) = 0 (12)

− `T
1 AG(x∗) + (λ∗z∗)z∗ − θ1 = 0, λ∗θ1 = 0, λ∗ ≥ 0, θ1 ≥ 0 (13)

10



− `T
1 e1 + (µ∗y∗)y∗ − θ3 = 0, µ∗θ3 = 0, µ∗ ≥ 0, θ3 ≥ 0 (14)

− `2 + (λ∗z∗)λ∗ − θ2 = 0, z∗θ2 = 0, z∗ ≥ 0, θ2 ≥ 0 (15)

− `3 + (µ∗y∗)µ∗ − θ4 = 0, y∗θ4 = 0, y∗ ≥ 0, θ4 ≥ 0 (16)

− `T
4 ĀF (x∗) + (ξ∗w∗)w∗ − π1 = 0, ξ∗π1 = 0, ξ∗ ≥ 0, π1 ≥ 0 (17)

− `5 + (ξ∗w)ξ∗ − π2 = 0, w∗π2 = 0, w∗ ≥ 0, π2 ≥ 0 (18)

− `T
4 e1 + (ν∗s∗)s∗ − π3 = 0, ν∗π3 = 0, ν∗ ≥ 0, π3 ≥ 0 (19)

− `6 + (ν∗s∗)ν∗ − π4 = 0, s∗π4 = 0, s∗ ≥ 0, π4 ≥ 0 (20)

−M`4 = 0. (21)

(a) If r∗ = 1, by (12),

1
2
∇G(x∗)−1∇xf(x∗, v∗f ) =

[
∇G(x∗)−1∇F (x∗)− λ∗A

]
`1 + `2AG(x∗) + `3e1

= Hf `1 + [AG(x∗)] `2 + `3e1 = 0 (22)

From (13) and (15) we get

`2 [AG(x∗)]T `1 = (λ∗z∗)3 + θ1θ2, (23)

and (14) and (16) imply

`3e
T
1 `1 = (µ∗y∗)3 + θ3θ4. (24)

Premultiplying (22) by `1 we obtain

0 = `T
1 HT

f `1 + `T
1 [AG(x∗)] `2 + `T

1 B`3 = `T
1 HT

f `1 +(λ∗z∗)3 + θ1 θ2︸ ︷︷ ︸
≥0

+((µ∗)T y∗)3 + θ3 θ4︸ ︷︷ ︸
≥0

. (25)

By (25) and the assumption that Hf is positive definite,

`1 = 0, λ∗z∗ = 0, (µ∗)T y∗ = 0. (26)

Therefore, using (22) and (26), G1(x∗)`2 + `3 = 0 and Gi(x∗)`2 = 0, for i = 2, . . . , p.

If, for some k = 2, . . . , p, Gk(x∗) 6= 0, then `2 = 0, and necessarily also `3 = 0, implying that

φ(x∗, v∗f , v∗g , ζ
∗, r∗) = 0. If Gi(x∗) = 0 for i = 2, . . . , p, then

(i) If z∗ > 0, (26) and (15) imply θ2 = 0, `2 = −θ2 = 0 and, like before, `3 = 0 and

φ(x∗, v∗f , v∗g , ζ
∗, r∗) = 0.

(ii) If z∗ = 0, by (15) and the definition of `2 we obtain

0 ≥ −θ2 = `2 =
1
2
G1(x∗)2 ≥ 0 =⇒ `2 = 0, (27)

and again `3 = 0 and φ(x∗, v∗f , v∗g , ζ
∗, r∗) = 0.
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(b) If r∗ = 0 by (11)

1
2
∇F (x∗)−1∇xg(x∗, v∗g , ζ

∗) =
[
∇F (x∗)−1∇G(x∗)− ξ∗Ā

]
`4 + `5ĀF (x∗) + `6e1 + M`7

= Hg`4 + `5ĀF (x∗) + `6e1 + M`7 = 0. (28)

By (17)–(20)

`5

[
ĀF (x∗)

]T
`4 = (ξ∗w∗)3 + π1π2 (29)

`6e
T
1 `4 = (ν∗s∗)3 + πT

3 π4. (30)

