Álgebra Linear Avançada Transformações Ortogonais e Simpléticas

Adriano Moura

Unicamp

2020

Dados \mathbb{F} -espaços vetoriais V e W, suponha que $\phi \in B(V)$ e $\psi \in B(W)$.

Dados \mathbb{F} -espaços vetoriais V e W, suponha que $\phi \in B(V)$ e $\psi \in B(W)$. Diz-se que $T \in \operatorname{Hom}_{\mathbb{F}}(V, W)$ é compatível com o par (ϕ, ψ)

Dados \mathbb{F} -espaços vetoriais V e W, suponha que $\phi \in B(V)$ e $\psi \in B(W)$. Diz-se que $T \in \operatorname{Hom}_{\mathbb{F}}(V,W)$ é compatível com o par (ϕ,ψ) se

(1)
$$\psi(T(u), T(v)) = \phi(u, v) \quad \forall \quad u, v \in V.$$

Dados \mathbb{F} -espaços vetoriais V e W, suponha que $\phi \in B(V)$ e $\psi \in B(W)$. Diz-se que $T \in \operatorname{Hom}_{\mathbb{F}}(V,W)$ é compatível com o par (ϕ,ψ) se

(1)
$$\psi(T(u), T(v)) = \phi(u, v) \quad \forall \quad u, v \in V.$$

Se ϕ e ψ forem produtos internos (em particular, $\mathbb{F} \subseteq \mathbb{R}$), esta definição coincide com a de transformação ortogonal da Seção 7.4.

Dados \mathbb{F} -espaços vetoriais V e W, suponha que $\phi \in B(V)$ e $\psi \in B(W)$. Diz-se que $T \in \operatorname{Hom}_{\mathbb{F}}(V,W)$ é compatível com o par (ϕ,ψ) se

(1)
$$\psi(T(u), T(v)) = \phi(u, v) \quad \forall \quad u, v \in V.$$

Se ϕ e ψ forem produtos internos (em particular, $\mathbb{F} \subseteq \mathbb{R}$), esta definição coincide com a de transformação ortogonal da Seção 7.4. Por isso, se ϕ e ψ são simétricas e não degeneradas, diz-se que tal T é uma transf. linear ortogonal.

Dados \mathbb{F} -espaços vetoriais V e W, suponha que $\phi \in B(V)$ e $\psi \in B(W)$. Diz-se que $T \in \operatorname{Hom}_{\mathbb{F}}(V,W)$ é compatível com o par (ϕ,ψ) se

(1)
$$\psi(T(u), T(v)) = \phi(u, v) \quad \forall \quad u, v \in V.$$

Se ϕ e ψ forem produtos internos (em particular, $\mathbb{F} \subseteq \mathbb{R}$), esta definição coincide com a de transformação ortogonal da Seção 7.4. Por isso, se ϕ e ψ são simétricas e não degeneradas, diz-se que tal T é uma transf. linear ortogonal. Já se ambas forem alternadas, T é dita simplética.

Dados \mathbb{F} -espaços vetoriais V e W, suponha que $\phi \in B(V)$ e $\psi \in B(W)$. Diz-se que $T \in \operatorname{Hom}_{\mathbb{F}}(V,W)$ é compatível com o par (ϕ,ψ) se

(1)
$$\psi(T(u), T(v)) = \phi(u, v) \quad \forall \quad u, v \in V.$$

Se ϕ e ψ forem produtos internos (em particular, $\mathbb{F} \subseteq \mathbb{R}$), esta definição coincide com a de transformação ortogonal da Seção 7.4. Por isso, se ϕ e ψ são simétricas e não degeneradas, diz-se que tal T é uma transf. linear ortogonal. Já se ambas forem alternadas, T é dita simplética.

Proposição 9.5.1 (Ver Proposição 7.4.2.)

As seguintes afirmações são equivalentes.

Dados \mathbb{F} -espaços vetoriais V e W, suponha que $\phi \in B(V)$ e $\psi \in B(W)$. Diz-se que $T \in \operatorname{Hom}_{\mathbb{F}}(V,W)$ é compatível com o par (ϕ,ψ) se

(1)
$$\psi(T(u), T(v)) = \phi(u, v) \quad \forall \quad u, v \in V.$$

Se ϕ e ψ forem produtos internos (em particular, $\mathbb{F} \subseteq \mathbb{R}$), esta definição coincide com a de transformação ortogonal da Seção 7.4. Por isso, se ϕ e ψ são simétricas e não degeneradas, diz-se que tal T é uma transf. linear ortogonal. Já se ambas forem alternadas, T é dita simplética.

Proposição 9.5.1 (Ver Proposição 7.4.2.)

As seguintes afirmações são equivalentes.

① T é compatível com (ϕ, ψ) .

Dados \mathbb{F} -espaços vetoriais V e W, suponha que $\phi \in B(V)$ e $\psi \in B(W)$. Diz-se que $T \in \operatorname{Hom}_{\mathbb{F}}(V,W)$ é compatível com o par (ϕ,ψ) se

(1)
$$\psi(T(u), T(v)) = \phi(u, v) \quad \forall \quad u, v \in V.$$

Se ϕ e ψ forem produtos internos (em particular, $\mathbb{F} \subseteq \mathbb{R}$), esta definição coincide com a de transformação ortogonal da Seção 7.4. Por isso, se ϕ e ψ são simétricas e não degeneradas, diz-se que tal T é uma transf. linear ortogonal. Já se ambas forem alternadas, T é dita simplética.

Proposição 9.5.1 (Ver Proposição 7.4.2.)

As seguintes afirmações são equivalentes.

- ① T é compatível com (ϕ, ψ) .
- \bullet Para toda base α de V, $[\phi]_{\alpha} = [\psi]_{T(\alpha)}$.

Dados \mathbb{F} -espaços vetoriais V e W, suponha que $\phi \in B(V)$ e $\psi \in B(W)$. Diz-se que $T \in \operatorname{Hom}_{\mathbb{F}}(V,W)$ é compatível com o par (ϕ,ψ) se

(1)
$$\psi(T(u), T(v)) = \phi(u, v) \quad \forall \quad u, v \in V.$$

Se ϕ e ψ forem produtos internos (em particular, $\mathbb{F} \subseteq \mathbb{R}$), esta definição coincide com a de transformação ortogonal da Seção 7.4. Por isso, se ϕ e ψ são simétricas e não degeneradas, diz-se que tal T é uma transf. linear ortogonal. Já se ambas forem alternadas, T é dita simplética.

Proposição 9.5.1 (Ver Proposição 7.4.2.)

As seguintes afirmações são equivalentes.

- ① T é compatível com (ϕ, ψ) .
- \bullet Para toda base α de V, $[\phi]_{\alpha} = [\psi]_{T(\alpha)}$.
- \bullet Existe base α de V tal que $[\phi]_{\alpha} = [\psi]_{T(\alpha)}$.

Dados \mathbb{F} -espaços vetoriais V e W, suponha que $\phi \in B(V)$ e $\psi \in B(W)$. Diz-se que $T \in \operatorname{Hom}_{\mathbb{F}}(V,W)$ é compatível com o par (ϕ,ψ) se

(1)
$$\psi(T(u), T(v)) = \phi(u, v) \quad \forall \quad u, v \in V.$$

Se ϕ e ψ forem produtos internos (em particular, $\mathbb{F} \subseteq \mathbb{R}$), esta definição coincide com a de transformação ortogonal da Seção 7.4. Por isso, se ϕ e ψ são simétricas e não degeneradas, diz-se que tal T é uma transf. linear ortogonal. Já se ambas forem alternadas, T é dita simplética.

Proposição 9.5.1 (Ver Proposição 7.4.2.)

As seguintes afirmações são equivalentes.

- ① T é compatível com (ϕ, ψ) .
- \bullet Para toda base α de V, $[\phi]_{\alpha} = [\psi]_{T(\alpha)}$.
- Existe base α de V tal que $[\phi]_{\alpha} = [\psi]_{T(\alpha)}$.

Note que (1) não impõe nenhuma condição em $\psi(w_1, w_2)$ se w_1 ou w_2 não está em Im(T).

Dados \mathbb{F} -espaços vetoriais V e W, suponha que $\phi \in B(V)$ e $\psi \in B(W)$. Diz-se que $T \in \operatorname{Hom}_{\mathbb{F}}(V,W)$ é compatível com o par (ϕ,ψ) se

(1)
$$\psi(T(u), T(v)) = \phi(u, v) \quad \forall \quad u, v \in V.$$

Se ϕ e ψ forem produtos internos (em particular, $\mathbb{F} \subseteq \mathbb{R}$), esta definição coincide com a de transformação ortogonal da Seção 7.4. Por isso, se ϕ e ψ são simétricas e não degeneradas, diz-se que tal T é uma transf. linear ortogonal. Já se ambas forem alternadas, T é dita simplética.

Proposição 9.5.1 (Ver Proposição 7.4.2.)

As seguintes afirmações são equivalentes.

- \bullet T é compatível com (ϕ, ψ) .
- \bullet Para toda base α de V, $[\phi]_{\alpha} = [\psi]_{T(\alpha)}$.
- \bullet Existe base α de V tal que $[\phi]_{\alpha} = [\psi]_{T(\alpha)}$.

Note que (1) não impõe nenhuma condição em $\psi(w_1,w_2)$ se w_1 ou w_2 não está em Im(T). Assim, podemos supor que T é sobrejetora.

Neste caso,

$$v \in V^{\perp_{\phi}} \implies T(v) \in W^{\perp_{\psi}}.$$

Neste caso,

$$v \in V^{\perp_{\phi}} \implies T(v) \in W^{\perp_{\psi}}.$$

De fato, dado $w \in W$, digamos w = T(u), temos $\psi(T(v), w) = \phi(v, u) = 0.$

Neste caso,

$$v \in V^{\perp_{\phi}} \implies T(v) \in W^{\perp_{\psi}}.$$

De fato, dado $w \in W$, digamos w = T(u), temos $\psi(T(v), w) = \phi(v, u) = 0$.

Todavia, não há outra condição para a restrição de T a $V^{\perp_{\phi}}$.

Neste caso,

$$v \in V^{\perp_{\phi}} \implies T(v) \in W^{\perp_{\psi}}.$$

De fato, dado $w \in W$, digamos w = T(u), temos

$$\psi(T(v), w) = \phi(v, u) = 0.$$

Todavia, não há outra condição para a restrição de T a $V^{\perp_{\phi}}$. Portanto, basta estudar o caso em que ϕ é não degenerada.

Neste caso,

$$v \in V^{\perp_{\phi}} \implies T(v) \in W^{\perp_{\psi}}.$$

De fato, dado $w \in W$, digamos w = T(u), temos

$$\psi(T(v), w) = \phi(v, u) = 0.$$

Todavia, não há outra condição para a restrição de T a $V^{\perp_{\phi}}$. Portanto, basta estudar o caso em que ϕ é não degenerada. Neste caso, pelo Exercício 9.3.10, $\det([\phi]_{\alpha}) \neq 0$ para todo subconjunto l.i. finito α de V.

Neste caso,

$$v \in V^{\perp_{\phi}} \implies T(v) \in W^{\perp_{\psi}}.$$

De fato, dado $w \in W$, digamos w = T(u), temos $\psi(T(v), w) = \phi(v, u) = 0$.

Todavia, não há outra condição para a restrição de T a $V^{\perp_{\phi}}$. Portanto, basta estudar o caso em que ϕ é não degenerada. Neste caso, pelo Exercício 9.3.10, $\det([\phi]_{\alpha}) \neq 0$ para todo subconjunto l.i. finito α de V. Como $[\psi]_{T(\alpha)} = [\phi]_{\alpha}$, $T(\alpha)$ é l.i. (Exerc. 9.4.3)

Neste caso,

$$v \in V^{\perp_{\phi}} \implies T(v) \in W^{\perp_{\psi}}.$$

De fato, dado $w \in W$, digamos w = T(u), temos $\psi(T(v), w) = \phi(v, u) = 0$.

Todavia, não há outra condição para a restrição de T a $V^{\perp_{\phi}}$. Portanto, basta estudar o caso em que ϕ é não degenerada. Neste caso, pelo Exercício 9.3.10, $\det([\phi]_{\alpha}) \neq 0$ para todo subconjunto l.i. finito α de V. Como $[\psi]_{T(\alpha)} = [\phi]_{\alpha}$, $T(\alpha)$ é l.i. (Exerc. 9.4.3) e, portanto, T é injetora.

Neste caso,

$$v \in V^{\perp_{\phi}} \Rightarrow T(v) \in W^{\perp_{\psi}}.$$

De fato, dado $w \in W$, digamos w = T(u), temos

$$\psi(T(v), w) = \phi(v, u) = 0.$$

Todavia, não há outra condição para a restrição de T a $V^{\perp_{\phi}}$. Portanto, basta estudar o caso em que ϕ é não degenerada. Neste caso, pelo Exercício 9.3.10, $\det([\phi]_{\alpha}) \neq 0$ para todo subconjunto l.i. finito α de V. Como $[\psi]_{T(\alpha)} = [\phi]_{\alpha}$, $T(\alpha)$ é l.i. (Exerc. 9.4.3) e, portanto, T é injetora.

Como $[\psi]_{T(\alpha)} = [\phi]_{\alpha}$, $T(\alpha)$ é l.i. (Exerc. 9.4.3) e, portanto, T é injetora

Com estes fatos em mente, a demonstração da seguinte proposição fica de exercício.

Proposição 9.5.2

Se $\phi \in B(V)$ e $\psi \in B(W)$ com ϕ não degenerada

Neste caso,

$$v \in V^{\perp_{\phi}} \implies T(v) \in W^{\perp_{\psi}}.$$

De fato, dado $w \in W$, digamos w = T(u), temos

$$\psi(T(v), w) = \phi(v, u) = 0.$$

Todavia, não há outra condição para a restrição de T a $V^{\perp_{\phi}}$. Portanto. basta estudar o caso em que ϕ é não degenerada. Neste caso, pelo Exercício 9.3.10, $\det([\phi]_{\alpha}) \neq 0$ para todo subconjunto l.i. finito α de V. Como $[\psi]_{T(\alpha)} = [\phi]_{\alpha}$, $T(\alpha)$ é l.i. (Exerc. 9.4.3) e, portanto, T é injetora.

Com estes fatos em mente, a demonstração da seguinte proposição fica de exercício.

Proposição 9.5.2

Se $\phi \in B(V)$ e $\psi \in B(W)$ com ϕ não degenerada, $\exists T \in \operatorname{Hom}_{\mathbb{F}}(V, W)$ sobrejetora e compatível com (ϕ, ψ) se, e sé se,

Neste caso,

$$v \in V^{\perp_{\phi}} \Rightarrow T(v) \in W^{\perp_{\psi}}.$$

De fato, dado $w \in W$, digamos w = T(u), temos $\psi(T(v), w) = \phi(v, u) = 0$.

Todavia, não há outra condição para a restrição de
$$T$$
 a $V^{\perp_{\phi}}$. Portanto, basta estudar o caso em que ϕ é não degenerada. Neste caso, pelo Exercício 9.3.10, $\det([\phi]_{\alpha}) \neq 0$ para todo subconjunto l.i. finito α de V . Como $[\psi]_{T(\alpha)} = [\phi]_{\alpha}$, $T(\alpha)$ é l.i. (Exerc. 9.4.3) e, portanto, T é injetora.

Com estes fatos em mente, a demonstração da seguinte proposição fica de exercício.

Proposição 9.5.2

Se $\phi \in B(V)$ e $\psi \in B(W)$ com ϕ não degenerada, $\exists T \in \operatorname{Hom}_{\mathbb{F}}(V, W)$ sobrejetora e compatível com (ϕ, ψ) se, e sé se, $\dim(V) = \dim(W)$ e existirem bases α de V e β de W t.q. $[\phi]_{\alpha} = [\psi]_{\beta}$.

Neste caso,

$$v \in V^{\perp_{\phi}} \Rightarrow T(v) \in W^{\perp_{\psi}}.$$

De fato, dado $w \in W$, digamos w = T(u), temos $\psi(T(v), w) = \phi(v, u) = 0.$

Todavia, não há outra condição para a restrição de T a $V^{\perp_{\phi}}$. Portanto, basta estudar o caso em que ϕ é não degenerada. Neste caso, pelo Exercício 9.3.10, $\det([\phi]_{\alpha}) \neq 0$ para todo subconjunto l.i. finito α de V. Como $[\psi]_{T(\alpha)} = [\phi]_{\alpha}$, $T(\alpha)$ é l.i. (Exerc. 9.4.3) e, portanto, T é injetora.

Como $[\psi]_{T(\alpha)} = [\psi]_{\alpha}$, $I(\alpha)$ e i.i. (Exerc. 9.4.5) e, portanto, I e injetora.

Com estes fatos em mente, a demonstração da seguinte proposição fica de exercício.

Proposição 9.5.2

Se $\phi \in B(V)$ e $\psi \in B(W)$ com ϕ não degenerada, $\exists T \in \operatorname{Hom}_{\mathbb{F}}(V, W)$ sobrejetora e compatível com (ϕ, ψ) se, e sé se, $\dim(V) = \dim(W)$ e existirem bases α de V e β de W t.q. $[\phi]_{\alpha} = [\psi]_{\beta}$. Neste caso, T é necessariamente um isomorfismo.

Passamos ao estudo do caso V=W e $\phi=\psi$ é não degenerada.

