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Université Bordeaux 1, CNRS, UMR 5251

F-33405 Talence, France

Philippe.Thieullen@math.u-bordeaux1.fr

July 30, 2010

Abstract

We consider a generalization of the Frenkel-Kontorova model in higher
dimension leading to a new theory of configurations with minimal energy, as in
Aubry’s theory or in Mather’s twist approach in the periodic case. We consider
a one dimensional chain of particles and their minimizing configurations and
we allow the state of each particle to possess many degrees of freedom. We
assume that the Hamiltonian of the system satisfies some twist condition.
The usual “total ordering” of minimizing configurations does not exist any
more and new tools need to be developed. The main mathematical tool is
to cast the study the minimizing configurations into the framework of discrete
Lagrangian theory. We introduce forward and backward Lax-Oleinik problems
and interpret their solutions as discrete viscosity solutions as in Hamilton-
Jacobi methods. We give a fairly complete description of a particular class
of minimizing configurations: the calibrated class. These configurations may
be thought of as “ground states” obtained in the thermodynamic limit at
temperature zero. We obtain, in particular, Mather’s graph property or the
non-crossing property of two calibrated configurations and the existence of a
rotation number for most of the calibrated configurations.

1 Introduction

The original Frenkel-Kontorova model, see [29], describes a one dimensional chain
of (classical) particles coupled to their nearest neighbors and subjected to a periodic
environment generated by a one dimensional cristal. The chain is supposed to be
located on a line; the local interaction energy L : R2 → R takes into account an
elastic potential between two successive particles in the chain, as well as an external
periodic potential modeling the influence of a periodic structure:

L(xk, xk+1) =
1

2
(xk+1 − xk − λ)2 +

K

(2π)2
(1− cos 2πxk),

where λ is the unperturbed mean interatomic distance and K is the strength of the
external periodic environment. The state space in this model is represented by
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a sequence of positions of each particle constrained to stay on a line. A central
problem in this theory is to describe the set of minimizing configurations, that is,
configurations which minimize the total energy of any finite sub-chains with fixed
boundary states. Among the main results, one may cite the existence of a well
defined “rotation number” for any minimizing configuration, the “total ordering
property” of the set of minimizing configurations with a fixed rotation number, and
the existence of a unique “hull function” up to a phase shift which parametrizes all
minimizing configurations with a fixed rotation number. These main results have
been obtained by several authors, first by Aubry and Le Daeron [3], Aubry, Axel
and Vallet [4], Griffiths, Schellnhuber and Urbschat [37], independently by Mather
[48, 51], more rencently by Gomes and Oberman, Rorro and Falcone [34, 33, 53,
20], Baesens and MacKay [6], and in a similar context of ergodic optimization by
Bousch, Brémont, Jenkinson and Morris, Bressaud and Quas, Leplaideur [9, 10,
12, 39, 40, 13, 42]. The minimizing configurations previously described correspond
to equilibrium fixed points of the steady-state Frenkel-Kontorova equation. Recent
progress has been made in the space-time Frenkel-Kontorova model. In this model,
each particle evolves in time according to a Newtonian second order differential
equation. Without being exhaustive, we just quote recent articles by Forcadel,
Imbert and Monneau [27, 28] which use viscosity technics related to our methods
and by Baesens and MacKay [5].

Several general monographies may help the reading of the present article: for
instance, the notes of G. Forni and J. N. Mather [26] for a global description of
Aubry-Mather theory, and two textbooks written by G. Contreras and R. Iturriaga
[17] and by A. Fathi [23] for the Lagrangian point of view. The weak-KAM approach
developed by Fathi for Lagrangian flows is an especially important concept we are
going to apply in a discrete setting. For more details on the Frenkel-Kontorova
model, we refer the reader to [11, 25].

It is crucial to point out that all previously mentioned results (except those in
[34, 33]) depend strongly on the fact that the state xk of the kth particle of the
chain is one dimensional. In other words, the order of the real line plays a crucial
role; the fact that two configurations can be compared globally is fundamental. Our
focus here is on an extension of Frenkel-Kontorova theory to the multidimensional
case: the state of each particle will belong to Rd. The case where the state space
is finite S = {1, 2, . . . , d} and the interaction energy map L(i, j) is a function on
S × S is a relevant situation worked out in ergodic optimization theory and in
Gibbs fields theory. Although we do not consider specific examples nor numerical
experiments in this article, the following interaction energy satisfies the hypotheses
of all subsequent theorems:

L(xk, xk+1) =
1

2

d∑
i=1

|xik+1 − xik − λi|2 +
K

(2π)2

(
1− cos(2π

d∑
i

νixik)
)
,

where (ν1, . . . , νd) are integers and (x1
k, . . . , x

d
k) are the components of xk in Rd.

A large part of the theory of minimizing configurations can be done under very
weak assumptions on the local interaction energy L(x, y). We first assume that



Minimizing orbits in the discrete Aubry-Mather model 3

L(x, y) : Rd × Rd → R is continuous and is doubly periodic

L(x, y) = L(x+ s, y + s), ∀ s ∈ Zd.

We next assume that L(x, y) is coercive

lim
R→+∞

inf
‖x−y‖≥R

L(x, y) = +∞.

The formal total energy of a chain of particles {xk}k∈Z in Rd is given by

Ltot({xk}k∈Z) =
∑
k∈Z

L(xk, xk+1),

which may a priori diverge. A minimizing configuration is a configuration that can
only increase its total energy whenever a finite number of particles is moved, that
is, a configuration {xk}k∈Z in Rd satisfying

L(xm, xm+1, . . . , xn) :=
n−1∑
k=m

L(xk, xk+1) ≤ L(ym, ym+1, . . . , yn),

for every m < n and every configuration {yk}k∈Z in Rd with ym = xm and yn = xn.
If L is in addition C1, a minimizing configuration {xk} is critical (or at equilibrium)
in the sense that:

∂L

∂y
(xk−1, xk) +

∂L

∂x
(xk, xk+1) = 0, ∀ k ∈ Z.