Premultiplying (28) by `4 and using (29), (30) and (21)

`T
4 [Hg]

T `4 + (ξ∗w∗)3 + π1π2 + (ν∗s∗)3 + πT
3 π4︸ ︷︷ ︸

≥0

= 0. (31)

Therefore,

`4 = 0, ξ∗w∗ = 0 and (ν∗)T s∗ = 0. (32)

Now, by (28) we get

`5ĀF (x∗) + `6e1 + M`7 = 0. (33)

The following equalities are a consequence of (28) and (33):

F1(x∗)`5 + `6 = 0

−Fi(x∗)`5 = 0, i = 2, . . . , p

Fi(x∗) = 0, i = p + 1, . . . , n.

(34)

These equalities then imply that `7 = 0.

If, for some k = 2, . . . , p, Fk(x∗) 6= 0, then `5 = 0, and it follows that `6 = 0 and

φ(x∗, v∗f , v∗g , ζ
∗, r∗) = 0.

If Fi(x∗) = 0 for i = 2, . . . , p, then

(i) If w∗ > 0, by (32) and (19) we have that π2 = 0, `5 = −π2 = 0.

By (34), `6 = 0, and it follows that φ(x∗, v∗f , v∗g , ζ
∗, r∗) = 0.

(ii) If w∗ = 0, by the definition of `6 and (19), we have

0 ≥ −π2 = `5 =
1
2
F1(x∗)2 ≥ 0 =⇒ `5 = 0. (35)

Again by (34), `6 = 0 and φ(x∗, v∗f , v∗g , ζ
∗, r∗) = 0.

12



(c) If 0 < r∗ < 1 by (10) and (11) then f(x∗, v∗f ) = g(x∗, v∗g , ζ
∗). By (12)

∇xf(x∗, v∗f ) =
(r − 1)

r
∇xg(x∗, v∗g , ζ

∗). (36)

If ∇xf(x∗, v∗f ) 6= 0, taking r∗ = 0 or r∗ = 1, we have that (∇xf(x∗, v∗f ), 0, . . . , 0) and

(∇xg(x∗, v∗g , ζ
∗), 0, . . . , 0) are descent directions for φ at (x∗, v∗f , v∗g , ζ

∗, 1) and (x∗, v∗f , v∗g , ζ
∗, 0),

respectively. If ∇xf(x∗, v∗f ) = 0 and Hg or Hf are positive definite the proof is just as in

items (a) or (b).

4 Numerical experiments

All numerical experiments were carried out by solving the appropriate nonlinear optimization prob-

lem in easy. Unfortunately, though not surprisingly, we could not find in the literature classes of

actual problems that require the general framework considered here. Not one instance with F and

G both nonlinear was encountered and degenerate cones are not heard of. We did test our approach

with the few available examples, as detailed below.

In sections 4.1, 4.2 and 4.3, for the sake of comparison, we tested our reformulation against

the merit function ΨBF formulated in [8]. In this case the corresponding nonlinear optimization

problem is unconstrained. Two hundred trials of all examples were run, with same initial setup

(original variables randomly set in the interval [−10, 10], others set to 0.5). The notation employed

in Table 1 is maintained.

Experiments comparing reformulations (6) (objective function φ) and (9) (objective func-

tion Ξ) are reported in Subsections 4.1 and 4.2. The second reformulation proved more robust,

which led us to adopt it in the remaining tests.

In section 4.3 we describe a larger example (27 original x variables), with a more realistic

flavor, coming from a problem in robotics. We compare the more successful reformulation (9) using

merit function Ξ with Chen & Tseng’s reformulation using ΨBF. In this case the latter’s proved

less efficient.

In section 4.4 we tackle larger problems, randomly generated, and another nonlinear small

(five variables originally) one. The problems are described in [18], where they are solved by an

algorithm specifically tailored for the class of second-order cone complementarity problems.

4.1 Affine bidimensional case

The first instance of GSOCCP(F,G,K) tested was (8). Results are given in previous Table 1 and in

Table 2 below. Runs using reformulation (9) converged to point I in 100% of the tests, and all the

tests stopped with norm of the projected gradient less than 10−8 for this formulation. The results
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using function ΨBF are reported in Table 3. Convergence to point I occurred in all trials using ΨBF

as well.