Passamos ao estudo do caso V=W e $\phi=\psi$ é não degenerada. O objetivo é descrever o conjunto dos operadores lineares em V compatíveis com ϕ , isto é, com (ϕ, ϕ) , no caso em que $\phi \in B_{as}(V)$ é não degenerada e $\dim(V)$ é finita.

Passamos ao estudo do caso V=W e $\phi=\psi$ é não degenerada. O objetivo é descrever o conjunto dos operadores lineares em V compatíveis com ϕ , isto é, com (ϕ,ϕ) , no caso em que $\phi\in B_{as}(V)$ é não degenerada e $\dim(V)$ é finita. Considere

$$\operatorname{End}_{\mathbb{F}}^{\phi}(V) = \{ T \in \operatorname{End}_{\mathbb{F}}(V) : \phi(T(u), T(v)) = \phi(u, v), \ u, v \in V \}.$$

Passamos ao estudo do caso V=W e $\phi=\psi$ é não degenerada. O objetivo é descrever o conjunto dos operadores lineares em V compatíveis com ϕ , isto é, com (ϕ, ϕ) , no caso em que $\phi \in B_{as}(V)$ é não degenerada e $\dim(V)$ é finita. Considere

$$\operatorname{End}_{\mathbb{F}}^{\phi}(V) = \{ T \in \operatorname{End}_{\mathbb{F}}(V) : \phi(T(u), T(v)) = \phi(u, v), \ u, v \in V \}.$$

Segue da proposição anterior que todo elemento de $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ é bijetor.

Passamos ao estudo do caso V=W e $\phi=\psi$ é não degenerada. O objetivo é descrever o conjunto dos operadores lineares em V compatíveis com ϕ , isto é, com (ϕ,ϕ) , no caso em que $\phi\in B_{as}(V)$ é não degenerada e $\dim(V)$ é finita. Considere

$$\operatorname{End}_{\mathbb{F}}^{\phi}(V) = \{ T \in \operatorname{End}_{\mathbb{F}}(V) : \phi(T(u), T(v)) = \phi(u, v), \ u, v \in V \}.$$

Segue da proposição anterior que todo elemento de $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ é bijetor. Facilmente verifica-se que $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ é fechado por composição

Passamos ao estudo do caso V=W e $\phi=\psi$ é não degenerada. O objetivo é descrever o conjunto dos operadores lineares em V compatíveis com ϕ , isto é, com (ϕ, ϕ) , no caso em que $\phi \in B_{as}(V)$ é não degenerada e dim(V) é finita. Considere

$$\operatorname{End}_{\mathbb{F}}^{\phi}(V) = \{ T \in \operatorname{End}_{\mathbb{F}}(V) : \phi(T(u), T(v)) = \phi(u, v), \ u, v \in V \}.$$

Segue da proposição anterior que todo elemento de $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ é bijetor.

Facilmente verifica-se que $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ é fechado por composição, isto é,

$$T \circ S \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$$
 para quaisquer $T, S \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$,

Passamos ao estudo do caso V=W e $\phi=\psi$ é não degenerada. O objetivo é descrever o conjunto dos operadores lineares em V compatíveis com ϕ , isto é, com (ϕ,ϕ) , no caso em que $\phi\in B_{as}(V)$ é não degenerada e $\dim(V)$ é finita. Considere

$$\operatorname{End}_{\mathbb{F}}^{\phi}(V) = \{ T \in \operatorname{End}_{\mathbb{F}}(V) : \phi(T(u), T(v)) = \phi(u, v), \ u, v \in V \}.$$

Segue da proposição anterior que todo elemento de $\operatorname{End}_{\mathbb F}^\phi(V)$ é bijetor.

Facilmente verifica-se que $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ é fechado por composição, isto é,

$$T \circ S \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$$
 para quaisquer $T, S \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$,

e que

$$T^{-1} \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$$
 para todo $T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$.

Passamos ao estudo do caso V=W e $\phi=\psi$ é não degenerada. O objetivo é descrever o conjunto dos operadores lineares em V compatíveis com ϕ , isto é, com (ϕ,ϕ) , no caso em que $\phi\in B_{as}(V)$ é não degenerada e $\dim(V)$ é finita. Considere

$$\operatorname{End}_{\mathbb{F}}^{\phi}(V) = \{ T \in \operatorname{End}_{\mathbb{F}}(V) : \phi(T(u), T(v)) = \phi(u, v), \ u, v \in V \}.$$

Segue da proposição anterior que todo elemento de $\operatorname{End}_{\mathbb F}^\phi(V)$ é bijetor.

Facilmente verifica-se que $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ é fechado por composição, isto é,

$$T \circ S \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$$
 para quaisquer $T, S \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$,

$$T^{-1} \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$$
 para todo $T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$.

Ou seja, o par $(\operatorname{End}_{\mathbb{F}}^{\phi}(V), \circ)$ é um grupo.

Passamos ao estudo do caso V=W e $\phi=\psi$ é não degenerada. O objetivo é descrever o conjunto dos operadores lineares em V compatíveis com ϕ , isto é, com (ϕ,ϕ) , no caso em que $\phi\in B_{as}(V)$ é não degenerada e $\dim(V)$ é finita. Considere

$$\operatorname{End}_{\mathbb{F}}^{\phi}(V) = \{ T \in \operatorname{End}_{\mathbb{F}}(V) : \phi(T(u), T(v)) = \phi(u, v), \ u, v \in V \}.$$

Segue da proposição anterior que todo elemento de $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ é bijetor.

Facilmente verifica-se que $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ é fechado por composição, isto é,

$$T \circ S \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$$
 para quaisquer $T, S \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$,

e que

$$T^{-1} \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$$
 para todo $T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$.

Ou seja, o par $(\operatorname{End}_{\mathbb F}^\phi(V),\circ)$ é um grupo. Este grupo é dito um grupo ortogonal, se ϕ é simétrica

Passamos ao estudo do caso V=W e $\phi=\psi$ é não degenerada. O objetivo é descrever o conjunto dos operadores lineares em V compatíveis com ϕ , isto é, com (ϕ,ϕ) , no caso em que $\phi\in B_{as}(V)$ é não degenerada e $\dim(V)$ é finita. Considere

$$\operatorname{End}_{\mathbb{F}}^{\phi}(V) = \{ T \in \operatorname{End}_{\mathbb{F}}(V) : \phi(T(u), T(v)) = \phi(u, v), \ u, v \in V \}.$$

Segue da proposição anterior que todo elemento de $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ é bijetor.

Facilmente verifica-se que $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ é fechado por composição, isto é,

$$T \circ S \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$$
 para quaisquer $T, S \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$,

e que

$$T^{-1} \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$$
 para todo $T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$.

Ou seja, o par $(\operatorname{End}_{\mathbb{F}}^{\phi}(V), \circ)$ é um grupo. Este grupo é dito um grupo ortogonal, se ϕ é simétrica, e simplético, se ϕ é alternada.

Passamos ao estudo do caso V=W e $\phi=\psi$ é não degenerada. O objetivo é descrever o conjunto dos operadores lineares em V compatíveis com ϕ , isto é, com (ϕ,ϕ) , no caso em que $\phi\in B_{as}(V)$ é não degenerada e $\dim(V)$ é finita. Considere

$$\operatorname{End}_{\mathbb{F}}^{\phi}(V) = \{ T \in \operatorname{End}_{\mathbb{F}}(V) : \phi(T(u), T(v)) = \phi(u, v), \ u, v \in V \}.$$

Segue da proposição anterior que todo elemento de $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ é bijetor. Facilmente verifica-se que $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ é fechado por composição, isto é,

$$T \circ S \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$$
 para quaisquer $T, S \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$,

$$T^{-1} \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$$
 para todo $T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$.

Ou seja, o par $(\operatorname{End}_{\mathbb{F}}^{\phi}(V), \circ)$ é um grupo. Este grupo é dito um grupo ortogonal, se ϕ é simétrica, e simplético, se ϕ é alternada. Além disso, dada uma base α de V, tomando $\beta = T(\alpha)$, que também é base de V

Passamos ao estudo do caso V=W e $\phi=\psi$ é não degenerada. O objetivo é descrever o conjunto dos operadores lineares em V compatíveis com ϕ , isto é, com (ϕ,ϕ) , no caso em que $\phi\in B_{as}(V)$ é não degenerada e $\dim(V)$ é finita. Considere

$$\operatorname{End}_{\mathbb{F}}^{\phi}(V) = \{ T \in \operatorname{End}_{\mathbb{F}}(V) : \phi(T(u), T(v)) = \phi(u, v), \ u, v \in V \}.$$

Segue da proposição anterior que todo elemento de $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ é bijetor. Facilmente verifica-se que $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ é fechado por composição, isto é,

$$T \circ S \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$$
 para quaisquer $T, S \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$,

$$T^{-1} \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$$
 para todo $T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$.

Ou seja, o par $(\operatorname{End}_{\mathbb{F}}^{\phi}(V), \circ)$ é um grupo. Este grupo é dito um grupo ortogonal, se ϕ é simétrica, e simplético, se ϕ é alternada. Além disso, dada uma base α de V, tomando $\beta = T(\alpha)$, que também é base de V, temos $[\phi]_{\alpha} = [\phi]_{\beta}$ e segue que $[\phi]_{\alpha} = ([I]_{\alpha}^{\beta})^t$ $[\phi]_{\alpha}$ $[I]_{\alpha}^{\beta}$.

Passamos ao estudo do caso V=W e $\phi=\psi$ é não degenerada. O objetivo é descrever o conjunto dos operadores lineares em V compatíveis com ϕ , isto é, com (ϕ,ϕ) , no caso em que $\phi\in B_{as}(V)$ é não degenerada e $\dim(V)$ é finita. Considere

$$\operatorname{End}_{\mathbb{F}}^{\phi}(V) = \{ T \in \operatorname{End}_{\mathbb{F}}(V) : \phi(T(u), T(v)) = \phi(u, v), \ u, v \in V \}.$$

Segue da proposição anterior que todo elemento de $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ é bijetor. Facilmente verifica-se que $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ é fechado por composição, isto é,

$$T \circ S \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$$
 para quaisquer $T, S \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$,

$$T^{-1} \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$$
 para todo $T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$.

Ou seja, o par $(\operatorname{End}_{\mathbb{F}}^{\phi}(V), \circ)$ é um grupo. Este grupo é dito um grupo ortogonal, se ϕ é simétrica, e simplético, se ϕ é alternada. Além disso, dada uma base α de V, tomando $\beta = T(\alpha)$, que também é base de V, temos $[\phi]_{\alpha} = [\phi]_{\beta}$ e segue que $[\phi]_{\alpha} = ([I]_{\alpha}^{\beta})^{t} [\phi]_{\alpha} [I]_{\alpha}^{\beta}$. Por definição de β temos $[I]_{\alpha}^{\beta} = [T]_{\alpha}^{\alpha}$

Passamos ao estudo do caso V=W e $\phi=\psi$ é não degenerada. O objetivo é descrever o conjunto dos operadores lineares em V compatíveis com ϕ , isto é, com (ϕ,ϕ) , no caso em que $\phi\in B_{as}(V)$ é não degenerada e $\dim(V)$ é finita. Considere

$$\operatorname{End}_{\mathbb{F}}^{\phi}(V) = \{T \in \operatorname{End}_{\mathbb{F}}(V) : \phi(T(u), T(v)) = \phi(u, v), \ u, v \in V\}.$$

Segue da proposição anterior que todo elemento de $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ é bijetor. Facilmente verifica-se que $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ é fechado por composição, isto é,

$$T \circ S \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$$
 para quaisquer $T, S \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$,

$$T^{-1} \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$$
 para todo $T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$.

Ou seja, o par $(\operatorname{End}_{\mathbb{F}}^{\phi}(V), \circ)$ é um grupo. Este grupo é dito um grupo ortogonal, se ϕ é simétrica, e simplético, se ϕ é alternada. Além disso, dada uma base α de V, tomando $\beta = T(\alpha)$, que também é base de V, temos $[\phi]_{\alpha} = [\phi]_{\beta}$ e segue que $[\phi]_{\alpha} = ([I]_{\alpha}^{\beta})^{t} \ [\phi]_{\alpha} \ [I]_{\alpha}^{\beta}$. Por definição de β temos $[I]_{\alpha}^{\beta} = [T]_{\alpha}^{\alpha}$ e, portanto, $\det([\phi]_{\alpha}) = \det(([T]_{\alpha}^{\alpha})^{t}) \det([\phi]_{\alpha}) \det([T]_{\alpha}^{\alpha})$.

Passamos ao estudo do caso V=W e $\phi=\psi$ é não degenerada. O objetivo é descrever o conjunto dos operadores lineares em V compatíveis com ϕ , isto é, com (ϕ, ϕ) , no caso em que $\phi \in B_{as}(V)$ é não degenerada e $\dim(V)$ é finita. Considere

$$\operatorname{End}_{\mathbb{F}}^{\phi}(V) = \{ T \in \operatorname{End}_{\mathbb{F}}(V) : \phi(T(u), T(v)) = \phi(u, v), \ u, v \in V \}.$$

Segue da proposição anterior que todo elemento de $\operatorname{End}_{\mathbb{R}}^{\phi}(V)$ é bijetor. Facilmente verifica-se que $\operatorname{End}_{\mathbb{R}}^{\phi}(V)$ é fechado por composição, isto é,

 $T \circ S \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$ para quaisquer $T, S \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$,

e que
$$T^{-1} \in \operatorname{End}_{\mathbb{F}}^{\phi}(V) \quad \text{para todo} \quad T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V).$$

Ou seja, o par $(\operatorname{End}_{\mathbb{R}}^{\phi}(V), \circ)$ é um grupo. Este grupo é dito um grupo ortogonal, se ϕ é simétrica, e simplético, se ϕ é alternada. Além disso, dada uma base α de V, tomando $\beta = T(\alpha)$, que também é base de V, temos $[\phi]_{\alpha} = [\phi]_{\beta}$ e segue que $[\phi]_{\alpha} = ([I]_{\alpha}^{\beta})^t [\phi]_{\alpha} [I]_{\alpha}^{\beta}$. Por definição de β temos $[I]^{\beta}_{\alpha} = [T]^{\alpha}_{\alpha}$ e, portanto, $\det([\phi]_{\alpha}) = \det(([T]^{\alpha}_{\alpha})^t) \det([\phi]_{\alpha}) \det([T]^{\alpha}_{\alpha})$. Como $\det([\phi]_{\alpha}) \neq 0$

Passamos ao estudo do caso V=W e $\phi=\psi$ é não degenerada. O objetivo é descrever o conjunto dos operadores lineares em V compatíveis com ϕ , isto é, com (ϕ,ϕ) , no caso em que $\phi\in B_{as}(V)$ é não degenerada e $\dim(V)$ é finita. Considere

$$\operatorname{End}_{\mathbb{F}}^{\phi}(V) = \{ T \in \operatorname{End}_{\mathbb{F}}(V) : \phi(T(u), T(v)) = \phi(u, v), \ u, v \in V \}.$$

Segue da proposição anterior que todo elemento de $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ é bijetor. Facilmente verifica-se que $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ é fechado por composição, isto é,

To $S \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$ para quaisquer $T, S \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$,

e que
$$T^{-1} \in \operatorname{End}_{\mathbb{F}}^{\phi}(V) \quad \text{para todo} \quad T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V).$$

Ou seja, o par $(\operatorname{End}_{\mathbb{F}}^{\phi}(V), \circ)$ é um grupo. Este grupo é dito um grupo ortogonal, se ϕ é simétrica, e simplético, se ϕ é alternada. Além disso, dada uma base α de V, tomando $\beta = T(\alpha)$, que também é base de V, temos $[\phi]_{\alpha} = [\phi]_{\beta}$ e segue que $[\phi]_{\alpha} = ([I]_{\alpha}^{\beta})^{t} \ [\phi]_{\alpha} \ [I]_{\alpha}^{\beta}$. Por definição de β temos $[I]_{\alpha}^{\beta} = [T]_{\alpha}^{\alpha}$ e, portanto, $\det([\phi]_{\alpha}) = \det(([T]_{\alpha}^{\alpha})^{t}) \det([\phi]_{\alpha}) \det([T]_{\alpha}^{\alpha})$. Como $\det([\phi]_{\alpha}) \neq 0$, concluímos que $\det(T) = \pm 1$.

Suponha que $\phi \in B_s(V)$ e que $T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$.

Suponha que $\phi \in B_s(V)$ e que $T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$. T é dita uma rotação se $\det(T) = 1$

Suponha que $\phi \in B_s(V)$ e que $T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$. T é dita uma rotação se $\det(T) = 1$ e uma reflexão se $\det(T) = -1$.

Suponha que $\phi \in B_s(V)$ e que $T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$. T é dita uma rotação se $\det(T) = 1$ e uma reflexão se $\det(T) = -1$. Em particular, o subconjunto formado pelas rotações formam um subgrupo de $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$

Suponha que $\phi \in B_s(V)$ e que $T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$. T é dita uma rotação se $\det(T) = 1$ e uma reflexão se $\det(T) = -1$. Em particular, o subconjunto formado pelas rotações formam um subgrupo de $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$, enquanto que a composta de duas reflexões é uma rotação.