The main objective of this paper is to extend partially the theory of Frenkel-
Kontorova model to the case where the state xk of each particle belongs to a d-
dimensional vector space Rd. The natural tool we are going to apply in the mul-
tidimensional setting comes from either the notion of effective potential of Chou
and Griffiths [15] or the notion of viscosity solution of Fathi’s weak KAM theory
[23]. This approach allows only the study of a special class of minimizing configu-
rations, called ground states by Chou and Griffiths or calibrated by Fathi. Notice
that Aubry-Le Daeron [3] used the expression “ground state” to denote a recurrent
minimizing configuration. It happens that, in the one dimensional case, recur-
rent minimizing configurations and calibrated configurations are strongly related
through the notion of rotation number; we do not know whether that fact persists
in the multidimensional setting. Ground states are physical quantities as shown by
N. Anantharaman in [1]: she proved that Gibbs measures at positive temperatures
converge when the system is frozen (in a weak sense along any converging sub-
sequences) to measures whose support contains only ground states. We will show
that calibrated configurations exist assuming L(x, y) to be only C0 and coercive.
We will also show that most of the calibrated configurations admit a rotation vector
assuming in addition L(x, y) to be superlinear:

lim
R→+∞

inf
‖y−x‖≥R

L(x, y)

‖x− y‖
= +∞.



4 Eduardo Garibaldi and Philippe Thieullen

Uniqueness of a calibrated configuration passing through a given point uses an
even stronger assumption called twist condition or ferromagnetic condition (defini-
tion 2.4), which is implied, for instance, when L(x, y) is C2 and uniformly strictly
convex (definition 2.7). The definition of calibrated configurations will be explained
soon.

Generalizations of Frenkel-Kontorova model have been investigated in several
different directions. The state space is still one dimensional as in Aubry Mather
theory.

One can consider, for example, a multidimensional setting where the particles
are indexed by the sites of a multidimensional lattice Zd. The topology of inter-
actions plays a fundamental role. The interaction can be either local with each
particle interacting only with its nearest neighbors, or global as in mean field the-
ory. The state xk ∈ R of the particles is nevertheless one dimensional as in Aubry
theory, but indexed by Zd for instance. Notions of minimizing configurations and
rotation vectors can be defined similarly. In the context of the multidimensional
Frenkel-Kontorova model, one still obtains minimizing configurations having a pre-
scribed rotation vector. For precise definitions and statements, we refer the reader
to the work of R. de la Llave and E. Valdinoci [43]. One should also consult the
paper of H. Koch, R. de la Llave and C. Radin [41] for situations where the variables
range over a more complicated lattice.

In another direction, the potential could be assumed quasiperiodic instead of
periodic, as it is done in the work of J. M. Gambaudo, P. Guiraud and S. Petite
[30]. Once again, the state space is one dimensional, all minimizing configurations
admit a rotation number and all rotation number is obtained by a minimizing
configuration.

Mather [51] has developed a theory in any dimension, closely related to the
present article, of minimizing measures for a Tonelli’s Lagrangian, that is, 1-periodic
superlinear strictly convex Lagrangian L : TM × T1 → R. In dimension 1, Moser
[52] has proved the equivalence between two approaches, monotone twist map versus
Tonelli’s Lagrangian, showing that such a monotone twist map can always be seen
as the time one map of some 1-periodic smooth Hamiltonian H : T ∗M×T1 → R. As
noticed by Herman [38], there are interesting connections between configurations
with minimal energy and Lagrangian tori invariant under symplectic diffeormor-
phisms of the cotangent bundle of the d-dimensional torus. Massart has generalized
several results of the Aubry-Mather theory in [45, 46, 47].

We now return to the main results of the present article. We first define the
ground energy per particle or the minimizing holonomic value L̄. The word holo-
nomic is used as in Gomes [34] or Mañé [44] to point out that no dynamical system
can be introduced in a natural way. More explanations on this subject will be
given in section 3. The minimizing holonomic value may be seen as the lowest
mean energy per particle, formally it is defined as

L̄ = inf
{

lim inf
n→+∞

1

n
L(x0, x1, . . . , xn) : {xk}k∈Z is a configuration

}
.

We will describe a special subset of minimizing configurations called calibrated,
which is closely related to Aubry’s notion of recurrent minimizing configuration or
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to Chou and Griffiths’ concept of ground state. We first define the Aubry set A(L),
a similar notion introduced by Fathi [23]. Informally, A(L) is the set of configu-
rations {xk}k∈Z such that all couple (xk, xk+1) is the initial segment of a periodic
configurations with minimal energy. More precisely, {xk}k∈Z ∈ A(L) if, and only
if, for every k ∈ Z and ε > 0, there exist a periodic configuration (xε0, x

ε
1, . . . , x

ε
q(ε))

and integers q(ε) ≥ 1 and p(ε) such that xεq(ε) = xε0 + p(ε),

|L(xε0, x
ε
1, . . . , x

ε
q(ε))− q(ε)L̄| < ε and (xk, xk+1) = (xε0, x

ε
1).

It is not difficult but not immediate to show that configurations in the Aubry set are
minimizing in a stronger sense. More precisely, they are minimizing with respect to
L∗(x, y) := infs,t∈Zd L(x+s, y+t). Notice that the two minimizing holonomic values
are identical: L̄ = L̄∗. Let E(L) be the set of energy minimizing configurations in
the strong sense. Configurations in E(L) are strongly related to a special class of
configurations called calibrated.

We first introduce an important notion called effectif potential by Chou and
Griffiths, weak KAM solution by Fathi or viscosity solution in the context of Ha-
milton-Jacobi equation. We prefer to use the term calibrated sub-action. We call
sub-action any continuous Zd-periodic function u : Rd → R such that

u(y)− u(x) ≤ L(x, y)− L̄, ∀ x, y ∈ Rd.

We call backward or forward calibrated sub-action a sub-action u satisfying in addi-
tion{

the forward case: u(x)− L̄ = maxy∈Rd
[
u(y)− L(x, y)

]
, ∀ x ∈ Rd,

the backward case: u(y) + L̄ = minx∈Rd
[
u(x) + L(x, y)

]
, ∀ y ∈ Rd.

Calibrated sub-actions u are solutions of the backward or forward Lax-Oleinik op-
erator. These operators may be seen as a min-plus (or tropical) version of the
Ruelle operator used in the thermodynamical formalism. The two sub-actions may
be seen as left and right eigenvectors of a min-plus eigenvalue problem. We not
only guarantee that calibrated sub-actions do exist in the C0 coercive case, but we
also discuss how the regularity of the local interaction energy affects the regularity
of a calibrated sub-action. We show (see proposition 4.7) that, if L is locally Lip-
schitz or C2, then any forward (resp. backward) calibrated sub-action is Lipschitz
or semiconvex (resp. semiconcave). See also Gomes [34] for similar results.

We call calibrated configuration (or more precisely u-calibrated if needed) a
configuration {xk}k∈Z such that, for some sub-action u,

u(xk+1)− u(xk) = L(xk, xk+1)− L̄, ∀ k ∈ Z.