ITBOX FE ITQUA MVP Ξ∗

minimum 6 7 26 34 1E-32

average 11.3 15.4 70.2 102.8

maximum 18 27 161 225 1E-17

Table 2: Results for instance (8) - objective Ξ.

ITBOX FE ITQUA MVP ΨBF

minimum 5 6 6 12 0

average 7.1 8.1 8.0 15.1

maximum 8 9 11 19 5E-17

Table 3: Results for instance (8) - objective ΨBF.

An additional comment deserves to be made concerning reformulation (6) and the sufficient

condition provided by Theorem 3. The Jacobians of functions F and G given in (8) are the identity

matrix. Analyzing matrices Hf and Hg at the end points, one can see that, for r∗ = 1, Hf is never

positive definite, whereas for r∗ = 0, Hg is positive definite for 83 runs out of the 200 initial points.

Therefore, the sufficient conditions of Theorem 3 hold for 42% of these tests. It is worth mentioning

that there were 34 runs (17%) for which convergence to point I was obtained and r∗ = 0, without

positive definiteness of matrix Hg.

4.2 Affine functions of Peng & Yuan

The second instance of GSOCCP(F,G,K) tested was taken from [21, Problem 3]:

F (x) =



15x1 − 5x2 − x3 + 4x4 − 5x5

5x2 + x5

−x1 − 3x2 + 8x3 + 2x4 − 3x5

2x1 − 4x2 + 2x3 + 9x4 − 4x5

−5x2 + 10x5 − 1


, G(x) =



x1

x2

x3

x4

x5


(37)

with A = Ā = diag (1,−1,−1,−1,−1). Three distinct end points were obtained, namely

(unique solution) I (0.049185,−0.0030997, 0.0096024, 0.0031883, 0.048033),

II (0.048919,−0.0031088, 0.0096054, 0.0032299, 0.048093),

and III (0.020424,−0.016125, 0.022867, 0.021211, 0.0879190).

Tables 4 and 5 summarize the results of 200 runs. For reformulation (6), 96% of tests ended with

norm of projected gradient less than 10−8, whereas 4% stopped with too small a step (infinity

norm smaller than 10−8). In terms of quality of results, 93.5% of tests converged to the unique

solution, with φ∗I < 10−11, although only 56.5% reached φ∗I < 10−13, the same threshold obtained

with reformulation (9). Point II was reached for 2.5% of tests (φ∗II ≈ 10−10) and point III for the

remaining 4%, with φ∗III ≈ 10−8.
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As far as reformulation (9) is concerned, 100% of tests stopped with norm of projected

gradient less than 10−8, 72% ended at point I (Ξ∗I < 10−13) and 28% at point III (Ξ∗III > 10−7).

Sorting the 200 final objective function values in ascending order and ploting the resulting vector

produced the graphs in Figure 2, where it can be seen that reformulation (9) produces a better

discrimination between the solutions obtained.

In terms of success rates, reformulation (9) was much superior to reformulation (6) in in-

stance (8) (100% as opposed to 59%), but not so in instance (37) (72% to 93.5%). Nevertheless,

its reasonable success rate allied to its power to discriminate the desired stationary points suggest

a more robust character, further evidenced in the experiments carried out in [2]. Thus, reformula-

tion (6) will not be considered in the remaining tests.

ITBOX FE ITQUA MVP φ∗

minimum 31 44 238 483 1E-25

average 220.3 319.8 2591.4 3504.3

maximum 348 538 5645 7358 1E-8

Table 4: Results for instance (37) - reformu-

lation (6).

ITBOX FE ITQUA MVP Ξ∗

minimum 21 32 189 244 1E-27

average 69.6 96.6 667.3 907.5

maximum 262 389 2823 3904 1E-5

Table 5: Results for instance (37) - reformu-

lation (9).
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Figure 2: Test problem × log10(φ∗) (left) and test problem × log10(Ξ∗)

(right) for the 200 tests of instance (37).

All trials with merit function ΨBF converged to Point I. Table 6 contains the relevant data.