Suponha que $\phi \in B_s(V)$ e que $T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$. T é dita uma rotação se $\det(T) = 1$ e uma reflexão se $\det(T) = -1$. Em particular, o subconjunto formado pelas rotações formam um subgrupo de $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$, enquanto que a composta de duas reflexões é uma rotação. Dado um vetor não isotrópico $w \in V$, considere W = [w]

Suponha que $\phi \in B_s(V)$ e que $T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$. T é dita uma rotação se $\det(T) = 1$ e uma reflexão se $\det(T) = -1$. Em particular, o subconjunto formado pelas rotações formam um subgrupo de $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$, enquanto que a composta de duas reflexões é uma rotação. Dado um vetor não isotrópico $w \in V$, considere W = [w] e a função

$$R_W^{\phi}: V \to V, \qquad R_W^{\phi}(v) = v - 2 \frac{\phi(v, w)}{\phi(w, w)} w.$$

Suponha que $\phi \in B_s(V)$ e que $T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$. T é dita uma rotação se $\det(T) = 1$ e uma reflexão se $\det(T) = -1$. Em particular, o subconjunto formado pelas rotações formam um subgrupo de $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$, enquanto que a composta de duas reflexões é uma rotação. Dado um vetor não isotrópico $w \in V$, considere W = [w] e a função

$$R_W^{\phi}: V \to V, \qquad R_W^{\phi}(v) = v - 2\frac{\phi(v, w)}{\phi(w, w)} \ w.$$

Facilmente verifica-se que R_W^ϕ é linear

Suponha que $\phi \in B_s(V)$ e que $T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$. T é dita uma rotação se $\det(T) = 1$ e uma reflexão se $\det(T) = -1$. Em particular, o subconjunto formado pelas rotações formam um subgrupo de $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$, enquanto que a composta de duas reflexões é uma rotação. Dado um vetor não isotrópico $w \in V$, considere W = [w] e a função

$$R_W^{\phi}: V \to V, \qquad R_W^{\phi}(v) = v - 2 \frac{\phi(v, w)}{\phi(w, w)} \ w.$$

Facilmente verifica-se que R_W^ϕ é linear e que a fórmula dada depende de fato apenas de W

Suponha que $\phi \in B_s(V)$ e que $T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$. T é dita uma rotação se $\det(T) = 1$ e uma reflexão se $\det(T) = -1$. Em particular, o subconjunto formado pelas rotações formam um subgrupo de $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$, enquanto que a composta de duas reflexões é uma rotação. Dado um vetor não isotrópico $w \in V$, considere W = [w] e a função

$$R_W^{\phi}: V \to V, \qquad R_W^{\phi}(v) = v - 2\frac{\phi(v, w)}{\phi(w, w)} w.$$

Facilmente verifica-se que R_W^ϕ é linear e que a fórmula dada depende de fato apenas de W, isto é, trocando-se w por qualquer um de seus múltiplos não nulos na expressão definidora de R_W^ϕ resulta na mesma função.

Suponha que $\phi \in B_s(V)$ e que $T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$. T é dita uma rotação se $\det(T) = 1$ e uma reflexão se $\det(T) = -1$. Em particular, o subconjunto formado pelas rotações formam um subgrupo de $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$, enquanto que a composta de duas reflexões é uma rotação. Dado um vetor não isotrópico $w \in V$, considere W = [w] e a função

$$R_W^{\phi}: V \to V, \qquad R_W^{\phi}(v) = v - 2\frac{\phi(v, w)}{\phi(w, w)} w.$$

Facilmente verifica-se que R_W^ϕ é linear e que a fórmula dada depende de fato apenas de W, isto é, trocando-se w por qualquer um de seus múltiplos não nulos na expressão definidora de R_W^ϕ resulta na mesma função. Verificaremos a seguir que R_W^ϕ é uma reflexão.

Suponha que $\phi \in B_s(V)$ e que $T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$. T é dita uma rotação se $\det(T) = 1$ e uma reflexão se $\det(T) = -1$. Em particular, o subconjunto formado pelas rotações formam um subgrupo de $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$, enquanto que a composta de duas reflexões é uma rotação. Dado um vetor não isotrópico $w \in V$, considere W = [w] e a função

$$R_W^{\phi}: V \to V, \qquad R_W^{\phi}(v) = v - 2\frac{\phi(v, w)}{\phi(w, w)} w.$$

Facilmente verifica-se que R_W^ϕ é linear e que a fórmula dada depende de fato apenas de W, isto é, trocando-se w por qualquer um de seus múltiplos não nulos na expressão definidora de R_W^ϕ resulta na mesma função. Verificaremos a seguir que R_W^ϕ é uma reflexão. Por isso, ela é chamada de a reflexão simples associada a W (com respeito a ϕ).

Suponha que $\phi \in B_s(V)$ e que $T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$. T é dita uma rotação se $\det(T) = 1$ e uma reflexão se $\det(T) = -1$. Em particular, o subconjunto formado pelas rotações formam um subgrupo de $\operatorname{End}^\phi_{\mathbb R}(V)$, enquanto que a composta de duas reflexões é uma rotação. Dado um vetor não isotrópico $w \in V$, considere W = [w] e a função

$$R_W^{\phi}: V \to V, \qquad R_W^{\phi}(v) = v - 2\frac{\phi(v, w)}{\phi(w, w)} w.$$

Facilmente verifica-se que R_W^{ϕ} é linear e que a fórmula dada depende de fato apenas de W, isto é, trocando-se w por qualquer um de seus múltiplos não nulos na expressão definidora de $R_{\scriptscriptstyle \mathrm{I\! I\! I}}^{\phi}$ resulta na mesma função. Verificaremos a seguir que R_W^{ϕ} é uma reflexão. Por isso, ela é chamada de a reflexão simples associada a W (com respeito a ϕ).

Precisamos verificar que R_W^{ϕ} é compatível com ϕ e $\det(R_W^{\phi}) = -1$.

Suponha que $\phi \in B_s(V)$ e que $T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$. T é dita uma rotação se $\det(T) = 1$ e uma reflexão se $\det(T) = -1$. Em particular, o subconjunto formado pelas rotações formam um subgrupo de $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$, enquanto que a composta de duas reflexões é uma rotação. Dado um vetor não isotrópico $w \in V$, considere W = [w] e a função

$$R_W^{\phi}: V \to V, \qquad R_W^{\phi}(v) = v - 2 \frac{\phi(v, w)}{\phi(w, w)} \ w.$$

Facilmente verifica-se que R_W^ϕ é linear e que a fórmula dada depende de fato apenas de W, isto é, trocando-se w por qualquer um de seus múltiplos não nulos na expressão definidora de R_W^ϕ resulta na mesma função. Verificaremos a seguir que R_W^ϕ é uma reflexão. Por isso, ela é chamada de a reflexão simples associada a W (com respeito a ϕ).

Precisamos verificar que R_W^{ϕ} é compatível com ϕ e $\det(R_W^{\phi}) = -1$.

Comece observando que

(2)
$$R_W^{\phi}(v) = \begin{cases} -v, & \text{se } v \in W, \\ v, & \text{se } v \in W^{\perp_{\phi}}. \end{cases}$$

Como w é não isotrópico, temos $V = W \oplus W^{\perp_{\phi}}$

Como w é não isotrópico, temos $V = W \oplus W^{\perp_{\phi}}$ e, portanto, podemos escolher base $\alpha = v_1, \ldots, v_n$ de V tal que $v_1 \in W$ e $v_j \in W^{\perp_{\phi}}$ para j > 1.

Como w é não isotrópico, temos $V = W \oplus W^{\perp_{\phi}}$ e, portanto, podemos escolher base $\alpha = v_1, \ldots, v_n$ de V tal que $v_1 \in W$ e $v_j \in W^{\perp_{\phi}}$ para j > 1. Com esta escolha, segue de (2) que

$$[R_W^\phi]_\alpha^\alpha = \begin{bmatrix} -1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \end{bmatrix}$$

Como w é não isotrópico, temos $V = W \oplus W^{\perp_{\phi}}$ e, portanto, podemos escolher base $\alpha = v_1, \ldots, v_n$ de V tal que $v_1 \in W$ e $v_j \in W^{\perp_{\phi}}$ para j > 1. Com esta escolha, segue de (2) que

$$[R_W^{\phi}]_{\alpha}^{\alpha} = \begin{bmatrix} -1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \cdots & \cdots & \cdots & 0 & 1 \end{bmatrix}$$

de onde segue que $\det(R_W^{\phi}) = -1$

Como w é não isotrópico, temos $V = W \oplus W^{\perp_{\phi}}$ e, portanto, podemos escolher base $\alpha = v_1, \ldots, v_n$ de V tal que $v_1 \in W$ e $v_j \in W^{\perp_{\phi}}$ para j > 1. Com esta escolha, segue de (2) que

$$[R_W^\phi]^\alpha_\alpha = \begin{bmatrix} -1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & \cdots & 0 & 1 \end{bmatrix}$$

de onde segue que $\det(R_W^{\phi}) = -1$ assim como

$$\phi(R_W^{\phi}(v_i), R_W^{\phi}(v_j)) = (-1)^{\delta_{i,1} + \delta_{j,1}} \ \phi(v_i, v_j) = \phi(v_i, v_j) \ \forall \ 1 \le i \le j \le n.$$

Como w é não isotrópico, temos $V = W \oplus W^{\perp_{\phi}}$ e, portanto, podemos escolher base $\alpha = v_1, \ldots, v_n$ de V tal que $v_1 \in W$ e $v_j \in W^{\perp_{\phi}}$ para j > 1. Com esta escolha, segue de (2) que

$$[R_W^{\phi}]_{\alpha}^{\alpha} = \begin{bmatrix} -1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \cdots & \cdots & \cdots & 0 & 1 \end{bmatrix}$$

de onde segue que $\det(R_W^{\phi}) = -1$ assim como

$$\phi(R_W^{\phi}(v_i), R_W^{\phi}(v_j)) = (-1)^{\delta_{i,1} + \delta_{j,1}} \ \phi(v_i, v_j) = \phi(v_i, v_j) \ \ \forall \ \ 1 \le i \le j \le n.$$

Logo, $[\phi]_{T(\alpha)}=[\phi]_{\alpha}$ e segue da Proposição 9.5.1 que R_W^{ϕ} é compatível com $\phi.$

Como w é não isotrópico, temos $V = W \oplus W^{\perp_{\phi}}$ e, portanto, podemos escolher base $\alpha = v_1, \ldots, v_n$ de V tal que $v_1 \in W$ e $v_j \in W^{\perp_{\phi}}$ para j > 1. Com esta escolha, segue de (2) que

$$[R_W^\phi]_\alpha^\alpha = \begin{bmatrix} -1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & \cdots & 0 & 1 \end{bmatrix}$$

de onde segue que $\det(R_W^{\phi}) = -1$ assim como

$$\phi(R_W^{\phi}(v_i), R_W^{\phi}(v_j)) = (-1)^{\delta_{i,1} + \delta_{j,1}} \ \phi(v_i, v_j) = \phi(v_i, v_j) \ \forall \ 1 \le i \le j \le n.$$

Logo, $[\phi]_{T(\alpha)} = [\phi]_{\alpha}$ e segue da Proposição 9.5.1 que R_W^{ϕ} é compatível com ϕ . Observe que (2) também mostra que

$$(3) R_W^{\phi} \circ R_W^{\phi} = \mathrm{Id}_V.$$

Como w é não isotrópico, temos $V = W \oplus W^{\perp_{\phi}}$ e, portanto, podemos escolher base $\alpha = v_1, \ldots, v_n$ de V tal que $v_1 \in W$ e $v_j \in W^{\perp_{\phi}}$ para j > 1. Com esta escolha, segue de (2) que

$$[R_W^{\phi}]_{\alpha}^{\alpha} = \begin{bmatrix} -1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \cdots & \cdots & \cdots & 0 & 1 \end{bmatrix}$$

de onde segue que $\det(R_W^{\phi}) = -1$ assim como

$$\phi(R_W^{\phi}(v_i), R_W^{\phi}(v_j)) = (-1)^{\delta_{i,1} + \delta_{j,1}} \ \phi(v_i, v_j) = \phi(v_i, v_j) \ \forall \ 1 \le i \le j \le n.$$

Logo, $[\phi]_{T(\alpha)} = [\phi]_{\alpha}$ e segue da Proposição 9.5.1 que R_W^{ϕ} é compatível com ϕ . Observe que (2) também mostra que

(3)
$$R_W^{\phi} \circ R_W^{\phi} = \mathrm{Id}_V.$$

Se ϕ é um produto interno, o conjunto das reflexões simples coincide com o das reflexões ortogonais com respeito a hiperplanos (revisar a Seção 7.3).

Teorema 9.5.7

Suponha que $\operatorname{car}(\mathbb{F}) \neq 2$ e que $0 \neq \dim(V) < \infty$.

Teorema 9.5.7

Suponha que $\operatorname{car}(\mathbb{F})\neq 2$ e que $0\neq \dim(V)<\infty$. Sejam $\phi\in B_s(V)$ não degenerada e $T\in\operatorname{End}_{\mathbb{F}}(V)$.

Teorema 9.5.7

Suponha que $\operatorname{car}(\mathbb{F}) \neq 2$ e que $0 \neq \dim(V) < \infty$. Sejam $\phi \in B_s(V)$ não degenerada e $T \in \operatorname{End}_{\mathbb{F}}(V)$. Então, T é ortogonal se, e somente se, T for uma composição de reflexões simples.

Teorema 9.5.7

Suponha que $\operatorname{car}(\mathbb{F}) \neq 2$ e que $0 \neq \dim(V) < \infty$. Sejam $\phi \in B_s(V)$ não degenerada e $T \in \operatorname{End}_{\mathbb{F}}(V)$. Então, T é ortogonal se, e somente se, T for uma composição de reflexões simples.

Lema 9.5.3 (Execício 9.5.2)

Se
$$\phi \in B_{as}(V), T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$$

Teorema 9.5.7

Suponha que $\operatorname{car}(\mathbb{F}) \neq 2$ e que $0 \neq \dim(V) < \infty$. Sejam $\phi \in B_s(V)$ não degenerada e $T \in \operatorname{End}_{\mathbb{F}}(V)$. Então, T é ortogonal se, e somente se, T for uma composição de reflexões simples.

Lema 9.5.3 (Execício 9.5.2)

Se $\phi \in B_{as}(V), T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$ e W é um subespaço não degenerado com respeito a ϕ e T-invariante

Teorema 9.5.7

Suponha que $\operatorname{car}(\mathbb{F}) \neq 2$ e que $0 \neq \dim(V) < \infty$. Sejam $\phi \in B_s(V)$ não degenerada e $T \in \operatorname{End}_{\mathbb{F}}(V)$. Então, T é ortogonal se, e somente se, T for uma composição de reflexões simples.

Lema 9.5.3 (Execício 9.5.2)

Se $\phi \in B_{as}(V), T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$ e W é um subespaço não degenerado com respeito a ϕ e T-invariante, $W^{\perp_{\phi}}$ também é T-invariante.

Teorema 9.5.7

Suponha que $\operatorname{car}(\mathbb{F}) \neq 2$ e que $0 \neq \dim(V) < \infty$. Sejam $\phi \in B_s(V)$ não degenerada e $T \in \operatorname{End}_{\mathbb{F}}(V)$. Então, T é ortogonal se, e somente se, T for uma composição de reflexões simples.

Lema 9.5.3 (Execício 9.5.2)

Se $\phi \in B_{as}(V), T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$ e W é um subespaço não degenerado com respeito a ϕ e T-invariante, $W^{\perp_{\phi}}$ também é T-invariante.

Lema 9.5.6

Suponha que $car(\mathbb{F}) \neq 2$,

Teorema 9.5.7

Suponha que $\operatorname{car}(\mathbb{F}) \neq 2$ e que $0 \neq \dim(V) < \infty$. Sejam $\phi \in B_s(V)$ não degenerada e $T \in \operatorname{End}_{\mathbb{F}}(V)$. Então, T é ortogonal se, e somente se, T for uma composição de reflexões simples.

Lema 9.5.3 (Execício 9.5.2)

Se $\phi \in B_{as}(V), T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$ e W é um subespaço não degenerado com respeito a ϕ e T-invariante, $W^{\perp_{\phi}}$ também é T-invariante.

Lema 9.5.6

Suponha que $\operatorname{car}(\mathbb{F}) \neq 2, \phi \in B_s(V)$ seja não degenerada

Teorema 9.5.7

Suponha que $\operatorname{car}(\mathbb{F}) \neq 2$ e que $0 \neq \dim(V) < \infty$. Sejam $\phi \in B_s(V)$ não degenerada e $T \in \operatorname{End}_{\mathbb{F}}(V)$. Então, T é ortogonal se, e somente se, T for uma composição de reflexões simples.

Lema 9.5.3 (Execício 9.5.2)

Se $\phi \in B_{as}(V), T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$ e W é um subespaço não degenerado com respeito a ϕ e T-invariante, $W^{\perp_{\phi}}$ também é T-invariante.

Lema 9.5.6

Suponha que $car(\mathbb{F}) \neq 2, \phi \in B_s(V)$ seja não degenerada e que $u, v \in V$ satisfaçam $\phi(u, u) = \phi(v, v) \neq 0$.

Teorema 9.5.7

Suponha que $\operatorname{car}(\mathbb{F}) \neq 2$ e que $0 \neq \dim(V) < \infty$. Sejam $\phi \in B_s(V)$ não degenerada e $T \in \operatorname{End}_{\mathbb{F}}(V)$. Então, T é ortogonal se, e somente se, T for uma composição de reflexões simples.

Lema 9.5.3 (Execício 9.5.2)

Se $\phi \in B_{as}(V), T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$ e W é um subespaço não degenerado com respeito a ϕ e T-invariante, $W^{\perp_{\phi}}$ também é T-invariante.