Let N(L, u) be the set of u-calibrated configurations. It is then obvious that a
calibrated configuration is minimizing in the strong sense. It is also easy to see
that configurations in the Aubry set are calibrated for any sub-action and therefore
minimizing in the strong sense:

A(L) ⊂ N(L, u) ⊂ E(L), ∀ u calibrated.
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We show in section 5 that calibrated configurations do exist and have bounded
jumps supk ‖xk+1− xk‖ < +∞. We also show in section 10 that the Aubry set can
be characterized using the property of calibrated sub-actions, more precisely

A(L) =
{
x = {xk}k∈Z ∈ (Rd)Z : x is calibrated for any sub-action

}
.

The proof requires a particular class of sub-actions, called separating sub-action.
The fact that the class of separating sub-actions is generic in the C0 topology may
be seen as a discrete counterpart of Fathi and Siconolfi’s critical subsolutions in the
framework of Hamilton-Jacobi equation (see [24]).

In the C1 ferromagnetic and coercive case, we can say more on the Aubry set.
For any x0 ∈ Rd, there exists at most one calibrated configuration passing through
x0. The two nearest neighbors are given by the equation

Du(x0) =
∂L

∂y
(x−1, x0) = −∂L

∂x
(x0, x1),

where u is any sub-action and Du is continuous on the projected Aubry set. This
property is called the Aubry-Mather graph property. The graph is compact and
invariant with respect to the corresponding twist or discrete Euler-Lagange map.

Sections 6 and 7 are devoted to more precise properties of the Aubry set in the
general C0 coercive case. We show that the Aubry set is not empty by showing that
it contains the Mather set M(L) which is not empty. The Mather set is built using
minimizing holonomic measures, a notion introduced by Mather (see [49] and [51])
but in the context of twist maps where the invariance property is used instead of
the holonomic property. In the context of configurations space, we call minimizing
holonomic measure a transshipment π(dx, dy) (definition 3.3), that is, a sigma-
finite measure π(dx, dy) invariant by the integer translations x ∈ Rd 7→ x+ k ∈ Rd,
k ∈ Zd, finite with mass one on any fundamental domain, say Td×Rd, with identical
marginals on the two factors Rd, pr1

∗(π) = pr2
∗(π), which in addition minimizes

π = argmin

∫∫
Td×Rd

L(x, y)π(dx, dy).

We show that the minimum is attained by such transshipments with bounded off-
diagonal support. We call Mather set M(L) the set of configurations {xk}k∈Z such
that, for all k ∈ Z, there exists a minimizing holonomic measure π whose support
contains (xk, xk+1). We then show that

M(L) ⊂ A(L) and L̄ =

∫∫
Td×Rd

L(x, y)π(dx, dy), ∀ π minimizing.

The Aubry set may contain “heteroclinic” configurations joining two minimizing
periodic orbits and may therefore be stricly larger than the Mather set. Aubry [3]
uses the term advanced or delayed discommensuration for these minimizing config-
urations. The Aubry set admits a description in terms of a potential barrier. We
call Mañé potential the map

S(x, y) = inf
{
L(x0, . . . , xn)− nL̄ : n ≥ 1, x0 = x, xn = y + p, xk ∈ Rd, p ∈ Zd

}
.
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Chou and Griffiths call excitation energy of a configuration {xk}k∈Z, relative to the
ground state level, the nonnegative limit

lim
k→−∞, l→+∞

[
L(xk, xk+1, . . . , xl)− (l − k)L̄

]
− S(xk, xl).

A calibrated configuration has obviously zero excitation energy. We show that the
Aubry set can be characterized by the Mañé potential and coincides with the set
of pure ground states introduced by Chou and Griffiths, namely,

A(L) =
{
{xk}k∈Z : L(xk, xk+1)− L̄ = S(xk, xk+1) = −S(xk+1, xk), ∀ k ∈ Z

}
=
{
{xk}k∈Z : L(xk, . . . , xl)− (l − k)L̄ = S(xk, xl) = −S(xl, xk), ∀ k < l

}
.

Assuming only L to be C0 and coercive, we prove in section 8 that S(x, y) is
continuous, doubly periodic and satisfies u(y) − u(x) ≤ S(x, y), for all x, y ∈ Rd
and any sub-action u. Let A0(L) be the projected Aubry set,

A0(L) =
{
x0 ∈ Rd : {xk}k∈Z ∈ A(L)

}
.

We show that (see theorem 8.10), for any x ∈ A0(L), S(x, ·) is backward calibrated,
−S(·, x) is forward calibrated and a characterization in terms of Mañé potential:

A0(L) =
{
x0 ∈ Rd : S(x0, x0) = 0

}
.

We finally show (see theorem 9.1) that calibrated sub-actions are completely known
as soon as they are known on the projected Aubry set:{

the forward case: u(x) = maxy∈A0(L)

[
u(y)− S(x, y)

]
, ∀ x ∈ Rd,

the backward case: u(y) = minx∈A0(L)

[
u(x) + S(x, y)

]
, ∀ y ∈ Rd.

This result should be compared to the one obtained by G. Contreras [16] for weak
KAM solutions.

When a system depends on several parameters, it is important to introduce an
order parameter which labels the different phases in a bifurcation diagram called
phase diagram. In the one dimensional case, the order parameter is the rotation
number of ground states. It is generally believed that, in the (λ,K) phase diagram
in the standard Frenkel-Kontorova, apart a set of zero Lebesgue measure, the Aubry
set is reduced to a unique periodic orbit: the system is locked at rational rotation
number. We introduce in section 11 the basis of a theory of rotation vectors in the
multidimensional case.

We call rotation vector ω of a minimizing configuration {xk}k∈Z the following
limit when it exists

ω
[
{xk}k∈Z

]
= lim

n−m→+∞

xn − xm
n−m

.

As in Mather theory, we relate this notion to the notion of rotation vector of a
minimizing measure

ω[π] =

∫∫
Td×Rd

(y − x)π(dx, dy).

The main important observation is that a configuration is minimizing for the in-
teraction energy L(x, y) if, and only if, it is minimizing for the interaction energy
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L(x, y) − 〈λ, (y − x)〉 for any parameter λ ∈ Rd. In the one dimensional case, a
recurrent minimizing configuration admits a rotation number ω and is calibrated
for some L − λ. The two numbers ω and λ are related by Legendre transform. If
ω is irrational, λ is unique. In the multidimensional case, we follow Gomes [34] to
show that, whenever the minimizing holonomic value of L − λ, denoted L̄(λ), is
differentiable at λ, any calibrated configuration for L− λ admits a rotation vector
given by

ω = −∂L̄
∂λ

.