The only drawback was the increased coding effort for the objective function and gradient, since

these functions are defined by parts.

For the two small examples (originally in two and five variables) described in this and the

previous section, better results were obtained using the merit function ΨBF. This is not the case

for the next problem.
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ITBOX FE ITQUA MVP Ψ∗
BF

minimum 12 13 30 42 1.57E-22

average 18.3 21.3 49.6 77.4

maximum 32 46 94 196 4E-17

Table 6: Results for instance (37) - objective ΨBF .

4.3 Grasping force optimization

Grasp analysis is pivotal to the study of robotic systems with multi-fingered hands. Han et al. [16]

formulate optimization problems modeling several aspects of grasp analysis (force closure, force

feasibility and force optimization). The consideration of nonlinear friction models leads to the

introduction of second-order cone constraints in these problems. Previously these were dealt with

by means of linearization, which simplified matters algorithmically speaking, but at a cost. If the

linearization turns out to be too loose a relaxation of the true nonlinear constraint, the solution

obtained may violate the latter. Once this problem is detected, the usual remedy is to refine

the approximation, increasing, perhaps prohibitively, the computational effort. The concentrated

research in second-order cone programming of the last decade opened various alternative ways of

foregoing the linearization, taking the original nonlinear constraints directly into account. In the

grasp force optimization arena, we may cite the positive definiteness formulation pioneered by Buss

et al. [7] and the linear matrix inequality (LMI) framework adopted by Han et al. [16]. While the

former work included the development of specific programs for solving the problems, the latter was

able to apply existing interior point software for a special class of convex optimization problems

with LMI constraints.

The grasp force optimization problem considered herein concerns a 3-D object grasped by a

mechanical hand, with several contact points between its fingers and the object. The objective is

to minimize some function of the contact forces subject to restrictions which represent equilibrium

conditions (external forces should be balanced), admissibility (properties of the mechanism should

be taken into account), bounds on joint efforts and friction constraints. When the latter are

modeled as second-order cone constraints, the optimization problem falls into the SOCP category.

Typically the constraints contain linear equalities and inequalities, as well as cone constraints,

that is, the contact force vector must satisfy linear constraints and lie in the Cartesian product of

cones (uni- , three- or four-dimensional ones, depending on whether the contact is, respectively,

frictionless, point contact with friction, or a soft finger contact with elliptic approximation). The

objective function embodies the criterion used to select the “most desirable” force vector, amongst

the feasible ones. Thus it may consist of a simple min/max criterion (one will find the “gentlest

grasp” able to effectively hold the object), minimum weighted norm criterion, the maxdet criterion

of [16] (which induces robust choices of grasp forces with respect to the friction cone constraints),
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etc.

Since the numerical experiments have so far indicated that the equivalent reformulation (9)

presented in Section 1 was more promising, we elected to solve the grasping force problem only

with this variant. Furthermore, the six equality constraints of our example were taken into account

by means of allowing for a degenerate cone, which afforded greater efficiency, both in the problem

formulation as well as in the numerical performance. For the reformulation using merit function

ΨBF, however, these equations correspond to yet another cone, since degenerate cones are not

allowed.

The grasping force optimization problem falls into the following framework:

min fT x

s.t. ‖Aix + bi‖ ≤ cT
i x + di, i = 1, . . . , `

(38)

where f and x belong to Rn, Ai ∈ R(ni−1)×n, bi ∈ Rni−1, ci ∈ Rn and di ∈ R. Notice that

linear equality and inequality constraints can be put in the format considered above, by letting the

right-hand-side or the left-hand-side be zero, respectively. Its dual problem is

minu,w
∑`

i=1(b
T
i ui + diwi)

s.t.
∑`

i=1(A
T
i ui + ciwi) = f

‖ui‖ ≤ wi, ui ∈ R(ni−1), wi ∈ R, i = 1, . . . , `

(39)

Letting Kni = {(ui, wi) ∈ Rni−1×R | wi ≥ ‖ui‖} and $ = (u1, w1, . . . , u`, w`), the second set

of constraints in (39) becomes $ ∈ K = Kn1 × · · · × Kn` and the dual problem can be stated as2

min gT $

s.t. B$ = f

$ ∈ K
(40)

where g ∈ RL, B ∈ Rn×L, f ∈ Rn, L = n1 + . . . + n` and rank(B) = n. Let $̂ be such that