Lema 9.5.6

Suponha que $\operatorname{car}(\mathbb{F}) \neq 2, \phi \in B_s(V)$ seja não degenerada e que $u, v \in V$ satisfaçam $\phi(u, u) = \phi(v, v) \neq 0$. Então, existe reflexão simples R tal que $R(v) \in \{u, -u\}$.

Teorema 9.5.7

Suponha que $\operatorname{car}(\mathbb{F}) \neq 2$ e que $0 \neq \dim(V) < \infty$. Sejam $\phi \in B_s(V)$ não degenerada e $T \in \operatorname{End}_{\mathbb{F}}(V)$. Então, T é ortogonal se, e somente se, T for uma composição de reflexões simples.

Lema 9.5.3 (Execício 9.5.2)

Se $\phi \in B_{as}(V), T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$ e W é um subespaço não degenerado com respeito a ϕ e T-invariante, $W^{\perp_{\phi}}$ também é T-invariante.

Lema 9.5.6

Suponha que $\operatorname{car}(\mathbb{F}) \neq 2, \phi \in B_s(V)$ seja não degenerada e que $u,v \in V$ satisfaçam $\phi(u,u) = \phi(v,v) \neq 0$. Então, existe reflexão simples R tal que $R(v) \in \{u,-u\}$.

Dem.: Considere $w_{\pm} = v \pm u$ e $W_{\pm} = [w_{\pm}]$.

Teorema 9.5.7

Suponha que $\operatorname{car}(\mathbb{F}) \neq 2$ e que $0 \neq \dim(V) < \infty$. Sejam $\phi \in B_s(V)$ não degenerada e $T \in \operatorname{End}_{\mathbb{F}}(V)$. Então, T é ortogonal se, e somente se, T for uma composição de reflexões simples.

Lema 9.5.3 (Execício 9.5.2)

Se $\phi \in B_{as}(V), T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$ e W é um subespaço não degenerado com respeito a ϕ e T-invariante, $W^{\perp_{\phi}}$ também é T-invariante.

Lema 9.5.6

Suponha que $\operatorname{car}(\mathbb{F}) \neq 2, \phi \in B_s(V)$ seja não degenerada e que $u, v \in V$ satisfaçam $\phi(u, u) = \phi(v, v) \neq 0$. Então, existe reflexão simples R tal que $R(v) \in \{u, -u\}$.

Dem.: Considere $w_{\pm} = v \pm u$ e $W_{\pm} = [w_{\pm}]$. Mostremos que pelo menos um dos dois vetores w_{+} e w_{-} não é isotrópico.

Teorema 9.5.7

Suponha que $\operatorname{car}(\mathbb{F}) \neq 2$ e que $0 \neq \dim(V) < \infty$. Sejam $\phi \in B_s(V)$ não degenerada e $T \in \operatorname{End}_{\mathbb{F}}(V)$. Então, T é ortogonal se, e somente se, T for uma composição de reflexões simples.

Lema 9.5.3 (Execício 9.5.2)

Se $\phi \in B_{as}(V), T \in \operatorname{End}_{\mathbb{F}}^{\phi}(V)$ e W é um subespaço não degenerado com respeito a ϕ e T-invariante, $W^{\perp_{\phi}}$ também é T-invariante.

Lema 9.5.6

Suponha que $\operatorname{car}(\mathbb{F}) \neq 2, \phi \in B_s(V)$ seja não degenerada e que $u, v \in V$ satisfaçam $\phi(u, u) = \phi(v, v) \neq 0$. Então, existe reflexão simples R tal que $R(v) \in \{u, -u\}$.

Dem.: Considere $w_{\pm} = v \pm u$ e $W_{\pm} = [w_{\pm}]$. Mostremos que pelo menos um dos dois vetores w_{+} e w_{-} não é isotrópico. De fato,

$$\phi(w_{\pm}, w_{\pm}) = 2(\phi(u, u) \pm \phi(u, v)).$$

Logo, se fosse $\phi(w_+, w_+) = \phi(w_-, w_-) = 0$, teríamos $\phi(u, u) = \pm \phi(u, v)$

Logo, se fosse $\phi(w_+, w_+) = \phi(w_-, w_-) = 0$, teríamos $\phi(u, u) = \pm \phi(u, v)$ e, portanto, $\phi(u, u) = 0$, contradizendo a hipótese sobre u.

Logo, se fosse $\phi(w_+, w_+) = \phi(w_-, w_-) = 0$, teríamos $\phi(u, u) = \pm \phi(u, v)$ e, portanto, $\phi(u, u) = 0$, contradizendo a hipótese sobre u. Note também que $\phi(w_+, w_-) = 0$.

Logo, se fosse $\phi(w_+, w_+) = \phi(w_-, w_-) = 0$, teríamos $\phi(u, u) = \pm \phi(u, v)$ e, portanto, $\phi(u, u) = 0$, contradizendo a hipótese sobre u. Note também que $\phi(w_+, w_-) = 0$. Assim, se w_+ não for isotrópico, temos

$$R_{W_+}^{\phi}(w_{\pm}) = \mp w_{\pm}$$

Logo, se fosse $\phi(w_+, w_+) = \phi(w_-, w_-) = 0$, teríamos $\phi(u, u) = \pm \phi(u, v)$ e, portanto, $\phi(u, u) = 0$, contradizendo a hipótese sobre u. Note também que $\phi(w_+, w_-) = 0$. Assim, se w_+ não for isotrópico, temos

$$R_{W_+}^{\phi}(w_{\pm}) = \mp w_{\pm}$$

e, portanto, $R_{W_+}^{\phi}(v) = \frac{1}{2} R_{W_+}^{\phi}(w_+ + w_-)$

Logo, se fosse $\phi(w_+, w_+) = \phi(w_-, w_-) = 0$, teríamos $\phi(u, u) = \pm \phi(u, v)$ e, portanto, $\phi(u, u) = 0$, contradizendo a hipótese sobre u. Note também que $\phi(w_+, w_-) = 0$. Assim, se w_+ não for isotrópico, temos

$$R_{W_+}^{\phi}(w_{\pm}) = \mp w_{\pm}$$

e, portanto,
$$R_{W_+}^{\phi}(v) = \frac{1}{2} R_{W_+}^{\phi}(w_+ + w_-) = \frac{1}{2}(w_- - w_+)$$

Logo, se fosse $\phi(w_+, w_+) = \phi(w_-, w_-) = 0$, teríamos $\phi(u, u) = \pm \phi(u, v)$ e, portanto, $\phi(u, u) = 0$, contradizendo a hipótese sobre u. Note também que $\phi(w_+, w_-) = 0$. Assim, se w_+ não for isotrópico, temos

$$R_{W_+}^{\phi}(w_{\pm}) = \mp w_{\pm}$$

e, portanto, $R_{W_+}^{\phi}(v) = \frac{1}{2} R_{W_+}^{\phi}(w_+ + w_-) = \frac{1}{2}(w_- - w_+) = -u$.

Logo, se fosse $\phi(w_+, w_+) = \phi(w_-, w_-) = 0$, teríamos $\phi(u, u) = \pm \phi(u, v)$ e, portanto, $\phi(u, u) = 0$, contradizendo a hipótese sobre u. Note também que $\phi(w_+, w_-) = 0$. Assim, se w_+ não for isotrópico, temos

$$R_{W_+}^{\phi}(w_{\pm}) = \mp w_{\pm}$$

e, portanto,
$$R_{W_+}^{\phi}(v) = \frac{1}{2} R_{W_+}^{\phi}(w_+ + w_-) = \frac{1}{2}(w_- - w_+) = -u$$
.

Analogamente, se w_- não for isotrópico, segue que $R_{W_-}^{\phi}(v)=u.$

Logo, se fosse $\phi(w_+, w_+) = \phi(w_-, w_-) = 0$, teríamos $\phi(u, u) = \pm \phi(u, v)$ e, portanto, $\phi(u, u) = 0$, contradizendo a hipótese sobre u. Note também que $\phi(w_+, w_-) = 0$. Assim, se w_+ não for isotrópico, temos

$$R_{W_+}^{\phi}(w_{\pm}) = \mp w_{\pm}$$

e, portanto, $R_{W_+}^{\phi}(v) = \frac{1}{2} R_{W_+}^{\phi}(w_+ + w_-) = \frac{1}{2}(w_- - w_+) = -u$.

Analogamente, se w_- não for isotrópico, segue que $R_{W_-}^{\phi}(v) = u$.

Dem. do Teor: Sendo $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ um grupo, composições de reflexões simples são operadores ortogonais.

Logo, se fosse $\phi(w_+, w_+) = \phi(w_-, w_-) = 0$, teríamos $\phi(u, u) = \pm \phi(u, v)$ e, portanto, $\phi(u, u) = 0$, contradizendo a hipótese sobre u. Note também que $\phi(w_+, w_-) = 0$. Assim, se w_+ não for isotrópico, temos

$$R_{W_+}^{\phi}(w_{\pm}) = \mp w_{\pm}$$

e, portanto, $R_{W_+}^{\phi}(v) = \frac{1}{2} R_{W_+}^{\phi}(w_+ + w_-) = \frac{1}{2}(w_- - w_+) = -u$.

Analogamente, se w_- não for isotrópico, segue que $R_{W_-}^{\phi}(v) = u$.

Dem. do Teor: Sendo $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ um grupo, composições de reflexões simples são operadores ortogonais. Provaremos a recíproca por indução em $n = \dim(V) \geq 1$.

Logo, se fosse $\phi(w_+, w_+) = \phi(w_-, w_-) = 0$, teríamos $\phi(u, u) = \pm \phi(u, v)$ e, portanto, $\phi(u, u) = 0$, contradizendo a hipótese sobre u. Note também que $\phi(w_+, w_-) = 0$. Assim, se w_+ não for isotrópico, temos

$$R_{W_+}^{\phi}(w_{\pm}) = \mp w_{\pm}$$

e, portanto, $R_{W_+}^{\phi}(v) = \frac{1}{2} R_{W_+}^{\phi}(w_+ + w_-) = \frac{1}{2}(w_- - w_+) = -u$.

Analogamente, se w_- não for isotrópico, segue que $R_{W_-}^{\phi}(v)=u.$

Dem. do Teor: Sendo $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ um grupo, composições de reflexões simples são operadores ortogonais. Provaremos a recíproca por indução em $n=\dim(V)\geq 1$. Se n=1, então V=[v] para todo $v\in V\setminus\{0\}$

Logo, se fosse $\phi(w_+, w_+) = \phi(w_-, w_-) = 0$, teríamos $\phi(u, u) = \pm \phi(u, v)$ e, portanto, $\phi(u, u) = 0$, contradizendo a hipótese sobre u. Note também que $\phi(w_+, w_-) = 0$. Assim, se w_+ não for isotrópico, temos

$$R_{W_+}^{\phi}(w_{\pm}) = \mp w_{\pm}$$

e, portanto, $R_{W_+}^{\phi}(v) = \frac{1}{2} R_{W_+}^{\phi}(w_+ + w_-) = \frac{1}{2}(w_- - w_+) = -u$.

Analogamente, se w_- não for isotrópico, segue que $R_{W_-}^{\phi}(v)=u.$

Dem. do Teor: Sendo $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ um grupo, composições de reflexões simples são operadores ortogonais. Provaremos a recíproca por indução em $n = \dim(V) \geq 1$. Se n = 1, então V = [v] para todo $v \in V \setminus \{0\}$ e temos $T(v) = \lambda v$.

Logo, se fosse $\phi(w_+, w_+) = \phi(w_-, w_-) = 0$, teríamos $\phi(u, u) = \pm \phi(u, v)$ e, portanto, $\phi(u, u) = 0$, contradizendo a hipótese sobre u. Note também que $\phi(w_+, w_-) = 0$. Assim, se w_+ não for isotrópico, temos

$$R_{W_+}^{\phi}(w_{\pm}) = \mp w_{\pm}$$

e, portanto, $R_{W_+}^{\phi}(v) = \frac{1}{2} R_{W_+}^{\phi}(w_+ + w_-) = \frac{1}{2}(w_- - w_+) = -u$.

Analogamente, se w_- não for isotrópico, segue que $R_{W_-}^{\phi}(v)=u.$

Dem. do Teor: Sendo $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ um grupo, composições de reflexões simples são operadores ortogonais. Provaremos a recíproca por indução em $n = \dim(V) \geq 1$. Se n = 1, então V = [v] para todo $v \in V \setminus \{0\}$ e temos $T(v) = \lambda v$. Como $\det(T) = \pm 1$, segue que $T = \pm \operatorname{Id}_{V}$.

Logo, se fosse $\phi(w_+, w_+) = \phi(w_-, w_-) = 0$, teríamos $\phi(u, u) = \pm \phi(u, v)$ e, portanto, $\phi(u, u) = 0$, contradizendo a hipótese sobre u. Note também que $\phi(w_+, w_-) = 0$. Assim, se w_+ não for isotrópico, temos

$$R_{W_+}^{\phi}(w_{\pm}) = \mp w_{\pm}$$

e, portanto, $R_{W_+}^{\phi}(v) = \frac{1}{2} R_{W_+}^{\phi}(w_+ + w_-) = \frac{1}{2}(w_- - w_+) = -u$.

Analogamente, se w_- não for isotrópico, segue que $R_{W_-}^{\phi}(v) = u$.

Dem. do Teor: Sendo $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ um grupo, composições de reflexões simples são operadores ortogonais. Provaremos a recíproca por indução em $n = \dim(V) \geq 1$. Se n = 1, então V = [v] para todo $v \in V \setminus \{0\}$ e temos $T(v) = \lambda v$. Como $\det(T) = \pm 1$, segue que $T = \pm \operatorname{Id}_V$. Como $-\operatorname{Id}_V = R_V^{\phi}$

Logo, se fosse $\phi(w_+, w_+) = \phi(w_-, w_-) = 0$, teríamos $\phi(u, u) = \pm \phi(u, v)$ e, portanto, $\phi(u, u) = 0$, contradizendo a hipótese sobre u. Note também que $\phi(w_+, w_-) = 0$. Assim, se w_+ não for isotrópico, temos

$$R_{W_+}^{\phi}(w_{\pm}) = \mp w_{\pm}$$

e, portanto, $R_{W_+}^{\phi}(v) = \frac{1}{2} R_{W_+}^{\phi}(w_+ + w_-) = \frac{1}{2}(w_- - w_+) = -u$.

Analogamente, se w_- não for isotrópico, segue que $R_{W_-}^{\phi}(v)=u.$

Dem. do Teor: Sendo $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ um grupo, composições de reflexões simples são operadores ortogonais. Provaremos a recíproca por indução em $n = \dim(V) \geq 1$. Se n = 1, então V = [v] para todo $v \in V \setminus \{0\}$ e temos $T(v) = \lambda v$. Como $\det(T) = \pm 1$, segue que $T = \pm \operatorname{Id}_V$. Como $-\operatorname{Id}_V = R_V^{\phi}$ e $\operatorname{Id}_V = (R_V^{\phi})^2$

Logo, se fosse $\phi(w_+, w_+) = \phi(w_-, w_-) = 0$, teríamos $\phi(u, u) = \pm \phi(u, v)$ e, portanto, $\phi(u, u) = 0$, contradizendo a hipótese sobre u. Note também que $\phi(w_+, w_-) = 0$. Assim, se w_+ não for isotrópico, temos

$$R_{W_+}^{\phi}(w_{\pm}) = \mp w_{\pm}$$

e, portanto, $R_{W_+}^{\phi}(v) = \frac{1}{2} R_{W_+}^{\phi}(w_+ + w_-) = \frac{1}{2}(w_- - w_+) = -u$.

Analogamente, se w_- não for isotrópico, segue que $R_{W_-}^{\phi}(v) = u$.

Dem. do Teor: Sendo $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ um grupo, composições de reflexões simples são operadores ortogonais. Provaremos a recíproca por indução em $n = \dim(V) \geq 1$. Se n = 1, então V = [v] para todo $v \in V \setminus \{0\}$ e temos $T(v) = \lambda v$. Como $\det(T) = \pm 1$, segue que $T = \pm \operatorname{Id}_V$. Como $-\operatorname{Id}_V = R_V^{\phi}$ e $\operatorname{Id}_V = (R_V^{\phi})^2$, fica demonstrado o caso n = 1.

Logo, se fosse $\phi(w_+, w_+) = \phi(w_-, w_-) = 0$, teríamos $\phi(u, u) = \pm \phi(u, v)$ e, portanto, $\phi(u, u) = 0$, contradizendo a hipótese sobre u. Note também que $\phi(w_+, w_-) = 0$. Assim, se w_+ não for isotrópico, temos

$$R_{W_+}^{\phi}(w_{\pm}) = \mp w_{\pm}$$

e, portanto, $R_{W_+}^{\phi}(v) = \frac{1}{2} R_{W_+}^{\phi}(w_+ + w_-) = \frac{1}{2}(w_- - w_+) = -u$.

Analogamente, se w_- não for isotrópico, segue que $R_{W_-}^{\phi}(v)=u.$

Dem. do Teor: Sendo $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ um grupo, composições de reflexões simples são operadores ortogonais. Provaremos a recíproca por indução em $n = \dim(V) \geq 1$. Se n = 1, então V = [v] para todo $v \in V \setminus \{0\}$ e temos $T(v) = \lambda v$. Como $\det(T) = \pm 1$, segue que $T = \pm \operatorname{Id}_V$. Como $-\operatorname{Id}_V = R_V^{\phi}$ e $\operatorname{Id}_V = (R_V^{\phi})^2$, fica demonstrado o caso n = 1.