In particular, there exists minimizing configuration with rotation vector of arbi-
trarily large norm.

We have chosen to translate the Frenkel-Kontorova model into the framework
of discrete Lagrangian Aubry-Mather theory mainly to have a simple notion of
minimizing holonomic measures instead of transshipments. The main object we
are interested in is thus a C0 coercive Lagrangian L(x, v) defined on Td × Rd. A
family of local interaction energies can be naturally defined by

Lτ (x, y) = τL
(
x (mod Zd),

y − x
τ

)
, ∀ x, y ∈ Rd,

where τ > 0 is a parameter that we keep in order to understand later the homog-
enization theory of Frenkel-Kontorova model as in [27] and [28]. Notice that Lτ is
invariant under the diagonal action of Zd,

Lτ (x+ k, y + k) = Lτ (x, y), ∀ k ∈ Zd.

The two approches are complementary. While the Lagrangian formulation will be
more adapted in the description of the support of minimizing measures, the Frenkel-
Kontorova setting will be used in the construction of calibrated sub-actions, as well
as in the definition of two major notions of action potential: the Mañé potential
and the Peierls barrier. We intend later to better understand the limit when the
step τ tends to zero and the thermodynamic ground state limit of the system when
the temperature goes to zero.

2 A discrete Lagrangian dynamics

We fix from now on a C0 coercive Lagrangian L(x, v) : Rd × Rd → R, Zd-periodic
in x, and its associated local interaction energy map

Lτ (x, y) = τL
(
x,
y − x
τ

)
defined on Rd×Rd and invariant by the diagonal action of Zd. We begin by recalling
some well known notions of divergence type at infinity. Coerciveness is our basic
assumption, superlinerarity will be used when homology will play a role.

Definition 2.1. Let L(x, v) : Td × Rd → R be a C0-Lagrangian.

i. L(x, v) is said to be coercive if lim
R→+∞

inf
‖v‖≥R

inf
x∈Td

L(x, v) = +∞.
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ii. L(x, v) is said to be superlinear if lim
R→+∞

inf
‖v‖≥R

inf
x∈Td

L(x, v)

‖v‖
= +∞.

We call configuration any sequence {xk}k∈Z of points in Rd. Let Σ = (Rd)Z
be the set of configurations. We also consider the set of configurations modulo
the diagonal action of Zd, that is, the quotient of Σ by the equivalence relation:
{xk}k∈Z ∼ {yk}k∈Z if, and only if, there exists s ∈ Zd such that yk = xk + s for all
k ∈ Z. So

Σ = (Rd)Z and Σ/∼ = (Rd)Z/∼.

Let us notice that, for any fundamental domain D of the action of Zd on Rd, the
set (Rd)Z∗− × D × (Rd)Z∗+ is a fundamental domain for the diagonal action of Zd
on Σ. Let σ : Σ → Σ be the left shift given by σ({xk}) = {yk} where yk = xk+1.
Notice that σ commutes with the diagonal action.

Definition 2.2. We call minimizing configuration any sequence {xk}k∈Z which
minimizes the local interaction energy, namely,

Lτ (xn, xn+1, . . . , xn+m) :=
n+m∑
k=n

Lτ (xk, xk+1) ≤ Lτ (yn, yn+1, . . . , yn+m),

for any finite configuration {yk}n+m
k=n with identical boundary conditions xn = yn

and xn+m = yn+m.

Although one of our aim is to extend as much as we can the discrete Aubry-
Mather theory to just C0 coercive Lagrangian and to describe precisely the set of
minimizing configurations in this general setting, we show in this section that, under
a stronger hypothesis on the Lagrangian (C2-smoothness and twist condition), we
can recover the original theory, where the set of minimizing configurations can be
understood through the help of a dynamical system similar to the usual standard
map. Let us first recall the notion of critical configuration.

Definition 2.3. Let L(x, v) : Td × Rd → R be a C1-Lagrangian. We call critical
triple a configuration (x−1, x0, x1) of three points in Rd satisfying

∂Lτ
∂y

(x−1, x0) +
∂Lτ
∂x

(x0, x1) = 0.

We call critical configuration any configuration {xk}k∈Z of points in Rd consisting
of critical triples (xk−1, xk, xk+1):

∂Lτ
∂y

(xk−1, xk) +
∂Lτ
∂x

(xk, xk+1) = 0, ∀ k ∈ Z.

Let Γτ (L) ⊂ Σ be the set of critical configurations. We notice that Γτ (L) is invariant
by both the diagonal action of Zd and the shift σ. Let Γτ (L)/∼ be the quotient of
Γτ (L) by the diagonal action of Zd.
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The equations defining Γτ (L) may be seen as a discrete version of the Euler-
Lagrange equation. These equations show that, under some stronger hypothesis of
twist condition, the knowledge of (x0, x1) implies the existence of a unique critical
configuration with such initial conditions. More precisely, prefering the use of the
ferromagnetic terminology instead of the twist condition as it is done in statistical
mechanics, we introduce the following notion.

Definition 2.4. A C1-Lagrangian L(x, v) is said to be ferromagnetic if, for any
sufficiently small τ > 0, the two maps in (I) or equivalently in (II), where

(I)


Rd → Rd

x 7→ ∂Lτ
∂y

(x, y)

y 7→ ∂Lτ
∂x

(x, y)

and (II)


Rd → Rd

v 7→ ∂L

∂v
(y − τv, v)

v 7→ τ
∂L

∂x
(x, v)− ∂L

∂v
(x, v)

,

are homeomorphisms for all (x, y).

Similarly a discrete version of the Euler-Lagrange flow may be introduced.

Definition 2.5. Let L(x, v) be a C1 ferromagnetic Lagrangian. For sufficiently
small τ > 0, we call discrete Euler-Lagrange map (or standard map), the map

Φτ =

{
Td × Rd → Td × Rd

(x, v) 7→ (y, w)

where y = x+τv and w is the unique solution of one of the two equivalent equations

∂Lτ
∂y

(x, y) +
∂Lτ
∂x

(y, y + τw) = 0 or
∂L

∂v
(x, v) + τ

∂L

∂x
(y, w)− ∂L

∂v
(y, w) = 0.