B$̂ = f and Z ∈ RL×(L−n) such that Range(Z) = Kernel(B). Define F (ξ) = $̂ + Zξ1 and G(ξ) =

g+BT ξ2, where ξ = (ξ1, ξ2) ∈ RL−n×Rn. Then duality theory [1] implies that sufficient optimality

conditions for the primal-dual pair (38)-(40) constitute the GSOCCP(F,G,K). In fact, the latter

complementarity problem generalizes linear programming’s complementary slackness conditions.

Gentlest grasp force The grasping force problem’s setup consists of a unit sphere that is in

contact with four mechanical fingers, as shown in Figure 3, where the sphere’s center coincides with

the reference coordinate system’s origin. It is adapted from [16]. A point contact with friction was

assumed at all fingertips, with common friction coefficient µ = 0.4.
2We follow here the convention adopted in [20], where the last variable, instead of the first, is greater than or

equal to the norm of the remaining ones.
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p1

p2

p3
p4

Contact points coordinates
pT
1 = (1, 0, 0) pT

2 = (0, cos(π/5), sin(π/5))

pT
3 = (cos(2π/3), sin(2π/3), 0) pT

3 = (cos(4π/3), sin(4π/3), 0)

Figure 3: Setup of grasping force problem

The problem is to find contact forces xi ∈ R3, for i = 1, . . . , 4, expressed in local contact

frames, such that the maximum of their normal components is minimized, while obeying Coulomb’s

friction law, maintaining static equilibrium and satisfying upper and lower bounds:

minx,t t

s.t. (xi)3 ≤ t, i = 1, . . . , 4 t ≥ maximum of
normal components

‖((xi)1, (xi)2)‖ ≤ µ(xi)3, i = 1, . . . , 4 friction
cone constraints

Gx + hext = 0 static equilibrium

−10 ≤ (xi)j ≤ 10, i = 1, . . . , 4, j = 1, 2, 3, bounds on forces

(41)

where G ∈ R6×12 is the grasp map, that transforms applied finger forces expressed in local contact

frames to resultant object wrenches. The resultant generalized contact force Gx must balance the

external load hT
ext = (2.1,−0.2,−4.3, 0.4,−1.5, 0.6) experienced by the object. Cone constraints

allow us to remove most of the upper/lower bounds, since they imply (xi)3 ≥ 0 and, on the other

hand, (xi)3 ≤ 10 plus the cone constraints imply |(xi)1,2| ≤ µ10 < 10.

The dual problem of (41) has 26 variables: $ = (w1, . . . , w4, u11, u12, w5, u21, u22, w6, u31,

u32, w7, u41, u42, u43, u44, u45, u46, u47, u48, w8, w9, w10, w11, w12). The first four variables in $

are the dual variables associated with the inequalities involving t in (41), and belong to K1 (the

set of nonnegative reals). Then we have (u1, w5), (u2, w6) and (u3, w7) ∈ K3, variables associated

with the first three friction constraints. The cone containing (u4, w8) is degenerate—{(u4, w8) |
w8 ≥ ‖(u41, u42)‖}—and encompasses the last friction constraint as well as the equilibrium equality

constraints. The last four variables are associated with the (remaining) upper bound constraints.
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Adapting reformulation (9) to this case, we end up with a box constrained problem on 62 variables.

Numerical tests used same choice of initialization as previous ones. Success, that is, objective

function values less than or equal 10−15, was achieved in 194 out of 200 trials. Table 7 summarizes

the performance and the plot of Figure 4 shows the base 10 logarithm of the final objective function

values in ascending order. The 6 values corresponding to the trials that did not converge (Ξ∗ = 1.28)

to the global solution are almost imperceptible, right above the horizontal axis. It should be noted,

however, that even in these cases easy ended in a stationary point, that is, the stopping criterion

was norm of projected gradient smaller than preset tolerance (10−8).