Se n>1, escolha um vetor não isotrópico u (existe pois $\operatorname{car}(\mathbb{F})\neq 2$ e ϕ é não degenerada).

Logo, se fosse $\phi(w_+, w_+) = \phi(w_-, w_-) = 0$, teríamos $\phi(u, u) = \pm \phi(u, v)$ e, portanto, $\phi(u,u)=0$, contradizendo a hipótese sobre u. Note também que $\phi(w_+, w_-) = 0$. Assim, se w_+ não for isotrópico, temos

$$R_{W_+}^{\phi}(w_{\pm}) = \mp w_{\pm}$$

e, portanto, $R_{W_{+}}^{\phi}(v) = \frac{1}{2} R_{W_{+}}^{\phi}(w_{+} + w_{-}) = \frac{1}{2}(w_{-} - w_{+}) = -u.$

Analogamente, se w_{-} não for isotrópico, segue que R_{W}^{ϕ} (v) = u.

Dem. do Teor: Sendo $\operatorname{End}_{\mathbb{P}}^{\phi}(V)$ um grupo, composições de reflexões simples são operadores ortogonais. Provaremos a recíproca por indução em $n = \dim(V) \ge 1$. Se n = 1, então V = [v] para todo $v \in V \setminus \{0\}$ e temos $T(v) = \lambda v$. Como $\det(T) = \pm 1$, segue que $T = \pm \mathrm{Id}_V$. Como $-\mathrm{Id}_V = R_V^{\phi}$ e $\mathrm{Id}_V = (R_V^{\phi})^2$, fica demonstrado o caso n=1.

Se n > 1, escolha um vetor não isotrópico u (existe pois car(\mathbb{F}) $\neq 2$ e ϕ é não degenerada). Tome v = T(u) e seja R uma reflexão simples t.q.

$$R(v) = \pm u$$

Logo, se fosse $\phi(w_+, w_+) = \phi(w_-, w_-) = 0$, teríamos $\phi(u, u) = \pm \phi(u, v)$ e, portanto, $\phi(u, u) = 0$, contradizendo a hipótese sobre u. Note também que $\phi(w_+, w_-) = 0$. Assim, se w_+ não for isotrópico, temos

$$R_{W_+}^{\phi}(w_{\pm}) = \mp w_{\pm}$$

e, portanto, $R_{W_+}^{\phi}(v) = \frac{1}{2} R_{W_+}^{\phi}(w_+ + w_-) = \frac{1}{2}(w_- - w_+) = -u$.

Analogamente, se w_- não for isotrópico, segue que $R_{W_-}^\phi(v)=u.$

Dem. do Teor: Sendo $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ um grupo, composições de reflexões simples são operadores ortogonais. Provaremos a recíproca por indução em $n = \dim(V) \geq 1$. Se n = 1, então V = [v] para todo $v \in V \setminus \{0\}$ e temos $T(v) = \lambda v$. Como $\det(T) = \pm 1$, segue que $T = \pm \operatorname{Id}_V$. Como $-\operatorname{Id}_V = R_V^{\phi}$ e $\operatorname{Id}_V = (R_V^{\phi})^2$, fica demonstrado o caso n = 1.

Se n > 1, escolha um vetor não isotrópico u (existe pois $\operatorname{car}(\mathbb{F}) \neq 2$ e ϕ é não degenerada). Tome v = T(u) e seja R uma reflexão simples t.q. $R(v) = \pm u$, que existe pelo Lema 9.5.6.

Logo, se fosse $\phi(w_+, w_+) = \phi(w_-, w_-) = 0$, teríamos $\phi(u, u) = \pm \phi(u, v)$ e, portanto, $\phi(u, u) = 0$, contradizendo a hipótese sobre u. Note também que $\phi(w_+, w_-) = 0$. Assim, se w_+ não for isotrópico, temos

$$R_{W_+}^{\phi}(w_{\pm}) = \mp w_{\pm}$$

e, portanto, $R_{W_+}^{\phi}(v) = \frac{1}{2} R_{W_+}^{\phi}(w_+ + w_-) = \frac{1}{2}(w_- - w_+) = -u$.

Analogamente, se w_- não for isotrópico, segue que $R_{W_-}^{\phi}(v)=u.$

Dem. do Teor: Sendo $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ um grupo, composições de reflexões simples são operadores ortogonais. Provaremos a recíproca por indução em $n=\dim(V)\geq 1$. Se n=1, então V=[v] para todo $v\in V\setminus\{0\}$ e temos $T(v)=\lambda v$. Como $\det(T)=\pm 1$, segue que $T=\pm \operatorname{Id}_V$. Como $-\operatorname{Id}_V=R_V^{\phi}$ e $\operatorname{Id}_V=(R_V^{\phi})^2$, fica demonstrado o caso n=1.

Se n>1, escolha um vetor não isotrópico u (existe pois $\operatorname{car}(\mathbb{F})\neq 2$ e ϕ é não degenerada). Tome v=T(u) e seja R uma reflexão simples t.q. $R(v)=\pm u$, que existe pelo Lema 9.5.6. Em particular, U=[u] é $(R\circ T)$ -invariante

Logo, se fosse $\phi(w_+, w_+) = \phi(w_-, w_-) = 0$, teríamos $\phi(u, u) = \pm \phi(u, v)$ e, portanto, $\phi(u, u) = 0$, contradizendo a hipótese sobre u. Note também que $\phi(w_+, w_-) = 0$. Assim, se w_+ não for isotrópico, temos

$$R_{W_+}^{\phi}(w_{\pm}) = \mp w_{\pm}$$

e, portanto, $R_{W_+}^{\phi}(v) = \frac{1}{2} R_{W_+}^{\phi}(w_+ + w_-) = \frac{1}{2}(w_- - w_+) = -u$.

Analogamente, se w_- não for isotrópico, segue que $R_{W_-}^{\phi}(v) = u$.

Dem. do Teor: Sendo $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ um grupo, composições de reflexões simples são operadores ortogonais. Provaremos a recíproca por indução em $n=\dim(V)\geq 1$. Se n=1, então V=[v] para todo $v\in V\setminus\{0\}$ e temos $T(v)=\lambda v$. Como $\det(T)=\pm 1$, segue que $T=\pm \operatorname{Id}_V$. Como $-\operatorname{Id}_V=R_V^{\phi}$ e $\operatorname{Id}_V=(R_V^{\phi})^2$, fica demonstrado o caso n=1.

Se n>1, escolha um vetor não isotrópico u (existe pois $\operatorname{car}(\mathbb{F})\neq 2$ e ϕ é não degenerada). Tome v=T(u) e seja R uma reflexão simples t.q. $R(v)=\pm u$, que existe pelo Lema 9.5.6. Em particular, U=[u] é $(R\circ T)$ -invariante e, como $U^{\perp_{\phi}}$ é não degenerado

Logo, se fosse $\phi(w_+,w_+)=\phi(w_-,w_-)=0$, teríamos $\phi(u,u)=\pm\phi(u,v)$ e, portanto, $\phi(u,u)=0$, contradizendo a hipótese sobre u. Note também que $\phi(w_+,w_-)=0$. Assim, se w_+ não for isotrópico, temos

$$R_{W_+}^{\phi}(w_{\pm}) = \mp w_{\pm}$$

e, portanto, $R_{W_+}^{\phi}(v) = \frac{1}{2} R_{W_+}^{\phi}(w_+ + w_-) = \frac{1}{2}(w_- - w_+) = -u$.

Analogamente, se w_- não for isotrópico, segue que $R_{W_-}^{\phi}(v) = u$.

Dem. do Teor: Sendo $\operatorname{End}_{\mathbb{F}}^{\phi}(V)$ um grupo, composições de reflexões simples são operadores ortogonais. Provaremos a recíproca por indução em $n = \dim(V) \geq 1$. Se n = 1, então V = [v] para todo $v \in V \setminus \{0\}$ e temos $T(v) = \lambda v$. Como $\det(T) = \pm 1$, segue que $T = \pm \operatorname{Id}_V$. Como $-\operatorname{Id}_V = R_V^{\phi}$ e $\operatorname{Id}_V = (R_V^{\phi})^2$, fica demonstrado o caso n = 1.

Se n>1, escolha um vetor não isotrópico u (existe pois $\operatorname{car}(\mathbb{F})\neq 2$ e ϕ é não degenerada). Tome v=T(u) e seja R uma reflexão simples t.q. $R(v)=\pm u$, que existe pelo Lema 9.5.6. Em particular, U=[u] é $(R\circ T)$ -invariante e, como $U^{\perp_{\phi}}$ é não degenerado, segue do Lema 9.5.3 que $U^{\perp_{\phi}}$ também é $(R\circ T)$ -invariante.

SejaSo operador linear em U^{\perp_ϕ} induzido por $R\circ T.$

$$S = S_1 \circ \cdots \circ S_m.$$

Seja S o operador linear em $U^{\perp_{\phi}}$ induzido por $R \circ T$. Por hipótese de indução, S é uma composição de reflexões simples. Digamos, $S = S_1 \circ \cdots \circ S_m$.

Para cada
$$1 \leq j \leq m$$
, seja R_j o único operador linear em V satisfazendo

 $R_i(u) = u$ e $R_i(w) = S_i(w)$ para todo $w \in U^{\perp_{\phi}}$.

Seja S o operador linear em $U^{\perp_{\phi}}$ induzido por $R \circ T$. Por hipótese de indução, S é uma composição de reflexões simples. Digamos, $S = S_1 \circ \cdots \circ S_m$.

$$S = S_1 \circ \cdots \circ S_m$$
.
 R_i o único operador linear em V satisfazo

Para cada $1 \leq j \leq m$, seja R_j o único operador linear em V satisfazendo $R_j(u) = u$ e $R_j(w) = S_j(w)$ para todo $w \in U^{\perp_{\phi}}$.

Considere também

(4)
$$R_0 = \begin{cases} \operatorname{Id}_V, & \operatorname{se} R(v) = u, \\ R_U^{\phi}, & \operatorname{se} R(v) = -u. \end{cases}$$

$$S = S_1 \circ \cdots \circ S_m.$$

Para cada $1 \leq j \leq m$, seja R_j o único operador linear em V satisfazendo $R_j(u) = u$ e $R_j(w) = S_j(w)$ para todo $w \in U^{\perp_{\phi}}$.

Considere também

(4)
$$R_0 = \begin{cases} \operatorname{Id}_V, & \operatorname{se} R(v) = u, \\ R_U^{\phi}, & \operatorname{se} R(v) = -u. \end{cases}$$

Para completar a demonstração verificaremos que

$$(5) T = R \circ R_0 \circ R_1 \circ \cdots \circ R_m$$

$$S = S_1 \circ \cdots \circ S_m.$$

Para cada $1 \leq j \leq m$, seja R_j o único operador linear em V satisfazendo $R_j(u) = u$ e $R_j(w) = S_j(w)$ para todo $w \in U^{\perp_{\phi}}$.

Considere também

(4)
$$R_0 = \begin{cases} \operatorname{Id}_V, & \operatorname{se} R(v) = u, \\ R_U^{\phi}, & \operatorname{se} R(v) = -u. \end{cases}$$

Para completar a demonstração verificaremos que

$$T = R \circ R_0 \circ R_1 \circ \dots \circ R_m$$

e que R_j é uma reflexão simples em V para todo $1 \leq j \leq m$.

$$S = S_1 \circ \cdots \circ S_m.$$

Para cada $1 \leq j \leq m$, seja R_j o único operador linear em V satisfazendo $R_j(u) = u$ e $R_j(w) = S_j(w)$ para todo $w \in U^{\perp_{\phi}}$.

Considere também

(4)
$$R_0 = \begin{cases} \operatorname{Id}_V, & \operatorname{se} R(v) = u, \\ R_U^{\phi}, & \operatorname{se} R(v) = -u. \end{cases}$$

Para completar a demonstração verificaremos que

$$(5) T = R \circ R_0 \circ R_1 \circ \cdots \circ R_m$$

e que R_j é uma reflexão simples em V para todo $1 \le j \le m$.

Comece observando que $R_0(w) = w$ para todo $w \in U^{\perp_{\phi}}$

Seja S o operador linear em $U^{\perp_{\phi}}$ induzido por $R \circ T$. Por hipótese de indução, S é uma composição de reflexões simples. Digamos, $S = S_1 \circ \cdots \circ S_m$.

Para cada
$$1 \leq j \leq m$$
, seja R_j o único operador linear em V satisfazendo $R_i(u) = u$ e $R_i(w) = S_i(w)$ para todo $w \in U^{\perp_{\phi}}$.

Considere também

(4)
$$R_0 = \begin{cases} \operatorname{Id}_V, & \operatorname{se} R(v) = u, \\ R_U^{\phi}, & \operatorname{se} R(v) = -u. \end{cases}$$

Para completar a demonstração verificaremos que

$$T = R \circ R_0 \circ R_1 \circ \dots \circ R_m$$

e que R_j é uma reflexão simples em V para todo $1 \le j \le m$.

Comece observando que $R_0(w) = w$ para todo $w \in U^{\perp_{\phi}}$ e, portanto, $R \circ T$ coincide com $R_0 \circ \cdots \circ R_m$ em $U^{\perp_{\phi}}$.

$$S = S_1 \circ \cdots \circ S_m$$
.

Requires operador linear on V satisfy

Para cada $1 \leq j \leq m$, seja R_j o único operador linear em V satisfazendo $R_j(u) = u$ e $R_j(w) = S_j(w)$ para todo $w \in U^{\perp_{\phi}}$.

Considere também

(4)
$$R_0 = \begin{cases} \operatorname{Id}_V, & \operatorname{se} R(v) = u, \\ R_U^{\phi}, & \operatorname{se} R(v) = -u. \end{cases}$$

Para completar a demonstração verificaremos que

$$T = R \circ R_0 \circ R_1 \circ \dots \circ R_m$$

e que R_j é uma reflexão simples em V para todo $1 \le j \le m$.

Comece observando que $R_0(w) = w$ para todo $w \in U^{\perp_{\phi}}$ e, portanto, $R \circ T$ coincide com $R_0 \circ \cdots \circ R_m$ em $U^{\perp_{\phi}}$. Por outro lado, como $R_j(u) = u$ para todo $1 \leq j \leq m$

$$S = S_1 \circ \cdots \circ S_m.$$

Para cada $1 \leq j \leq m$, seja R_j o único operador linear em V satisfazendo $R_j(u) = u$ e $R_j(w) = S_j(w)$ para todo $w \in U^{\perp_{\phi}}$.

Considere também

(4)
$$R_0 = \begin{cases} \operatorname{Id}_V, & \operatorname{se} R(v) = u, \\ R_U^{\phi}, & \operatorname{se} R(v) = -u. \end{cases}$$

Para completar a demonstração verificaremos que

$$(5) T = R \circ R_0 \circ R_1 \circ \cdots \circ R_m$$

e que R_j é uma reflexão simples em V para todo $1 \le j \le m$.

Comece observando que $R_0(w) = w$ para todo $w \in U^{\perp_{\phi}}$ e, portanto, $R \circ T$ coincide com $R_0 \circ \cdots \circ R_m$ em $U^{\perp_{\phi}}$. Por outro lado, como $R_j(u) = u$ para todo $1 \leq j \leq m$, temos

$$(R_0 \circ \cdots \circ R_m)(u) = R_0(u)$$

$$S = S_1 \circ \cdots \circ S_m.$$

Para cada $1 \leq j \leq m$, seja R_j o único operador linear em V satisfazendo $R_j(u) = u$ e $R_j(w) = S_j(w)$ para todo $w \in U^{\perp_{\phi}}$.

Considere também

(4)
$$R_0 = \begin{cases} \operatorname{Id}_V, & \operatorname{se} R(v) = u, \\ R_U^{\phi}, & \operatorname{se} R(v) = -u. \end{cases}$$

Para completar a demonstração verificaremos que

$$(5) T = R \circ R_0 \circ R_1 \circ \cdots \circ R_m$$

e que R_j é uma reflexão simples em V para todo $1 \le j \le m$.

Comece observando que $R_0(w) = w$ para todo $w \in U^{\perp_{\phi}}$ e, portanto, $R \circ T$ coincide com $R_0 \circ \cdots \circ R_m$ em $U^{\perp_{\phi}}$. Por outro lado, como $R_j(u) = u$ para todo $1 \leq j \leq m$, temos

$$(R_0 \circ \cdots \circ R_m)(u) = R_0(u) \stackrel{(4)}{=} R(T(u)).$$

$$S = S_1 \circ \cdots \circ S_m.$$

Para cada $1 \leq j \leq m$, seja R_j o único operador linear em V satisfazendo $R_j(u) = u$ e $R_j(w) = S_j(w)$ para todo $w \in U^{\perp_{\phi}}$.

Considere também

(4)
$$R_0 = \begin{cases} \operatorname{Id}_V, & \operatorname{se} R(v) = u, \\ R_U^{\phi}, & \operatorname{se} R(v) = -u. \end{cases}$$

Para completar a demonstração verificaremos que

$$(5) T = R \circ R_0 \circ R_1 \circ \cdots \circ R_m$$

e que R_j é uma reflexão simples em V para todo $1 \le j \le m$.

