Superinvoluções sobre álgebras de matrizes e identidades standard

Fabrizio Martino

Seja $M_n(F)$ a álgebras da matrizes $n \times n$ sobre o corpo F e seja $UT_n(F)$ a álgebra das das matrizes triangulares superiores $n \times n$. Aliás seja

$$St_n(x_1,\ldots,x_n) = \sum_{\sigma \in S_n} (-1)^{\sigma} x_{\sigma(1)} \cdots x_{\sigma(n)}$$

o polinômio standard de grau n nas variáveis não comutativas x_1, \ldots, x_n .

Uma superinvolução da F-superálgebra A é uma aplicação linear graduada de ordem $2 * : A_0 \oplus A_1 \to A_0 \oplus A_1$ tal que para todo $a, b \in A_0 \cup A_1$, $(ab)^* = (-1)^{\deg a \deg b} b^* a^*$, onde deg a e deg b são os graus homogéneos de a e b, respectivamente.

Toda superinvolução * sobre A encontra uma decomposição $A = A_0^+ \oplus A_0^- \oplus A_1^+ \oplus A_1^-$, onde para i = 0, 1 A_i^+ e A_i^- denotam o subespaço de grau i dos elementos simétricos e o subespaço dos elementos antissimétricos, respectivamente.

Nesta palestra apresentaremos alguns resultados recentes sobre as superinvoluções. Em particular, na primeira parte classificaremos a menos de isomorfismo as superinvoluções de $UT_n(F)$, quando F for corpo algebricamente fechado de característica zero. Na segunda, focalizaremos a atenção sobre $M_n(F)$, mostrando as possíveis superinvoluções, e provaremos um resultado análogo ao Teorema de Amitsur - Levitzki, no caso de polinômios standard avaliados em elementos de $M_n(F)_i^+$ ou $M_n(F)_i^-$, i=0,1.