ITBOX FE ITQUA MVP Ξ∗

minimum 20 28 769 989 2.58E-19

average 36.6 50.3 2069.3 2462.6

maximum 81 107 5950 6445 1.28

Table 7: Grasp problem - objective Ξ.

ITBOX FE ITQUA MVP Ψ∗
BF

minimum 9 19 325 436 7.65E-19

average 25.7 42.3 3327.7 3461.4

maximum 116 155 19620 20229 8.5636

Table 8: Grasp problem - objective ΨBF.
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Figure 4: Test problem × log10(Ξ∗) (grasp

problem).
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Figure 5: Test problem × log10(Ψ∗
BF) (grasp

problem).

The optimization problem using ΨBF has 27 variables. There were 22 failures out of 200

trials, almost a fourfold increase comparing to the reformulation using Ξ. The failures correspond

to the dots in the upper right corner of the plot in Figure 5. Furthermore, it should be noted that

easy stopped unfavorably in 68 trials, that is, it stopped due to lack of progress and not because

the norm of the projected gradient was small. The acknowledged successful trials correspond to the

first 132 points in the plot, forming an almost horizontal curve, before the first jump. Since easy

was designed for box-constrained optimization, large artificial boxes were defined in the coding of

this unconstrained problem. The failures are not related to these artificial boundaries. In all cases

the boundaries were never touched during the execution of the algorithm. In the absence of active

bounds, the quadratic solver reduces to a truncated Newton method.

Concerning the comparison between the two reformulations, embodied by the functions Ξ and
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ΨBF, we point out that though there were fewer outer iterations (ITBOX) and function evaluations

(FE), see Tables 7 and 8, the computational effort of the inner quadratic solver (ITQUA) and on

the matrix-vector products (MVP) was higher when optimizing ΨBF. It is also interesting to notice

the much larger range of variability in the statistics of Table 8. The ratios max/min for the four

markers on effort were 4.05, 3.82, 7.74, 6.52 for Table 7 and 12.90, 8.16, 60.40, 46.40 for Table 8,

suggesting that the first approach was more robust for this particular example.

The ratio ITQUA/ITBOX is an estimate of the number of iterations of the quadratic solver.

Theoretically, this inner algorithm should converge in at most n iterations, where n is the dimension

of the quadratic problem. However, it is well known that the number of iterations may be much

larger for ill conditioned quadratics. Calculating these ratios for the average figures in Tables 7 and

8 we obtain 56.5 and 129.5, respectively. The first figure compares favorably with the dimension of

the problem (62), whereas the second is more than ten times the corresponding dimension (27). This

may well be related to the fact that the function ΨBF does not have continuous second derivatives.

Comparing the graphs in Figures 4 and 5, we see that the first reformulation provides a

better discrimination of the results. Finally, we should mention that our intention in considering

the grasping problem was just to include a test problem with physical appeal, in addition to the

randomly generated or toy problems presented in the other sections.

4.4 Test problems of Hayashi et al

In their recent paper on second-order cone complementarity problems (SOCCP), Hayashi, Ya-

mashita and Fukushima [18] test their algorithm on classes of monotone problems. We employ

our approach in two of them. The first is a set of problems randomly generated according to the

recipe given in [18] and the second is a nonlinear SOCCP. In these problems G(x) is the identity

function and F (x) is affine (= Mx + q) in the first set and nonlinear in the second. The cone K
is the Lorentz cone in Rn and the product of two Lorentz cones in R3 × R2, respectively. Hayashi

et al’s optimality threshold is adopted, that is, a successful outcome is obtained when the optimal

objective function value Ξ∗ is smaller than 10−16.

The matrix M and vector q are generated so that the problem is feasible, M is rank-deficient

positive semidefinite and there exists x̄ ∈ intK such that Mx̄ + q ∈ intK. Tables 9 and 10

summarize the results of the two subsets of tests involving these problems. In the first subset, n

was kept constant and equal to 100, and the rank of M varies from 10 to 99. Each instance was

solved 100 times with different initial points, randomly generated. The rate of success doesn’t seem

to depend on the rank, varying from 87% to 95%. In the second subset the dimension n assumes

values 100, . . . , 1000, and the rank of M is randomly chosen in the interval [0.9n, n− 1]. For each

value of n we solved 10 instances, using 10 randomly generated initial points for each of them.