Comece observando que $R_0(w) = w$ para todo $w \in U^{\perp_{\phi}}$ e, portanto, $R \circ T$ coincide com $R_0 \circ \cdots \circ R_m$ em $U^{\perp_{\phi}}$. Por outro lado, como $R_j(u) = u$ para todo $1 \leq j \leq m$, temos

$$(R_0 \circ \cdots \circ R_m)(u) = R_0(u) \stackrel{(4)}{=} R(T(u)).$$

Como $V = U \oplus U^{\perp_{\phi}}$, segue que $R \circ T = R_0 \circ \cdots \circ R_m$

Seja S o operador linear em $U^{\perp_{\phi}}$ induzido por $R \circ T$. Por hipótese de indução, S é uma composição de reflexões simples. Digamos, $S = S_1 \circ \cdots \circ S_m$.

Para cada
$$1 \leq j \leq m$$
, seja R_j o único operador linear em V satisfazendo

 $R_j(u) = u$ e $R_j(w) = S_j(w)$ para todo $w \in U^{\perp_\phi}$.

Considere também

(4)
$$R_0 = \begin{cases} \operatorname{Id}_V, & \operatorname{se} R(v) = u, \\ R_U^{\phi}, & \operatorname{se} R(v) = -u. \end{cases}$$

Para completar a demonstração verificaremos que

$$(5) T = R \circ R_0 \circ R_1 \circ \cdots \circ R_m$$

e que R_j é uma reflexão simples em V para todo $1 \le j \le m$.

Comece observando que $R_0(w) = w$ para todo $w \in U^{\perp_{\phi}}$ e, portanto, $R \circ T$ coincide com $R_0 \circ \cdots \circ R_m$ em $U^{\perp_{\phi}}$. Por outro lado, como $R_j(u) = u$ para todo $1 \leq j \leq m$, temos

$$(R_0 \circ \cdots \circ R_m)(u) = R_0(u) \stackrel{(4)}{=} R(T(u)).$$

Como $V = U \oplus U^{\perp_{\phi}}$, segue que $R \circ T = R_0 \circ \cdots \circ R_m$, de onde conclui-se (5) já que $R^{-1} = R$ por (3).

Finalmente, mostremos que R_j é uma reflexão simples em V para todo $1 \le j \le m$.

Finalmente, mostremos que R_j é uma reflexão simples em V para todo $1 \le j \le m$. Seja ψ a restrição de ϕ a U^{\perp_ϕ}

Finalmente, mostremos que R_j é uma reflexão simples em V para todo $1 \le j \le m$. Seja ψ a restrição de ϕ a $U^{\perp_{\phi}}$ e, dado $1 \le j \le m$

Finalmente, mostremos que R_j é uma reflexão simples em V para todo $1 \leq j \leq m$. Seja ψ a restrição de ϕ a $U^{\perp_{\phi}}$ e, dado $1 \leq j \leq m$, seja $w_j \in U^{\perp_{\phi}}$ tal que $S_j = R_{W_j}^{\psi} \qquad \text{com} \qquad W_j = [w_j].$

Finalmente, mostremos que R_j é uma reflexão simples em V para todo $1 \leq j \leq m$. Seja ψ a restrição de ϕ a $U^{\perp_{\phi}}$ e, dado $1 \leq j \leq m$, seja $w_j \in U^{\perp_{\phi}}$ tal que $S_j = R_{W_j}^{\psi} \qquad \text{com} \qquad W_j = [w_j].$

Mostremos que $R_j = R_{W_j}^{\phi}$.

Finalmente, mostremos que R_j é uma reflexão simples em V para todo $1 \leq j \leq m$. Seja ψ a restrição de ϕ a $U^{\perp_{\phi}}$ e, dado $1 \leq j \leq m$, seja $w_j \in U^{\perp_{\phi}}$ tal que $S_j = R_{W_i}^{\psi} \qquad \text{com} \qquad W_j = [w_j].$

$$R_{W_j}^{\phi}(u) = u = R_j(u).$$

Finalmente, mostremos que R_i é uma reflexão simples em V para todo $1 \leq j \leq m$. Seja ψ a restrição de ϕ a $U^{\perp_{\phi}}$ e, dado $1 \leq j \leq m$, seja $w_i \in U^{\perp_\phi}$ tal que $S_j = R_{W_i}^{\psi}$ com $W_j = [w_j]$.

$$S_j = R_{W_j}^{\psi} \qquad ext{com} \qquad W_j = [w_j]$$

$$R_{W_j}^{\phi}(u) = u = R_j(u)$$
. Por outro lado, se $w \in U^{\perp_{\phi}}$

Finalmente, mostremos que R_i é uma reflexão simples em V para todo $1 \leq j \leq m$. Seja ψ a restrição de ϕ a $U^{\perp_{\phi}}$ e, dado $1 \leq j \leq m$, seja $w_j \in U^{\perp_{\phi}}$ tal que

$$w_j \in U^{\perp_\phi}$$
 tal que $S_j = R_{W_j}^{\psi} \quad \text{com} \quad W_j = [w_j].$

$$R_{W_j}^{\phi}(u) = u = R_j(u)$$
. Por outro lado, se $w \in U^{\perp_{\phi}}$, temos

$$R_{W_j}^{\phi}(w) = w - 2 \frac{\phi(w, w_j)}{\phi(w_j, w_j)} w_j$$

Finalmente, mostremos que R_i é uma reflexão simples em V para todo $1 \leq j \leq m$. Seja ψ a restrição de ϕ a $U^{\perp_{\phi}}$ e, dado $1 \leq j \leq m$, seja $w_j \in U^{\perp_\phi}$ tal que

$$w_j \in U^{\perp_\phi}$$
 tal que $S_j = R_{W_j}^{\psi} \quad \text{com} \quad W_j = [w_j].$

$$R_{W_j}^{\phi}(u) = u = R_j(u)$$
. Por outro lado, se $w \in U^{\perp_{\phi}}$, temos $R_{W_j}^{\phi}(w) = w - 2 \frac{\phi(w, w_j)}{\phi(w_i, w_i)} w_j = w - 2 \frac{\psi(w, w_j)}{\psi(w_i, w_i)} w_j$

Finalmente, mostremos que R_i é uma reflexão simples em V para todo $1 \leq j \leq m$. Seja ψ a restrição de ϕ a $U^{\perp_{\phi}}$ e, dado $1 \leq j \leq m$, seja $w_j \in U^{\perp_\phi}$ tal que

$$w_j \in U^{\perp_\phi}$$
 tal que $S_j = R_{W_j}^{\psi} \quad \text{com} \quad W_j = [w_j].$

$$R_{W_j}^{\phi}(u) = u = R_j(u)$$
. Por outro lado, se $w \in U^{\perp_{\phi}}$, temos $R_{W_j}^{\phi}(w) = w - 2 \frac{\phi(w, w_j)}{\phi(w_i, w_i)} w_j = w - 2 \frac{\psi(w, w_j)}{\psi(w_i, w_j)} w_j = S_j(w) = R_j(w)$.

Finalmente, mostremos que R_j é uma reflexão simples em V para todo $1 \le j \le m$. Seja ψ a restrição de ϕ a $U^{\perp_{\phi}}$ e, dado $1 \le j \le m$, seja $w_j \in U^{\perp_{\phi}}$ tal que

$$S_j \in U^{\perp_\phi} ext{ tal que}$$
 $S_j = R_{W_j}^\psi ext{ com } W_j = [w_j].$

Mostremos que $R_j = R_{W_j}^{\phi}$. Como $\phi(u, w_j) = 0$, temos

$$R_{W_j}^{\phi}(u) = u = R_j(u)$$
. Por outro lado, se $w \in U^{\perp_{\phi}}$, temos $R_{W_j}^{\phi}(w) = w - 2 \frac{\phi(w, w_j)}{\phi(w_i, w_i)} \ w_j = w - 2 \frac{\psi(w, w_j)}{\psi(w_i, w_j)} \ w_j = S_j(w) = R_j(w)$.

Como $R_{W_i}^{\phi}$ coincide com R_j em U e $U^{\perp_{\phi}}$

Finalmente, mostremos que R_i é uma reflexão simples em V para todo $1 \leq j \leq m$. Seja ψ a restrição de ϕ a $U^{\perp_{\phi}}$ e, dado $1 \leq j \leq m$, seja $w_j \in U^{\perp_\phi}$ tal que

$$S_j = R_{W_j}^{\psi}$$
 com $W_j = [w_j].$

Mostremos que $R_j = R_{W_i}^{\phi}$. Como $\phi(u, w_j) = 0$, temos $R_{W_i}^{\phi}(u) = u = R_j(u)$. Por outro lado, se $w \in U^{\perp_{\phi}}$, temos

$$R_{W_j}^{\phi}(w) = w - 2 \frac{\phi(w, w_j)}{\phi(w_j, w_j)} w_j = w - 2 \frac{\psi(w, w_j)}{\psi(w_j, w_j)} w_j = S_j(w) = R_j(w).$$

Como
$$R_{W_i}^{\phi}$$
 coincide com R_j em U e $U^{\perp_{\phi}}$, segue que $R_{W_i}^{\phi} = R_j$.

Finalmente, mostremos que R_i é uma reflexão simples em V para todo $1 \le j \le m$. Seja ψ a restrição de ϕ a $U^{\perp_{\phi}}$ e, dado $1 \le j \le m$, seja $w_i \in U^{\perp_\phi}$ tal que

$$w_j \in U^{-\phi}$$
 tal que $S_j = R_{W_j}^{\psi}$ com $W_j = [w_j]$.

Mostremos que $R_j = R_{W_i}^{\phi}$. Como $\phi(u, w_j) = 0$, temos $R_{W_i}^{\phi}(u) = u = R_j(u)$. Por outro lado, se $w \in U^{\perp_{\phi}}$, temos

$$R_{W_j}^{\phi}(w) = w - 2 \frac{\phi(w, w_j)}{\phi(w_j, w_j)} \ w_j = w - 2 \frac{\psi(w, w_j)}{\psi(w_j, w_j)} \ w_j = S_j(w) = R_j(w).$$

$$\varphi(w_j, w_j)$$
 $\psi(w_j, w_j)$ Como $R_{W_i}^{\phi}$ coincide com R_j em U e $U^{\perp_{\phi}}$, segue que $R_{W_i}^{\phi} = R_j$.

$$V = \mathbb{R}^3$$

Finalmente, mostremos que R_i é uma reflexão simples em V para todo 1 < j < m. Seja ψ a restrição de ϕ a $U^{\perp_{\phi}}$ e, dado 1 < j < m, seja $w_i \in U^{\perp_\phi}$ tal que

$$w_j \in \mathcal{C}$$
 that que $S_j = R_{W_j}^{\psi}$ com $W_j = [w_j]$.

Mostremos que $R_j = R_{W_i}^{\phi}$. Como $\phi(u, w_j) = 0$, temos $R_{W_{\cdot}}^{\phi}(u) = u = R_{j}(u)$. Por outro lado, se $w \in U^{\perp_{\phi}}$, temos

$$R_{W_j}^{\phi}(w) = w - 2 \frac{\phi(w, w_j)}{\phi(w_j, w_j)} w_j = w - 2 \frac{\psi(w, w_j)}{\psi(w_j, w_j)} w_j = S_j(w) = R_j(w).$$

Como $R_{W_i}^{\phi}$ coincide com R_j em U e $U^{\perp_{\phi}}$, segue que $R_{W_i}^{\phi} = R_j$.

Exemplo 9.5.8 (Relembrar Seção 4.5)

$$V = \mathbb{R}^3$$
, ϕ é o p.i. usual

Finalmente, mostremos que R_j é uma reflexão simples em V para todo $1 \le j \le m$. Seja ψ a restrição de ϕ a $U^{\perp_{\phi}}$ e, dado $1 \le j \le m$, seja $w_j \in U^{\perp_{\phi}}$ tal que

$$w_j \in U$$
 tal que $S_j = R_{W_j}^{\psi}$ com $W_j = [w_j].$

Mostremos que $R_j = R_{W_j}^{\phi}$. Como $\phi(u, w_j) = 0$, temos $R_{W_j}^{\phi}(u) = u = R_j(u)$. Por outro lado, se $w \in U^{\perp_{\phi}}$, temos

$$R_{W_j}^{\phi}(w) = w - 2 \frac{\phi(w, w_j)}{\phi(w_j, w_j)} \ w_j = w - 2 \frac{\psi(w, w_j)}{\psi(w_j, w_j)} \ w_j = S_j(w) = R_j(w).$$

Como $R_{W_j}^{\phi}$ coincide com R_j em U e $U^{\perp_{\phi}}$, segue que $R_{W_j}^{\phi} = R_j$.

Exemplo 9.5.8 (Relembrar Seção 4.5)

$$V = \mathbb{R}^3$$
, ϕ é o p.i. usual e $T = \operatorname{Rot}_{\theta}^w \operatorname{com} ||w|| = 1$ e $\theta \in [0, 2\pi]$.

Finalmente, mostremos que R_j é uma reflexão simples em V para todo $1 \leq j \leq m$. Seja ψ a restrição de ϕ a $U^{\perp_{\phi}}$ e, dado $1 \leq j \leq m$, seja $w_j \in U^{\perp_{\phi}}$ tal que

$$S_j = R_{W_j}^{\psi}$$
 com $W_j = [w_j].$

Mostremos que $R_j = R_{W_j}^{\phi}$. Como $\phi(u, w_j) = 0$, temos

$$R_{W_j}^{\phi}(u) = u = R_j(u)$$
. Por outro lado, se $w \in U^{\perp_{\phi}}$, temos $R_{W_j}^{\phi}(w) = w - 2 \frac{\phi(w, w_j)}{\phi(w_i, w_i)} \ w_j = w - 2 \frac{\psi(w, w_j)}{\psi(w_i, w_j)} \ w_j = S_j(w) = R_j(w)$.

Como $R_{W_j}^{\phi}$ coincide com R_j em U e $U^{\perp_{\phi}}$, segue que $R_{W_j}^{\phi} = R_j$.

Exemplo 9.5.8 (Relembrar Seção 4.5)

 $V = \mathbb{R}^3$, ϕ é o p.i. usual e $T = \operatorname{Rot}_{\theta}^w$ com ||w|| = 1 e $\theta \in [0, 2\pi]$. Escolha $w_1, w_2 \in V$ t.q. $\beta = w_1, w_2, w$ seja uma base ortonormal e $w = w_1 \times w_2$. Finalmente, mostremos que R_j é uma reflexão simples em V para todo $1 \leq j \leq m$. Seja ψ a restrição de ϕ a $U^{\perp_{\phi}}$ e, dado $1 \leq j \leq m$, seja $w_j \in U^{\perp_{\phi}}$ tal que

$$S_j = R_{W_j}^{\psi}$$
 com $W_j = [w_j].$

Mostremos que $R_j = R_{W_j}^{\phi}$. Como $\phi(u, w_j) = 0$, temos

$$R_{W_j}^{\phi}(u) = u = R_j(u)$$
. Por outro lado, se $w \in U^{\perp_{\phi}}$, temos $R_{W_j}^{\phi}(w) = w - 2 \frac{\phi(w, w_j)}{\phi(w_j, w_j)} \ w_j = w - 2 \frac{\psi(w, w_j)}{\psi(w_j, w_j)} \ w_j = S_j(w) = R_j(w)$.

Como $R_{W_j}^{\phi}$ coincide com R_j em U e $U^{\perp_{\phi}}$, segue que $R_{W_j}^{\phi} = R_j$.

Exemplo 9.5.8 (Relembrar Seção 4.5)

 $V = \mathbb{R}^3$, ϕ é o p.i. usual e $T = \operatorname{Rot}_{\theta}^w$ com ||w|| = 1 e $\theta \in [0, 2\pi]$. Escolha $w_1, w_2 \in V$ t.q. $\beta = w_1, w_2, w$ seja uma base ortonormal e

 $w = w_1 \times w_2$. Assim

$$[T]_{\beta}^{\beta} = \begin{bmatrix} a & -b & 0 \\ b & a & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \text{com} \qquad a = \cos(\theta) \qquad \text{e} \qquad b = \sin(\theta).$$

Finalmente, mostremos que R_j é uma reflexão simples em V para todo $1 \le j \le m$. Seja ψ a restrição de ϕ a $U^{\perp_{\phi}}$ e, dado $1 \le j \le m$, seja $w_j \in U^{\perp_{\phi}}$ tal que

$$w_j \in U^{+\phi}$$
 tal que $S_j = R_{W_j}^{\psi}$ com $W_j = [w_j]$.

Mostremos que $R_j = R_{W_j}^{\phi}$. Como $\phi(u, w_j) = 0$, temos

$$R_{W_j}^{\phi}(u) = u = R_j(u)$$
. Por outro lado, se $w \in U^{\perp_{\phi}}$, temos $R_{W_j}^{\phi}(w) = w - 2 \frac{\phi(w, w_j)}{\phi(w_j, w_j)} w_j = w - 2 \frac{\psi(w, w_j)}{\psi(w_j, w_j)} w_j = S_j(w) = R_j(w)$.

 $\phi(w_j, w_j)$ $\psi(w_j, w_j)$ $\psi(w_j, w_j)$ Como $R_{W_j}^{\phi}$ coincide com R_j em U e $U^{\perp_{\phi}}$, segue que $R_{W_i}^{\phi} = R_j$.

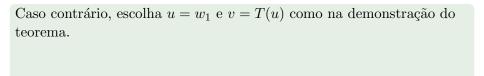
Exemplo 9.5.8 (Relembrar Seção 4.5)

 $V = \mathbb{R}^3$, ϕ é o p.i. usual e $T = \operatorname{Rot}_{\theta}^w$ com ||w|| = 1 e $\theta \in [0, 2\pi]$. Escolha $w_1, w_2 \in V$ t.q. $\beta = w_1, w_2, w$ seja uma base ortonormal e

 $w = w_1 \times w_2$. Assim

$$[T]_{\beta}^{\beta} = \begin{bmatrix} a & -b & 0 \\ b & a & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \text{com} \qquad a = \cos(\theta) \qquad \text{e} \qquad b = \sin(\theta).$$

Se b = 0 e a = 1, temos $T = \mathrm{Id}_V = (R_W^{\phi})^2$ para qualquer de reta W.