Notice that Φτ is a homeomorphism on Td×Rd. In most part of the article, the
dynamical sytem (Td × Rd,Φτ ) will not be used, except, for instance, in section 6,
where we prove that minimizing measures are supported on a graph. The main
advantage of the standard map approach is that the space of critical configurations
modulo the diagonal action is conjugate to a 2d degrees of freedom dynamical
system.

Remark 2.6. Let Πτ : Rd × Rd → Td × Rd be the projection given by

Πτ (x0, x1) =
(
x0 mod Zd, (x1 − x0)/τ

)
.

We extend Πτ to Σ by writing Πτ ({xk}k∈Z) = Πτ (x0, x1) and notice that the pro-
jection Πτ : Σ/∼ → Td × Rd is also well defined. If L(x, v) is ferromagnetic, then
(Γτ (L)/∼, σ) is conjugated to (Td×Rd,Φτ ), that is, the following diagram commutes

Γτ (L)/∼
Πτ−−−−→ Td × Rdyσ yΦτ

Γτ (L)/∼
Πτ−−−−→ Td × Rd

.
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A critical configuration is thus completely determined by the 2d data (x, v) and
a general configuration plays the role of a virtual deformation as in Mechanics. In
order to check that a Lagrangian satisfies the ferromagnetic condition, an easier
but stronger assumption may be used instead.

Definition 2.7. Let L(x, v) : Td × Rd → R be a C2-Lagrangian. We say that L

is uniformly strictly convex (with respect to v) if ∂2L
∂v2

is uniformly positive definite,
that is, if there exists α > 0 such that

〈∂2L

∂v2
(x, v) · w,w

〉
≥ α‖w‖2, ∀ x ∈ Td, ∀ v, w ∈ Rd.

The following proposition shows that a strictly convex Lagrangian with bounded
second derivative is ferromagnetic. The proof is left to the reader.

Proposition 2.8. Let L(x, v) : Td × Rd → R be a C2 strictly convex Lagrangian.
Then L(x, v) is superlinear. If L(x, v) satisfies in addition the uniform condition∥∥ ∂2L
∂x∂v

∥∥
Td×Rd ≤ β for some β > 0, then L(x, v) is ferromagnetic. Moreover, for any

x, y ∈ Td, for any sufficiently small τ > 0, the two maps

v ∈ Rd 7→ τ
∂L

∂x
(x, v)− ∂L

∂v
(x, v) ∈ Rd and v ∈ Rd 7→ ∂L

∂v
(y − τv, v) ∈ Rd,

or equivalently the two maps

y ∈ Rd 7→ ∂Lτ
∂x

(x, y) ∈ Rd and x ∈ Rd 7→ ∂Lτ
∂y

(x, y) ∈ Rd,

are C1-diffeomorphisms. In particular, the discrete Euler-Lagrange map Φτ is a
C1-diffeomorphism.

Notice that the ferromagnetic condition can be obtained under weaker hypothe-
ses. For instance, assume d = 1. Let f : R → R be an increasing homemorphism
with f(0) = 0 and g : T1 → R be a C1-function. Then L(x, v) = g(x) +

∫ v
0 f(w) dw

is superlinear, ferromagnetic and C1. We also notice that ∂L
∂x is a coboundary under

the dynamics (Td × Rd,Φτ ):

τ
∂L

∂x
(y, w) =

∂L

∂v
(y, w)− ∂L

∂v
◦ Φ−1

τ (y, w).

3 Minimizing holonomic measures

In this section, we would like to make clear the usefulness of the notions of holonomic
measure (definition 3.1) and minimizing holonomic measure (definition 3.5). We
begin by briefly recalling Mather’s approach for the theory of minimizing orbits:
L(x, v) is usually assumed to be C2, periodic in x (namely, x ∈ Td), strictly convex
in v ∈ Rd and, for the purposes of this article, time independent.

In Mather’s approach, we are interested in finding minimizing absolutely con-
tinuous trajectories, that is, trajectories t ∈ R 7→ x(t) such that, for any t0 < t1
and any other trajectory t ∈ [t0, t1] 7→ y(t) satisfying the boundary conditions
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x(t0) = y(t0) and x(t1) = y(t1), the local action of x(t) on [t0, t1] is bounded from
above by the local action of y(t),∫ t1

t0

L(x(t), ẋ(t))dt ≤
∫ t1

t0

L(y(t), ẏ(t))dt.

These mimimizing trajectories may be looked for among the trajectories with a
prescribed rotation vector ω ∈ Rd,

lim
t→+∞

x(t)

t
= lim

t→+∞

1

t

∫ t

0
ẋ(t)dt = ω.

Notice that a minimizing trajectory must satisfy the Euler-Lagrange equation

d

dt

(∂L
∂v

(x, ẋ)
)

=
∂L

∂x
(x, ẋ)

and is therefore governed by the Euler-Lagrange flow Φτ (x0, ẋ0) = (xt, ẋt). Suppose
in addition that (xt, ẋt) is recurrent or more precisely is regular in the sense of
Birkhoff’s ergodic theorem for some Φτ -invariant ergodic probability measure µ on
Td × Rd, then ∫∫

Td×Rd
L(x, v)dµ(x, v) ≤

∫∫
Td×Rd

L(x, v)dν(x, v)

for any other invariant probability measure ν on Td × Rd.
It is therefore natural to look for minimizing trajectories as regular orbits of

the Euler-Lagrange flow located in the support of minimizing measures. Mather’s
approach can thus be translated into a linear optimization problem

µ = argmin

∫∫
Td×Rd

L(x, v)dµ(x, v)

µ is a Φτ -invariant probability measure∫∫
Td×Rd

v dµ(x, v) = ω.

Following R. Mañé [44] and D. A. Gomes [34], one can weaken this optimization
problem by asking µ to be only holonomic, that is, satisfying∫

Td
φ ◦ Φτ (x, v) dµ(x, v) =

∫
Td
φ(x) dµ(x, v)

for any bounded Borel (periodic) function φ : Td → R. (Notice that the previous
condition does not tell that µ is invariant by Φτ since the the test function f depends
only on x and not on (x, v), see definition 3.1).

We come back to our discrete Aubry-Mather theory and, as in the weak Mather’s
approach, we try to look for minimizing configurations located in the support of
minimizing invariant measures or more precisely in the support of minimizing holo-
nomic measures since the discrete Euler-Lagrange map may not exist. We denote
by P(Td×Rd) the convex set of probability measures over the Borel sets of Td×Rd.
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Definition 3.1. We call holonomic measure a probability measure µ ∈ P(Td×Rd)
satisfying ∫∫

Td×Rd
φ(x+ τv)dµ(x, v) =

∫∫
Td×Rd

φ(x)dµ(x, v)

for any bounded Borel function φ : Td → R. The set of holonomic measures is
denoted by Pτ (Td × Rd).