We observed higher rates of success in the smaller dimensions. The discrimination property was
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maintained, the number of successes is practically invariant if the threshold is increased to 10−5,

so there is a clear distinction between stationary points that correspond to global solutions and

other endpoints. The nonlinear reformulation (9) has n+5 variables. The convenience of randomly

generated problems quickly leads to a wealth of data, awkward to report and not necessarily very

enlightening. Thus the more concise character of Tables 9 and 10, which could easily expand on to

many more tables, were we to provide the same level of detail as in the tables of previous sections.

rank 10 20 30 40 50 60 70 80 90 99

% success 87 93 94 95 95 91 90 94 93 89

Table 9: Results for linear SOCCP’s with various degrees of rank deficiency.

dimension 100 200 300 400 500 600 700 800 900 1000

% success 89 74 68 56 56 53 40 45 37 31

Table 10: Results for linear SOCCP’s with various problem sizes.

The nonlinear function used in the second set of tests is given by

F (x) =



24(2x1 − x2)3 + exp(x1 − x3)− 4x4 + x5

−12(2x1 − x2)3 + 3(3x2 + 5x3)/
√

1 + (3x2 + 5x3)2 − 6x4 − 7x5

− exp(x1 − x3) + 5(3x2 + 5x3)/
√

1 + (3x2 + 5x3)2 − 3x4 + 5x5

4x1 + 6x2 + 3x3 − 1

−x1 + 7x2 − 5x3 + 2


The algorithm converged either to x∗ = (0.23240,−0.073079, 0.22061, 0.53390,−0.53390)T (the true

solution), in 76% of the 200 trials, or to the stationary point x = (0.16415, −0.073443, 0.26353,

0.53517, −0.25708)T , with optimal objective function value of the order of 10−4, in the remaining

24%. The version of (9) corresponding to this problem has 15 variables, the original five, and five

extra ones for each cone.

5 Conclusions

We proved that the GSOCCP can be reformulated as a box constrained minimization problem,

preserving the smoothness of the original data. Furthermore, the implementation of the merit

function is a straightforward task, with complexity closely related to that of the functions of the

original problem. We obtained sufficient conditions under which a stationary point of the first

reformulated problem is a global solution and thus provides a solution of the GSOCCP.
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The second reformulation introduced shares the first one’s format (box constrained mini-

mization), but not the theoretical results concerning stationary points, see [2]. Nevertheless, its

performance in the numerical experiments suggests a very desirable feature: the elimination of

“false positives,” those points that have very small objective function values and satisfy all kinds of

stringent stopping criteria but yet are far from actual solutions. We observed a better discrimination

between true and false solutions.

The merit function ΨBF of Chen and Tseng’s was also implemented and compared with ours,

using the same nonlinear code, the software easy. This reformulation was more successful in the

small problems (two and five variables) but less so in the larger (27 variables) one tested. The poor

performance of easy in the optimization of ΨBF in the larger problems of Section 4.3 indicates the

inherent difficulty of this problem. Despite the nice theoretical result concerning the optimality

of its stationary points, the topology of the objective function ΨBF proves to be a tall order for

the code. It seems that the algorithm is unable to travel far along the “narrow valleys” of the

objective function, zigzagging instead along its walls, finally stopping due to lack of progress. This

is a general feature of reformulations of complementarity and related problems. We do not mean

to suggest that there is a particular reformulation dramatically more efficient than the others. The

point is to stress the possibility of using reformulations as alternatives to solving the GSOCCP

directly, and the appeal of our approach is its straightforward use. Indeed, the implementation of

ΨBF (and that of its gradient) consists more of a challenge.

Higher dimensional tests were done using the recipe for randomly generated SOCCP’s in [18].

The problems considered had G(x) = x and F (x) = Mx + q. The order of the symmetric positive

semidefinite M varied from 100 to 1000 and it was constructed so that its rank was deficient.

The rate of success doesn’t seem to depend on the rank but does deteriorate with the increase in

dimension.