Caso contrário, escolha $u=w_1$ e v=T(u) como na demonstração do teorema. Segue que $w_{-} = v - u = (a - 1)w_1 + bw_2 \neq 0$

Caso contrário, escolha $u=w_1$ e v=T(u) como na demonstração do teorema. Segue que $w_-=v-u=(a-1)w_1+bw_2\neq 0$

e, portanto,
$$w_{-}$$
 não é isotrópico.

$$w_{-} = v - u = (a - 1)w_1 + bw_2 \neq 0$$

e, portanto, w_{-} não é isotrópico. Assim, tomando $R = R_{W}^{\phi}$ com $W_{-} = [w_{-}] \in W = [u]^{\perp} = [w_{2}, w]$

$$w_{-} = v - u = (a - 1)w_1 + bw_2 \neq 0$$

e, portanto, w_{-} não é isotrópico. Assim, tomando $R = R_{W}^{\phi}$ com $W_{-} = [w_{-}] \text{ e } W = [u]^{\perp} = [w_{2}, w]$, segue da demonstração do teorema que R(T(u)) = u e W é $(R \circ T)$ -invariante.

$$w_{-} = v - u = (a - 1)w_1 + bw_2 \neq 0$$

e, portanto, w_{-} não é isotrópico. Assim, tomando $R = R_{W}^{\phi}$ com $W_{-} = [w_{-}] e W = [u]^{\perp} = [w_{2}, w]$, segue da demonstração do teorema que R(T(u)) = u e W é $(R \circ T)$ -invariante. Seja S_1 o operador linear induzido por $R \circ T$ em W

$$w_{-} = v - u = (a - 1)w_1 + bw_2 \neq 0$$

e, portanto, w_{-} não é isotrópico. Assim, tomando $R = R_{W}^{\phi}$ com $W_{-} = [w_{-}]$ e $W = [u]^{\perp} = [w_{2}, w]$, segue da demonstração do teorema que R(T(u)) = u e W é $(R \circ T)$ -invariante. Seja S_1 o operador linear induzido por $R \circ T$ em $W \in \psi = \phi|_{W}$.

$$w_{-} = v - u = (a - 1)w_1 + bw_2 \neq 0$$

e, portanto, w_{-} não é isotrópico. Assim, tomando $R = R_{W}^{\phi}$ com $W_{-} = [w_{-}] e W = [u]^{\perp} = [w_{2}, w]$, segue da demonstração do teorema que R(T(u)) = u e W é $(R \circ T)$ -invariante. Seja S_1 o operador linear induzido por $R \circ T$ em $W \in \psi = \phi|_W$. Como $T \in R$ fixam w, temos $S_1(w) = w.$

$$w_{-} = v - u = (a - 1)w_1 + bw_2 \neq 0$$

e, portanto, w_{-} não é isotrópico. Assim, tomando $R = R_{W}^{\phi}$ com $W_{-} = [w_{-}] e W = [u]^{\perp} = [w_{2}, w]$, segue da demonstração do teorema que R(T(u)) = u e W é $(R \circ T)$ -invariante. Seja S_1 o operador linear induzido por $R \circ T$ em $W \in \psi = \phi|_W$. Como $T \in R$ fixam w, temos $S_1(w) = w$. Como [w] é não degenerado com respeito a ψ

$$w_{-} = v - u = (a - 1)w_1 + bw_2 \neq 0$$

e, portanto, w_{-} não é isotrópico. Assim, tomando $R = R_{W}^{\phi}$ com $W_{-} = [w_{-}] e W = [u]^{\perp} = [w_{2}, w]$, segue da demonstração do teorema que R(T(u)) = u e W é $(R \circ T)$ -invariante. Seja S_1 o operador linear induzido por $R \circ T$ em $W \in \psi = \phi|_W$. Como $T \in R$ fixam w, temos $S_1(w) = w$. Como [w] é não degenerado com respeito a ψ , $[w]^{\perp_{\psi}} = [w_2]$ também é S_1 -invariante.

$$w_{-} = v - u = (a - 1)w_1 + bw_2 \neq 0$$

e, portanto, w_{-} não é isotrópico. Assim, tomando $R = R_{W}^{\phi}$ com $W_{-} = [w_{-}]$ e $W = [u]^{\perp} = [w_{2}, w]$, segue da demonstração do teorema que R(T(u)) = u e W é $(R \circ T)$ -invariante. Seja S_1 o operador linear induzido por $R \circ T$ em $W \in \psi = \phi|_W$. Como $T \in R$ fixam w, temos $S_1(w) = w$. Como [w] é não degenerado com respeito a ψ , $[w]^{\perp_{\psi}} = [w_2]$ também é S_1 -invariante. Logo, $S_1(w_2) = \lambda w_2$ para algum escalar λ .

$$w_{-} = v - u = (a - 1)w_1 + bw_2 \neq 0$$

e, portanto, w_{-} não é isotrópico. Assim, tomando $R = R_{W}^{\phi}$ com $W_{-} = [w_{-}] e W = [u]^{\perp} = [w_{2}, w]$, segue da demonstração do teorema que R(T(u)) = u e W é $(R \circ T)$ -invariante. Seja S_1 o operador linear induzido por $R \circ T$ em $W \in \psi = \phi|_W$. Como $T \in R$ fixam w, temos $S_1(w) = w$. Como [w] é não degenerado com respeito a ψ , $[w]^{\perp_{\psi}} = [w_2]$ também é S_1 -invariante. Logo, $S_1(w_2) = \lambda w_2$ para algum escalar λ . Segue que $\det(S_1) = \lambda$ e, portanto, $\lambda = \pm 1$.

$$w_{-} = v - u = (a - 1)w_1 + bw_2 \neq 0$$

e, portanto, w_{-} não é isotrópico. Assim, tomando $R = R_{W}^{\phi}$ com $W_{-} = [w_{-}] \text{ e } W = [u]^{\perp} = [w_{2}, w]$, segue da demonstração do teorema que R(T(u)) = u e W é $(R \circ T)$ -invariante. Seja S_1 o operador linear induzido por $R \circ T$ em $W \in \psi = \phi|_W$. Como $T \in R$ fixam w, temos $S_1(w) = w$. Como [w] é não degenerado com respeito a ψ , $[w]^{\perp_{\psi}} = [w_2]$ também é S_1 -invariante. Logo, $S_1(w_2) = \lambda w_2$ para algum escalar λ . Segue que $\det(S_1) = \lambda$ e, portanto, $\lambda = \pm 1$.

Seja $R_1 \in \operatorname{End}_{\mathbb{F}}(V)$ t.q. $R_1|_W = S_1$ e $R_1(u) = u$ (como na dem. do teor.).

 $w_{-} = v - u = (a - 1)w_{1} + bw_{2} \neq 0$

e, portanto, w_{-} não é isotrópico. Assim, tomando $R = R_{W}^{\phi}$ com $W_{-} = [w_{-}] \text{ e } W = [u]^{\perp} = [w_{2}, w]$, segue da demonstração do teorema que R(T(u)) = u e W é $(R \circ T)$ -invariante. Seja S_1 o operador linear induzido por $R \circ T$ em $W \in \psi = \phi|_W$. Como $T \in R$ fixam w, temos $S_1(w) = w$. Como [w] é não degenerado com respeito a ψ , $[w]^{\perp_{\psi}} = [w_2]$ também é S_1 -invariante. Logo, $S_1(w_2) = \lambda w_2$ para algum escalar λ . Segue que $\det(S_1) = \lambda$ e, portanto, $\lambda = \pm 1$.

Seja $R_1 \in \operatorname{End}_{\mathbb{F}}(V)$ t.q. $R_1|_W = S_1$ e $R_1(u) = u$ (como na dem. do teor.). Segue do argumento acima que $R_1(u) = R(T(u))$

$$w_{-} = v - u = (a - 1)w_1 + bw_2 \neq 0$$

e, portanto, w_{-} não é isotrópico. Assim, tomando $R = R_{W}^{\phi}$ com $W_{-} = [w_{-}] \text{ e } W = [u]^{\perp} = [w_{2}, w]$, segue da demonstração do teorema que R(T(u)) = u e W é $(R \circ T)$ -invariante. Seja S_1 o operador linear induzido por $R \circ T$ em $W \in \psi = \phi|_W$. Como $T \in R$ fixam w, temos $S_1(w) = w$. Como [w] é não degenerado com respeito a ψ , $[w]^{\perp_{\psi}} = [w_2]$ também é S_1 -invariante. Logo, $S_1(w_2) = \lambda w_2$ para algum escalar λ . Segue que $\det(S_1) = \lambda$ e, portanto, $\lambda = \pm 1$.

Seja $R_1 \in \operatorname{End}_{\mathbb{F}}(V)$ t.q. $R_1|_W = S_1$ e $R_1(u) = u$ (como na dem. do teor.). Segue do argumento acima que $R_1(u) = R(T(u)), R(T(w)) = w$

 $w_{-} = v - u = (a - 1)w_{1} + bw_{2} \neq 0$

e, portanto, w_{-} não é isotrópico. Assim, tomando $R = R_{W}^{\phi}$ com $W_{-} = [w_{-}] \text{ e } W = [u]^{\perp} = [w_{2}, w]$, segue da demonstração do teorema que R(T(u)) = u e W é $(R \circ T)$ -invariante. Seja S_1 o operador linear induzido por $R \circ T$ em $W \in \psi = \phi|_W$. Como $T \in R$ fixam w, temos $S_1(w) = w$. Como [w] é não degenerado com respeito a ψ , $[w]^{\perp_{\psi}} = [w_2]$ também é S_1 -invariante. Logo, $S_1(w_2) = \lambda w_2$ para algum escalar λ . Segue que $\det(S_1) = \lambda$ e, portanto, $\lambda = \pm 1$.

Seja $R_1 \in \operatorname{End}_{\mathbb{F}}(V)$ t.q. $R_1|_W = S_1$ e $R_1(u) = u$ (como na dem. do teor.). Segue do argumento acima que $R_1(u) = R(T(u)), R(T(w)) = w$ $e R(T(w_2)) = R_1(w_2).$

$$w_{-} = v - u = (a - 1)w_1 + bw_2 \neq 0$$

e, portanto, w_{-} não é isotrópico. Assim, tomando $R = R_{W}^{\phi}$ com $W_{-} = [w_{-}] \text{ e } W = [u]^{\perp} = [w_{2}, w]$, segue da demonstração do teorema que R(T(u)) = u e W é $(R \circ T)$ -invariante. Seja S_1 o operador linear induzido por $R \circ T$ em $W \in \psi = \phi|_W$. Como $T \in R$ fixam w, temos $S_1(w) = w$. Como [w] é não degenerado com respeito a ψ , $[w]^{\perp_{\psi}} = [w_2]$ também é S_1 -invariante. Logo, $S_1(w_2) = \lambda w_2$ para algum escalar λ . Segue que $\det(S_1) = \lambda$ e, portanto, $\lambda = \pm 1$.

Seja $R_1 \in \operatorname{End}_{\mathbb{F}}(V)$ t.q. $R_1|_W = S_1$ e $R_1(u) = u$ (como na dem. do teor.). Segue do argumento acima que $R_1(u) = R(T(u)), R(T(w)) = w$ e $R(T(w_2)) = R_1(w_2)$. Isto é, $R \circ T = R_1$

 $w_{-} = v - u = (a - 1)w_{1} + bw_{2} \neq 0$

e, portanto, w_{-} não é isotrópico. Assim, tomando $R = R_{W}^{\phi}$ com $W_{-} = [w_{-}] \text{ e } W = [u]^{\perp} = [w_{2}, w]$, segue da demonstração do teorema que R(T(u)) = u e W é $(R \circ T)$ -invariante. Seja S_1 o operador linear induzido por $R \circ T$ em $W \in \psi = \phi|_W$. Como $T \in R$ fixam w, temos $S_1(w) = w$. Como [w] é não degenerado com respeito a ψ , $[w]^{\perp_{\psi}} = [w_2]$ também é S_1 -invariante. Logo, $S_1(w_2) = \lambda w_2$ para algum escalar λ . Segue que $\det(S_1) = \lambda$ e, portanto, $\lambda = \pm 1$.

Seja $R_1 \in \operatorname{End}_{\mathbb{F}}(V)$ t.q. $R_1|_W = S_1$ e $R_1(u) = u$ (como na dem. do teor.). Segue do argumento acima que $R_1(u) = R(T(u)), R(T(w)) = w$ e $R(T(w_2)) = R_1(w_2)$. Isto é, $R \circ T = R_1 \leftrightarrow T = R \circ R_1$.

 $w_{-} = v - u = (a - 1)w_{1} + bw_{2} \neq 0$

e, portanto, w_{-} não é isotrópico. Assim, tomando $R = R_{W}^{\phi}$ com $W_{-} = [w_{-}] \text{ e } W = [u]^{\perp} = [w_{2}, w]$, segue da demonstração do teorema que R(T(u)) = u e W é $(R \circ T)$ -invariante. Seja S_1 o operador linear induzido por $R \circ T$ em $W \in \psi = \phi|_W$. Como $T \in R$ fixam w, temos $S_1(w) = w$. Como [w] é não degenerado com respeito a ψ , $[w]^{\perp_{\psi}} = [w_2]$ também é S_1 -invariante. Logo, $S_1(w_2) = \lambda w_2$ para algum escalar λ . Segue que $\det(S_1) = \lambda$ e, portanto, $\lambda = \pm 1$.

Seja $R_1 \in \operatorname{End}_{\mathbb{F}}(V)$ t.q. $R_1|_W = S_1$ e $R_1(u) = u$ (como na dem. do teor.). Segue do argumento acima que $R_1(u) = R(T(u)), R(T(w)) = w$ e $R(T(w_2)) = R_1(w_2)$. Isto é, $R \circ T = R_1 \leftrightarrow T = R \circ R_1$. Como $\det(T) = 1$

 $w_{-} = v - u = (a - 1)w_{1} + bw_{2} \neq 0$

e, portanto, w_{-} não é isotrópico. Assim, tomando $R = R_{W}^{\phi}$ com $W_{-} = [w_{-}] \text{ e } W = [u]^{\perp} = [w_{2}, w]$, segue da demonstração do teorema que R(T(u)) = u e W é $(R \circ T)$ -invariante. Seja S_1 o operador linear induzido por $R \circ T$ em $W \in \psi = \phi|_W$. Como $T \in R$ fixam w, temos $S_1(w) = w$. Como [w] é não degenerado com respeito a ψ , $[w]^{\perp_{\psi}} = [w_2]$ também é S_1 -invariante. Logo, $S_1(w_2) = \lambda w_2$ para algum escalar λ . Segue que $\det(S_1) = \lambda$ e, portanto, $\lambda = \pm 1$.

Seja $R_1 \in \operatorname{End}_{\mathbb{F}}(V)$ t.q. $R_1|_W = S_1$ e $R_1(u) = u$ (como na dem. do teor.). Segue do argumento acima que $R_1(u) = R(T(u)), R(T(w)) = w$ e $R(T(w_2)) = R_1(w_2)$. Isto é, $R \circ T = R_1 \leftrightarrow T = R \circ R_1$. Como det(T) = 1, det(R) = -1

 $w_{-} = v - u = (a - 1)w_1 + bw_2 \neq 0$

e, portanto, w_- não é isotrópico. Assim, tomando $R=R_{W_-}^\phi$ com $W_-=[w_-]$ e $W=[u]^\perp=[w_2,w]$, segue da demonstração do teorema que R(T(u))=u e W é $(R\circ T)$ -invariante. Seja S_1 o operador linear induzido por $R\circ T$ em W e $\psi=\phi|_W$. Como T e R fixam w, temos $S_1(w)=w$. Como [w] é não degenerado com respeito a $\psi, [w]^{\perp_\psi}=[w_2]$ também é S_1 -invariante. Logo, $S_1(w_2)=\lambda w_2$ para algum escalar λ . Segue que $\det(S_1)=\lambda$ e, portanto, $\lambda=\pm 1$.

Seja $R_1 \in \operatorname{End}_{\mathbb{F}}(V)$ t.q. $R_1|_W = S_1$ e $R_1(u) = u$ (como na dem. do teor.). Segue do argumento acima que $R_1(u) = R(T(u)), R(T(w)) = w$ e $R(T(w_2)) = R_1(w_2)$. Isto é, $R \circ T = R_1 \leftrightarrow T = R \circ R_1$. Como $\det(T) = 1, \det(R) = -1$ e $\det(R_1) = \lambda$

 $w_{-} = v - u = (a - 1)w_{1} + bw_{2} \neq 0$

e, portanto, w_{-} não é isotrópico. Assim, tomando $R = R_{W}^{\phi}$ com $W_{-} = [w_{-}] \text{ e } W = [u]^{\perp} = [w_{2}, w]$, segue da demonstração do teorema que R(T(u)) = u e W é $(R \circ T)$ -invariante. Seja S_1 o operador linear induzido por $R \circ T$ em $W \in \psi = \phi|_W$. Como $T \in R$ fixam w, temos $S_1(w) = w$. Como [w] é não degenerado com respeito a ψ , $[w]^{\perp_{\psi}} = [w_2]$ também é S_1 -invariante. Logo, $S_1(w_2) = \lambda w_2$ para algum escalar λ . Segue que $\det(S_1) = \lambda$ e, portanto, $\lambda = \pm 1$.