Notice that, in the ferromagnetic case, Φτ -invariant probability measures are
holonomic. Nevertheless, the holonomic class is larger. For example, any finite
configuration (x0, x1, . . . , xn−1) gives a holonomic probability µ = 1

n

∑n−1
i=0 δ(xi,vi),

where vi = xi+1−xi
τ and xn = x0. Notice also that the set of holonomic measures is

closed under the narrow topology.
We want to show that, although the notion of holonomic measures seems to

be unrelated to a dynamical system, the set of these measures is nevertheless in
one-to-one correspondence with the set of normalized invariant Markov chain of
(Σ, σ).

Definition 3.2. We call normalized invariant Markov chain on (Σ, σ) a sigma-
finite Markov chain (ν(dx), p(x, dy)), with initial distribution ν(dx) (a sigma-finite
measure defined on the Borel sets of Rd) and transition kernel p(x, dy) (a measur-
able family of probability measures defined on the Borel sets of Rd), satisfying the
following properties:

i. ν(dx) is invariant under the action of Zd and has mass one on any funda-
mental domain,

ii. p(x, dy) is invariant under the action of Zd in the following sense∫
Rd
ψ(y + s)p(x, dy) =

∫
Rd
ψ(y)p(x+ s, dy),

for any bounded Borel function ψ, for any s ∈ Zd,

iii. ν(dx) is Markov-stationary in the following sense∫∫
Rd×Rd

ψ(y)p(x, dy)ν(dx) =

∫
Rd
ψ(y)ν(dy)

for any bounded Borel function ψ.

The sigma-finite Markov chain µ̂ on Σ is given as usual as∫
Σ
ψ(x)dµ̂(x) =

∫
Rd
· · ·
∫
Rd
ψ(x0, x1, . . . , xn)ν(dx0)p(x0, dx1) · · · p(xn−1dxn),

for any bounded Borel function ψ(x) = ψ(x0, x1, . . . , xn), for any n ≥ 0. Then µ̂ is
both invariant with respect to the Zd and the shift σ action.

The correspondence between the notions of normalized invariant Markov chains
and of holonomic measures may be explained through another notion called nor-
malized invariant transshipment measure as in Evans and Gomes [19].
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Definition 3.3. We call normalized invariant transshipment measure π a sigma-
finite measure defined on the Borel sets of Rd×Rd verifying the following properties:

i. π is invariant under the diagonal action of Zd and has mass one on any
fundamental domain,

ii. if pr1 : Rd × Rd → Rd and pr2 : Rd × Rd → Rd denote the two canonical
projections, then pr1

∗(π) = pr2
∗(π).

The following proposition shows the equivalence between the three notions: holo-
nomic measures, normalized invariant transshipment measures and normalized in-
variant Markov chains. The proof is left to the reader and uses mainly the notion
of disintegration of measures.

Proposition 3.4. The three sets of measures, holonomic measures µ, normal-
ized invariant transshipment measures π and normalized invariant Markov chains
(ν(dx), p(x, dy)) are in one-to-one correspondence. The correspondence is given by:∫∫

Rd×Rd
ψ(x, y)π(dx, dy) :=

∫∫
Rd×Rd

ψ(x, x+ τv)µ(dx, dv),∫
Rd
φ(x)

(∫
Rd
ψ(x, y)p(x, dy)

)
ν(dx) :=

∫∫
Rd×Rd

φ(x)ψ(x, y)π(dx, dy),∫∫
Rd×Rd

φ(x, v)µ(dx, dv) :=

∫∫
Rd×Rd

φ

(
x,
y − x
τ

)
p(x, dy)ν(dx),

where µ(dx, dv) has been extended to Rd×Rd by invariance under the action of Zd
on the first factor.

As in the weak Mather’s approach, we are interested in finding particular min-
imizing configurations which are located in the support of minimizing holonomic
measures. We thus introduce a similar concept equivalent to Mañé’s definition of
critical value.

Definition 3.5. Let L(x, v) : Td × Rd → R be a continuous coercive Lagrangian.
We call minimizing holonomic value of L the quantity

L̄(τ) := inf
µ

∫∫
Td×Rd

L(x, v)µ(dx, dv),

where the infimum is taken over the set of holonomic measures. A measure µ
attaining the infimum is called a minimizing holonomic measure.

Remark 3.6. The three equivalent definitions given in proposition 3.4 show that
any holonomic measure µ seen on Td × Rd can be lifted to a shift-invariant prob-
ability measure µ̂ on Σ/∼ obtained from the normalized invariant Markov chain
(ν(dx), p(x, dy)). Conversely, the projection µ = (Πτ )∗(µ̂) of any shift-invariant
probability measure µ̂ on Σ/∼ is holonomic:∫∫

Td×Rd
φ(x+ τv)µ(dx, dv) =

∫
Σ/∼

φ(x1)µ̂(dx) =

=

∫
Σ/∼

φ(x0)µ̂(dx) =

∫∫
Td×Rd

φ(x)µ(dx, dv).
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From proposition 3.4, the minimizing holonomic value of L may be computed using
two different ways

L̄(τ) = inf
π

∫∫
Rd×Rd/∼

L
(
x,
y − x
τ

)
π(dx, dy) = inf

µ̂

∫
Σ/∼

L
(
x0,

x1 − x0

τ

)
µ̂(dx),

where the infimums are taken, respectively, over the set of normalized invariant
transshipment measures π and over the set of shift-invariant probability measures
on Σ/∼.

Since Td×Rd is not compact, the existence of a minimizing holonomic measure
is not guarantee at first sight. Nevertheless, periodicity in x and coerciveness in
y − x implies the existence of such minimizing measures.

Proposition 3.7. Let L(x, v) : Td ×Rd → R be a continuous coercive Lagrangian.
Then there exists a minimizing holonomic measure having a compact support.

Before going into the proof of this result, we will make use of a special piecewise
continuous map Fτ : Td × Rd → Td × Rd which enables us to replace Rd by a
compact ball. Let ‖v‖∞ = maxi |vi| be the maximum norm.

Definition 3.8. Suppose L(x, v) is a coercive Lagrangian, then there exists a real
number Rτ > 1/τ such that

inf
‖v‖∞≥Rτ

inf
x∈Td

L(x, v) > sup
‖v‖∞≤1/τ

sup
x∈Td

L(x, v).