Apparently the reformulations considered herein result in “difficult” objective functions, in

the sense that they seem to exhibit narrow valleys, as mentioned above, known obstacles for op-

timization algorithms. Nevertheless, the lack of good theoretical results for the stationary points

of Ξ was somehow compensated by the good behavior of its second derivative. This may be very

relevant from a practical perspective, as evidenced in the numerical tests.

It is to be expected that algorithms tailored to the task should present a better performance

at solving SOCCP’s than a general purpose nonlinear programming code applied to a reformulation.

It must be stressed, however, that our reformulations encompass more general classes of problems

(general nonlinear function G and degenerated cone K), are easy to implement, do not require the

tuning of additional parameters, preserve the smoothness of the original data and provide a good

discrimination between stationary points that are global solutions and the rest.
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Appendix

The proof of the converse part of Theorem 2 depends on the existence of an appropriately valued λ,

obtained below in a purely algebraic manner, without recourse to auxiliary optimization problems

as done in the text.

Theorem 4 If y ∈ K, w ∈ K◦ and yT w = 0 then there exists λ ∈ [0, 1] such that

λw = (1− λ)Ay. (42)

Furthermore, if w (resp., y) is in the relative interior of K◦ (resp., K) then λ = 0 (resp., λ = 1).

Proof. We denote by yi:j the subvector of y containing components yi, . . . , yj . With this notation,

K = {x ∈ Rn | x2
1 ≥ ‖x2:p‖2, x1 ≥ 0} and K◦ = {x ∈ Rn | x2

1 ≥ ‖x2:p‖2, x1 ≥ 0, xp+1:n = 0}.
First assume that w belongs to the relative interior of K◦, that is, wT Aw > 0, w1 > 0,

Mw = 0. Thus w2
1 > ‖w2:p‖2 ≥ 0 and wT y = 0 implies

y1 = −
p∑

i=2

wi

w1
yi = − 1

w1
〈w2:p, y2:p〉. (43)

Therefore, since y ∈ K, we have that

1
w2

1

〈w2:p, y2:p〉2 ≥ ‖y2:p‖2. (44)

But
1

w2
1

〈w2:p, y2:p〉2 =
1

w2
1

‖w2:p‖2‖y2:p‖2 cos2 θ. (45)

Substituting (45) in (44), we obtain

1
w2

1

‖w2:p‖2‖y2:p‖2 cos2 θ ≥ ‖y2:p‖2. (46)

Now if w2:p = 0 then y2:p = 0, and (43) implies y1:p = 0. If w2:p 6= 0 and y2:p 6= 0, from (46) we

obtain

cos2 θ ≥ w2
1

‖w2:p‖2
, (47)

an impossibility, since w in the relative interior of K◦ implies that the latter fraction is greater than

1. Thus we conclude that y1:p = 0 and (42) is true with λ = 0.

Now assume that w does not belong to the relative interior of K◦. If w = 0, then (42) is true

with λ = 1. Consider the case w 6= 0. The facts that w 6= 0 and is not in the relative interior imply

w2
1 = ‖w2:p‖2, w1 > 0 and w2:p 6= 0. Thus, orthogonality between w and y implies (43), as before.

If y2:p = 0, then y1 = 0 and (42) is true with λ = 0. On the other hand, if y2:p 6= 0, we may obtain

(47), as above. This time, this implies cos θ = ±1. Now

0 ≤ y1 = − 1
w1
‖w2:p‖ ‖y2:p‖ cos θ, (48)
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from which follows that cos θ = −1. Therefore there exists α > 0 such that

y2:p = −αw2:p (49)

and

y1 = − 1
w1

(−α)‖w2:p‖2 = αw1. (50)

Rewriting (49) and (50) we obtain

w =
1
α

Ay. (51)

Letting λ = (1 + 1/α)−1 we arrive at expression (42).

The case where y is in the relative interior of K is similar to the first case considered,

exchanging the roles of w and y. We have yT Ay > 0, y1 > 0 and orthogonality implying

w1 = −(1/y1)〈w2:p, y2:p〉, from which we may conclude that w1:p = 0. Since Mw = 0, relation

(42) is satisfied with λ = 1.
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