Seja $R_1 \in \operatorname{End}_{\mathbb{F}}(V)$ t.q. $R_1|_W = S_1$ e $R_1(u) = u$ (como na dem. do teor.). Segue do argumento acima que $R_1(u) = R(T(u)), R(T(w)) = w$ e $R(T(w_2)) = R_1(w_2)$. Isto é, $R \circ T = R_1 \leftrightarrow T = R \circ R_1$. Como $\det(T) = 1, \det(R) = -1$ e $\det(R_1) = \lambda$, segue que $\lambda = -1$

 $w_{-} = v - u = (a - 1)w_1 + bw_2 \neq 0$

e, portanto, w_- não é isotrópico. Assim, tomando $R=R_{W_-}^\phi$ com $W_-=[w_-]$ e $W=[u]^\perp=[w_2,w]$, segue da demonstração do teorema que R(T(u))=u e W é $(R\circ T)$ -invariante. Seja S_1 o operador linear induzido por $R\circ T$ em W e $\psi=\phi|_W$. Como T e R fixam w, temos $S_1(w)=w$. Como [w] é não degenerado com respeito a $\psi, [w]^{\perp_\psi}=[w_2]$ também é S_1 -invariante. Logo, $S_1(w_2)=\lambda w_2$ para algum escalar λ . Segue que $\det(S_1)=\lambda$ e, portanto, $\lambda=\pm 1$.

Seja $R_1 \in \operatorname{End}_{\mathbb{F}}(V)$ t.q. $R_1|_W = S_1$ e $R_1(u) = u$ (como na dem. do teor.). Segue do argumento acima que $R_1(u) = R(T(u)), R(T(w)) = w$ e $R(T(w_2)) = R_1(w_2)$. Isto é, $R \circ T = R_1 \leftrightarrow T = R \circ R_1$. Como det(T) = 1, det(R) = -1 e det $(R_1) = \lambda$, segue que $\lambda = -1$ e, portanto, $R_1 = R_{[w_2]}^{\phi}$.

 $w_{-} = v - u = (a - 1)w_{1} + bw_{2} \neq 0$

e, portanto, w_{-} não é isotrópico. Assim, tomando $R = R_{W}^{\phi}$ com $W_{-} = [w_{-}] \text{ e } W = [u]^{\perp} = [w_{2}, w]$, segue da demonstração do teorema que R(T(u)) = u e W é $(R \circ T)$ -invariante. Seja S_1 o operador linear induzido por $R \circ T$ em $W \in \psi = \phi|_W$. Como $T \in R$ fixam w, temos $S_1(w) = w$. Como [w] é não degenerado com respeito a ψ , $[w]^{\perp_{\psi}} = [w_2]$ também é S_1 -invariante. Logo, $S_1(w_2) = \lambda w_2$ para algum escalar λ . Segue que $\det(S_1) = \lambda$ e, portanto, $\lambda = \pm 1$.

Seja $R_1 \in \operatorname{End}_{\mathbb{F}}(V)$ t.q. $R_1|_W = S_1$ e $R_1(u) = u$ (como na dem. do teor.). Segue do argumento acima que $R_1(u) = R(T(u)), R(T(w)) = w$ e $R(T(w_2)) = R_1(w_2)$. Isto é, $R \circ T = R_1 \leftrightarrow T = R \circ R_1$. Como $\det(T) = 1, \det(R) = -1$ e $\det(R_1) = \lambda$, segue que $\lambda = -1$ e, portanto, $R_1 = R_{[m_0]}^{\phi}$. Note que esta conclusão segue dos seguintes fatos verificados acima:

$$R(T(w_1)) = w_1,$$

 $w_{-} = v - u = (a - 1)w_1 + bw_2 \neq 0$

e, portanto, w_- não é isotrópico. Assim, tomando $R = R_{W_-}^{\phi}$ com $W_- = [w_-]$ e $W = [u]^{\perp} = [w_2, w]$, segue da demonstração do teorema que R(T(u)) = u e W é $(R \circ T)$ -invariante. Seja S_1 o operador linear induzido por $R \circ T$ em W e $\psi = \phi|_W$. Como T e R fixam w, temos $S_1(w) = w$. Como [w] é não degenerado com respeito a ψ , $[w]^{\perp_{\psi}} = [w_2]$ também é S_1 -invariante. Logo, $S_1(w_2) = \lambda w_2$ para algum escalar λ . Segue que $\det(S_1) = \lambda$ e, portanto, $\lambda = \pm 1$.

Seja $R_1 \in \operatorname{End}_{\mathbb{F}}(V)$ t.q. $R_1|_W = S_1$ e $R_1(u) = u$ (como na dem. do teor.). Segue do argumento acima que $R_1(u) = R(T(u)), R(T(w)) = w$ e $R(T(w_2)) = R_1(w_2)$. Isto é, $R \circ T = R_1 \leftrightarrow T = R \circ R_1$. Como $\det(T) = 1, \det(R) = -1$ e $\det(R_1) = \lambda$, segue que $\lambda = -1$ e, portanto, $R_1 = R_{[w_2]}^{\phi}$. Note que esta conclusão segue dos seguintes fatos verificados acima:

$$R(T(w_1)) = w_1, \quad R(T(w)) = w$$

 $w_{-} = v - u = (a - 1)w_{1} + bw_{2} \neq 0$

e, portanto, w_{-} não é isotrópico. Assim, tomando $R = R_{W}^{\phi}$ com $W_{-} = [w_{-}] \text{ e } W = [u]^{\perp} = [w_{2}, w], \text{ segue da demonstração do teorema}$ que R(T(u)) = u e W é $(R \circ T)$ -invariante. Seja S_1 o operador linear induzido por $R \circ T$ em $W \in \psi = \phi|_W$. Como $T \in R$ fixam w, temos $S_1(w) = w$. Como [w] é não degenerado com respeito a ψ , $[w]^{\perp_{\psi}} = [w_2]$ também é S_1 -invariante. Logo, $S_1(w_2) = \lambda w_2$ para algum escalar λ . Segue que $\det(S_1) = \lambda$ e, portanto, $\lambda = \pm 1$.

Seja $R_1 \in \operatorname{End}_{\mathbb{F}}(V)$ t.q. $R_1|_W = S_1$ e $R_1(u) = u$ (como na dem. do teor.). Segue do argumento acima que $R_1(u) = R(T(u)), R(T(w)) = w$ e $R(T(w_2)) = R_1(w_2)$. Isto é, $R \circ T = R_1 \leftrightarrow T = R \circ R_1$. Como $\det(T) = 1, \det(R) = -1$ e $\det(R_1) = \lambda$, segue que $\lambda = -1$ e, portanto, $R_1 = R_{[w_0]}^{\phi}$. Note que esta conclusão segue dos seguintes fatos verificados acima:

$$R(T(w_1)) = w_1, \quad R(T(w)) = w \quad e \quad R(T(w_2)) = -w_2.$$

$$w_{-} = v - u = (a - 1)w_1 + bw_2 \neq 0$$

e, portanto, w_{-} não é isotrópico. Assim, tomando $R = R_{W}^{\phi}$ com $W_{-} = [w_{-}] \text{ e } W = [u]^{\perp} = [w_{2}, w]$, segue da demonstração do teorema que R(T(u)) = u e W é $(R \circ T)$ -invariante. Seja S_1 o operador linear induzido por $R \circ T$ em $W \in \psi = \phi|_W$. Como $T \in R$ fixam w, temos $S_1(w) = w$. Como [w] é não degenerado com respeito a ψ , $[w]^{\perp_{\psi}} = [w_2]$ também é S_1 -invariante. Logo, $S_1(w_2) = \lambda w_2$ para algum escalar λ . Segue que $\det(S_1) = \lambda$ e, portanto, $\lambda = \pm 1$.

Seja $R_1 \in \operatorname{End}_{\mathbb{F}}(V)$ t.q. $R_1|_W = S_1$ e $R_1(u) = u$ (como na dem. do teor.). Segue do argumento acima que $R_1(u) = R(T(u)), R(T(w)) = w$ e $R(T(w_2)) = R_1(w_2)$. Isto é, $R \circ T = R_1 \leftrightarrow T = R \circ R_1$. Como $\det(T) = 1, \det(R) = -1$ e $\det(R_1) = \lambda$, segue que $\lambda = -1$ e, portanto, $R_1 = R^{\phi}_{[w_0]}$. Note que esta conclusão segue dos seguintes fatos verificados acima:

$$R(T(w_1)) = w_1, \quad R(T(w)) = w \quad e \quad R(T(w_2)) = -w_2.$$

Assim, $\operatorname{Rot}_{\theta}^{w} = R_{W_{-}}^{\phi} \circ R_{[w_{2}]}^{\phi}$.

Suponha que $\phi \in B_a(V)$ seja não degenerada.

Suponha que $\phi \in B_a(V)$ seja não degenerada. Dados $w \in V, a \in \mathbb{F}$, considere a função $T_{w,a}: V \to V$ dada por

Suponha que $\phi \in B_a(V)$ seja não degenerada. Dados $w \in V, a \in \mathbb{F}$, considere a função $T_{w,a}: V \to V$ dada por

$$T_{w,a}(v) = v + a \ \phi(v, w) \ w$$
 para todo $v \in V$.

Suponha que $\phi \in B_a(V)$ seja não degenerada. Dados $w \in V, a \in \mathbb{F}$, considere a função $T_{w,a}:V\to V$ dada por

$$T_{w,a}(v) = v + a \ \phi(v, w) \ w$$
 para todo $v \in V$.

Evidentemente, $T_{w,a}$ é linear.

Suponha que $\phi \in B_a(V)$ seja não degenerada. Dados $w \in V, a \in \mathbb{F}$, considere a função $T_{w,a}: V \to V$ dada por

$$T_{w,a}(v) = v + a \ \phi(v, w) \ w$$
 para todo $v \in V$.

Evidentemente, $T_{w,a}$ é linear. Estes operadores lineares são chamados de transvecções simpléticas

Suponha que $\phi \in B_a(V)$ seja não degenerada. Dados $w \in V, a \in \mathbb{F}$, considere a função $T_{w,a}: V \to V$ dada por

$$T_{w,a}(v) = v + a \ \phi(v, w) \ w$$
 para todo $v \in V$.

Evidentemente, $T_{w,a}$ é linear. Estes operadores lineares são chamados de transvecções simpléticas e fazem o papel que as reflexões simples fazem no caso de formas bilineares simétricas.

Suponha que $\phi \in B_a(V)$ seja não degenerada. Dados $w \in V, a \in \mathbb{F}$, considere a função $T_{w,a}: V \to V$ dada por

$$T_{w,a}(v) = v + a \ \phi(v, w) \ w$$
 para todo $v \in V$.

Suponha que $\phi \in B_a(V)$ seja não degenerada. Dados $w \in V, a \in \mathbb{F}$, considere a função $T_{w,a}: V \to V$ dada por

$$T_{w,a}(v) = v + a \ \phi(v, w) \ w$$
 para todo $v \in V$.

$$\phi(T_{w,a}(v_1), T_{w,a}(v_2))$$

Suponha que $\phi \in B_a(V)$ seja não degenerada. Dados $w \in V, a \in \mathbb{F}$, considere a função $T_{w,a}: V \to V$ dada por

$$T_{w,a}(v) = v + a \ \phi(v, w) \ w$$
 para todo $v \in V$.

$$\phi(T_{w,a}(v_1), T_{w,a}(v_2)) = \phi(v_1 + a \phi(v_1, w) w, v_2 + a \phi(v_2, w) w)$$

Suponha que $\phi \in B_a(V)$ seja não degenerada. Dados $w \in V, a \in \mathbb{F}$, considere a função $T_{w,a}: V \to V$ dada por

$$T_{w,a}(v) = v + a \ \phi(v, w) \ w$$
 para todo $v \in V$.

$$\phi(T_{w,a}(v_1), T_{w,a}(v_2)) = \phi(v_1 + a \phi(v_1, w) w, v_2 + a \phi(v_2, w) w)$$
$$= \phi(v_1, v_2) + a \phi(v_2, w) \phi(v_1, w)$$
$$+ a \phi(v_1, w) \phi(w, v_2)$$

Suponha que $\phi \in B_a(V)$ seja não degenerada. Dados $w \in V, a \in \mathbb{F}$, considere a função $T_{w,a}: V \to V$ dada por

$$T_{w,a}(v) = v + a \ \phi(v, w) \ w$$
 para todo $v \in V$.

$$\phi(T_{w,a}(v_1), T_{w,a}(v_2)) = \phi(v_1 + a \phi(v_1, w) w, v_2 + a \phi(v_2, w) w)$$

$$= \phi(v_1, v_2) + a \phi(v_2, w) \phi(v_1, w)$$

$$+ a \phi(v_1, w) \phi(w, v_2) = \phi(v_1, v_2).$$

Suponha que $\phi \in B_a(V)$ seja não degenerada. Dados $w \in V, a \in \mathbb{F}$, considere a função $T_{w,a}:V\to V$ dada por

$$T_{w,a}(v) = v + a \ \phi(v, w) \ w$$
 para todo $v \in V$.

Evidentemente, $T_{w,a}$ é linear. Estes operadores lineares são chamados de transvecções simpléticas e fazem o papel que as reflexões simples fazem no caso de formas bilineares simétricas. Verifiquemos eles de fato são simpléticos:

$$\phi(T_{w,a}(v_1), T_{w,a}(v_2)) = \phi(v_1 + a \phi(v_1, w) w, v_2 + a \phi(v_2, w) w)$$
$$= \phi(v_1, v_2) + a \phi(v_2, w) \phi(v_1, w)$$
$$+ a \phi(v_1, w) \phi(w, v_2) = \phi(v_1, v_2).$$

Teorema 9.5.11

Suponha que que $0 \neq \dim(V) < \infty$

Suponha que $\phi \in B_a(V)$ seja não degenerada. Dados $w \in V, a \in \mathbb{F}$, considere a função $T_{w,a}:V\to V$ dada por

$$T_{w,a}(v) = v + a \ \phi(v, w) \ w$$
 para todo $v \in V$.

Evidentemente, $T_{w,a}$ é linear. Estes operadores lineares são chamados de transvecções simpléticas e fazem o papel que as reflexões simples fazem no caso de formas bilineares simétricas. Verifiquemos eles de fato são simpléticos:

$$\phi(T_{w,a}(v_1), T_{w,a}(v_2)) = \phi(v_1 + a \phi(v_1, w) w, v_2 + a \phi(v_2, w) w)$$
$$= \phi(v_1, v_2) + a \phi(v_2, w) \phi(v_1, w)$$
$$+ a \phi(v_1, w) \phi(w, v_2) = \phi(v_1, v_2).$$

Teorema 9.5.11

Suponha que que $0 \neq \dim(V) < \infty$ e sejam $\phi \in B_a(V)$ não degenerada e $T \in \operatorname{End}_{\mathbb{F}}(V)$.

Suponha que $\phi \in B_a(V)$ seja não degenerada. Dados $w \in V, a \in \mathbb{F}$, considere a função $T_{w,a}: V \to V$ dada por

$$T_{w,a}(v) = v + a \ \phi(v, w) \ w$$
 para todo $v \in V$.

Evidentemente, $T_{w,a}$ é linear. Estes operadores lineares são chamados de transvecções simpléticas e fazem o papel que as reflexões simples fazem no caso de formas bilineares simétricas. Verifiquemos eles de fato são simpléticos:

$$\phi(T_{w,a}(v_1), T_{w,a}(v_2)) = \phi(v_1 + a \phi(v_1, w) w, v_2 + a \phi(v_2, w) w)$$
$$= \phi(v_1, v_2) + a \phi(v_2, w) \phi(v_1, w)$$
$$+ a \phi(v_1, w) \phi(w, v_2) = \phi(v_1, v_2).$$

Teorema 9.5.11

Suponha que que $0 \neq \dim(V) < \infty$ e sejam $\phi \in B_a(V)$ não degenerada e $T \in \operatorname{End}_{\mathbb{F}}(V)$. Então, T é simplética se, e somente se, T for uma composição de transvecções simpléticas.

Suponha que $\phi \in B_a(V)$ seja não degenerada. Dados $w \in V, a \in \mathbb{F}$, considere a função $T_{w,a}:V\to V$ dada por

$$T_{w,a}(v) = v + a \ \phi(v, w) \ w$$
 para todo $v \in V$.

Evidentemente, $T_{w,a}$ é linear. Estes operadores lineares são chamados de transvecções simpléticas e fazem o papel que as reflexões simples fazem no caso de formas bilineares simétricas. Verifiquemos eles de fato são simpléticos:

$$\phi(T_{w,a}(v_1), T_{w,a}(v_2)) = \phi(v_1 + a \phi(v_1, w) w, v_2 + a \phi(v_2, w) w)$$
$$= \phi(v_1, v_2) + a \phi(v_2, w) \phi(v_1, w)$$
$$+ a \phi(v_1, w) \phi(w, v_2) = \phi(v_1, v_2).$$

Teorema 9.5.11

Suponha que que $0 \neq \dim(V) < \infty$ e sejam $\phi \in B_a(V)$ não degenerada e $T \in \operatorname{End}_{\mathbb{F}}(V)$. Então, T é simplética se, e somente se, T for uma composição de transvecções simpléticas.

Dem.: Exercício de leitura.