Let bvc ∈ Zd denotes the vector whose coordinates are the greatest integers less
or equal than the respective coordinates of v ∈ Rd.
Lemma 3.9. Let L(x, v) be a C0 coercive Lagrangian and Fτ : Td×Rd → Td×Rd
defined by

Fτ (x, v) =

{ (
x, v − 1

τ bτvc
)

if ‖v‖∞ ≥ Rτ
(x, v) if ‖v‖∞ < Rτ

.

Then Fτ satisfies

i. the image Fτ (Td × Rd) is a bounded set;

ii. L(x, v) ≥ L ◦ Fτ (x, v) ∀ (x, v) ∈ Td × Rd;

iii. µ ∈ Pτ (Td × Rd) ⇒ (Fτ )∗µ ∈ Pτ (Td × Rd).
Proof. The first item is obviously satisfied. The second one is just a consequence of
the choice of Rτ . Finally, since ψ(x+ τv−bτvc) = ψ(x+ τv) for every ψ ∈ C0(Td),
the third item follows without difficulty.

We can now prove the existence of minimizing holonomic measures for C0 co-
ercive Lagrangians.

Proof of proposition 3.7. Consider a sequence {µn} ⊂ Pτ (Td × Rd) of holonomic
measures satisfying limn

∫
L(x, v) dµn(x, v) = L̄(τ). Items ii and iii of lemma 3.9

assure that the sequence {νn = (Fτ )∗µn} verifies the same properties. Furthermore,
by item i of the same lemma, all probability measures νn are supported on a
common compact set. Therefore, any accumulation point ν ∈ Pτ (Td ×Rd) of {νn}
for the narrow topology satisfies

∫
L(x, v) dν(x, v) = L̄(τ).
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4 Lax-Oleinik operators

The Lax-Oleinik semigroup is well known in partial differential equations and in
calculus of variations. It was used by A. Fathi (see [21]) for obtaining the so-called
weak KAM theorem in the framework of continuous-time, autonomous, strictly
convex and superlinear C3-Lagrangians on a compact manifold.

Several results in this section are comparable to those in D. Gomes [34]. There
are some differences: in the computation of the “effective” L̄(τ), we do not use the
abstract Fenchel-Rockafellar duality theorem to prove the sup-inf principle (proposi-
tion 4.5 in this section or theorem 2.3 in[34]); we do not use a penalized Lax-Oleinik
version as in [34] which corresponds to a more numerical approach (theorem 4.3
in this section or theorem 3.3 in [34]). More important, we are carefull about the
degree of minimum regularity we need in each step; we give in particular two es-
timates of regularity which are very comparable to those in D. Gomes but with
different hypothesis (proposition 4.7 and lemma 6.8 in this paper or propositions
5.1 and 5.2 in [34]).

In our context, we are interested in studying operators with similar properties
to the Lax-Oleinik semigroup. We recall that Lτ (x, y) = τL(x, y−xτ ).

Definition 4.1. Given a C0 coercive Lagrangian L = L(x, v) : Td × Rd → R and
a constant τ > 0, we call forward and backward Lax-Oleinik operators, respectively,
the maps T+ and T− defined by

T+u(x) = sup
v∈Rd

[u(x+ τv)− τL(x, v)] = sup
y∈Rd

[u(y)− Lτ (x, y)],

T−u(y) = inf
v∈Rd

[u(y − τv) + τL(y − τv, v)] = inf
x∈Rd

[u(y) + Lτ (x, y)],

for every Zd-periodic function u ∈ C0(Rd) that we identify with u ∈ C0(Td).

Because of the choice of Rτ in definition 3.8 and the fact that the minimization
of L can be made on the ball ‖v‖∞ ≤ Rτ as explained in lemma 3.9, T± are well
defined and have the following more restricted definition

T+u(x) = max
‖v‖∞≤Rτ

[u(x+ τv)− τL(x, v)] = max
‖y−x‖∞≤τRτ

[u(y)− Lτ (x, y)],

T−u(y) = min
‖v‖∞≤Rτ

[u(y − τv) + τL(y − τv, v)] = min
‖y−x‖∞≤τRτ

[u(y) + Lτ (x, y)].

Such identities are immediate consequences of the explicit construction of the ap-
plication Fτ : Td × Rd → Td × Rd whose properties are described in lemma 3.9.
Indeed, writing

φ+(x, v) = u(x+ τv)− τL(x, v) and φ−(x, v) = u(x− τv) + τL(x− τv, v),

we get φ+ ◦ Fτ ≥ φ+ and φ− ◦ Fτ ≤ φ−. So we have

max
v∈Rd

φ+(x, v) = max
v∈Rd

φ+ ◦ Fτ (x, v) = max
‖v‖∞≤Rτ

φ+(x, v),

and similar equalities for φ− as well.
Let osc(f,D) denote the oscillation of a function f on a subset D of its domain.
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Lemma 4.2. Let L(x, v) be a C0 coercive Lagrangian. Then the Lax-Oleinik oper-
ators verify the following properties.

i. For all u ∈ C0(Td), for all x, y ∈ Td,

|T+u(x)− T+u(y)| ≤ max
v∗,w∗

τ
∣∣L(x, v∗)− L(y, w∗)

∣∣ and

|T−u(x)− T−u(y)| ≤ max
v∗,w∗

τ
∣∣L(x− τv∗, v∗)− L(y − τw∗, w∗)

∣∣,
where the maxima are taken over

‖v∗‖∞, ‖w∗‖∞ ≤ 2Rτ and ‖v∗ − w∗‖∞ ≤
‖x− y‖∞

τ
.

ii. The two operators T+ and T− map C0(Td) into itself.

iii. The two sets T+(C0(Td)) and T−(C0(Td)) are equicontinuous.

In particular, osc(T+u,Td) and osc(T−u,Td) are bounded by the oscillation of τL
on Td ×B2Rτ , where B2Rτ denotes the closed ball of center 0 and radius 2Rτ .

Proof. On the one hand, for any point x in Rd, there exists z∗ ∈ Rd, such that
‖x − z∗‖∞ ≤ τRτ and T+u(x) = u(z∗) − Lτ (x, z∗). On the other hand, for any
y ∈ Rd, T+u(y) ≥ u(z∗)− Lτ (y, z∗). Combining these two estimates, we obtain

T+u(y)− T+u(x) ≥ Lτ (x, z∗)− Lτ (y, z∗) = τ
[
L(x, v∗)− L(y, w∗)

]
where w∗ = v∗ + x−y

τ and z∗ = x + τv∗. A similar estimate holds by permuting x
and y which proves the first property for T+. An analogous argument can be used
to demonstrate the inequality concerning the backward Lax-Oleinik operator T−.
Since L(x, v) is uniformly continuous on Td × B2Rτ , the two sets T±(C0(Td)) are
equicontinuous and the lemma is proved.

We recall that the minimizing holonomic value L̄(τ) has been introduced in
definition 3.5. So the main theorem of this section can be stated as follows.

Theorem 4.3. If L(x, v) is a C0 coercive Lagrangian, then there exist continuous
periodic solutions of the Lax-Oleinik equation, u+, u− ∈ C0(Td), satisfying

T+u+ = u+ − τL̄(τ) and T−u− = u− + τL̄(τ).

Moreover u± satisfies the a priori estimate: ‖u+‖0, ‖u−‖0 ≤ osc(τL,Td ×B2Rτ ).

Proof. If we equip C0(Td) with the topology of the uniform convergence, it is easy
to show that T+ : C0(Td) → C0(Td) is 1-Lipschitz. So the Lipschitz regularity is
also respected by the application T̂+ : C0(Td)→ C0(Td) defined by

T̂+u = T+u−max(T+u).

Obviously T̂+u ≤ 0 everywhere on C0(Td). Conversely, it follows from lemma 4.2
that

T̂+u ≥ −osc(τL,Td ×B2Rτ ), ∀ u ∈ C0(Td).
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Let B ⊂ C0(Td) denote the closed convex hull of the closure of T̂+(C0(Td)). Since
the image T̂+(C0(Td)) is bounded, B is a compact convex set. As T̂+(B) ⊂ B, by
the Schauder-Tychonoff fixed point theorem, there exists a function u+ ∈ C0(Td)
such that

T+u+ = u+ + max(T+u+).

Obviously, ‖u+‖0 = ‖T̂+(u+)‖0 ≤ osc(τL,Td × B2Rτ ). It remains to show that
max(T+u+) = −τL̄(τ). On the one hand

τL(x, v) + u+(x)− u+(x+ τv) ≥ −max(T+u+)

everywhere on Td × Rd. For any holonomic probability measure µ ∈ Pτ (Td × Rd),
by integrating the previous inequality, we obtain

τ

∫
L(x, v) dµ =

∫ [
τL(x, v) + u+(x)− u+(x+ τv)

]
dµ ≥ −max(T+u+)

and therefore max(T+u+) ≥ −τL̄(τ).
On the other hand, given x0 ∈ Td, there exists a vector v0 ∈ Rd such that

‖v0‖∞ ≤ Rτ and τL(x0, v0) + u+(x0) − u+(x0 + τv0) = −max(T+u+). For every
k ≥ 1, if xk = xk−1 + τvk−1 ∈ Td, we consider inductively vk ∈ Rd such that
‖vk‖ ≤ Rτ and τL(xk, vk) + u+(xk)− u+(xk + τvk) = −max(T+u+). Let {µn} be
the probability measure defined by

µn =
1

n

n−1∑
k=0

δ(xk,vk).

Since their supports are contained in the compact set Td×BRτ , such a sequence is
relatively compact for the narrow topology. Let µ ∈ Pτ (Td×Rd) be some convergent
subsequence limit. Note that the equality∫

[τL(x, v) + u+(x)− u+(x+ τv)] dµn(x, v) = −maxT+u+,

goes through the limit µ. Hence, we obtain maxT+u+ ≤ −τL̄(τ) if we prove that
µ is a holonomic probability measure. Indeed, for any function ψ ∈ C0(Td),∣∣∣∣∫ [ψ(x+ τv)− ψ(x)] dµn(x, v)

∣∣∣∣ =
1

n

∣∣∣∣∣
n−1∑
k=0

[ψ(xk + τvk)− ψ(xk)]

∣∣∣∣∣
=

1

n
|ψ(xn)− ψ(x0)| ≤ 2

n
‖ψ‖0.

Letting n go to infinity, we immediately obtain that µ ∈ Pτ (Td×Rd). The existence
of a function u− ∈ C0(Td) is obtained in an analogous way.

The following result is an immediate consequence of the previous proof.

Corollary 4.4. Let L(x, v) be a C0 coercive Lagrangian. If u ∈ C0(Td) satisfies
either T+u = u− c or T−u = u+ c for some constant c ∈ R, then c = τL̄(τ).
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The previous theorem 4.3 may be seen as an important theorical tool: it gives
a way to renormalize the initial Lagrangian by a coboundary

Lnorm(x, v) = L(x, v)− L̄(τ)− 1

τ

[
u(x+ τv)− u(x)

]
≥ 0, ∀ (x, v) ∈ Td × Rd.

The existence of a solution of the Lax-Oleinik operator also gives other character-
izations of the minimizing holonomic value, either as a max-min optimal value or
as an ergodic average asymptotic value.

Proposition 4.5. Let L(x, v) be a C0 coercive Lagrangian. Then we have

τL̄(τ) = sup
ψ∈C0(Td)

inf
(x,v)∈Td×Rd

[
τL(x, v) + ψ(x)− ψ(x+ τv)

]
or

τL̄(τ) = inf
{xk}∈(Rd)Z+

lim inf
n→∞

1

n

n−1∑
k=0

Lτ (xk, xk+1).

Proof. Let µ ∈ Pτ (Td × Rd) be any minimizing holonomic measure. Then

τL̄(τ) =

∫
τL(x, v) dµ(x, v)

=

∫
[τL(x, v) + ψ(x)− ψ(x+ τv)] dµ(x, v)

≥ inf
(x,v)∈Td×Rd

[τL(x, v) + ψ(x)− ψ(x+ τv)]

for every ψ ∈ C0(Td). By taking the supremum over all ψ ∈ C0(Td), one obtains
a lower bound of τL̄(τ). Conversely, theorem 4.3 establishes there is u+ ∈ C0(Td)
such that

τL̄(τ) = inf
(x,v)∈Td×Rd

[τL(x, v) + u+(x)− u+(x+ τv)] .

The first identity is proved. Consider now an arbitrary sequence {xk} ∈
(
Rd
)Z+ .

Then for any n > 0

nL̄(τ) ≤
n−1∑
k=0

Lτ (xk, xk+1) + u+(x0)− u+(xn) ≤
n−1∑
k=0

Lτ (xk, xk+1) + 2‖u+‖0.

Dividing by n and letting n go to infinity, we obtain the above upper bound for
τL̄(τ). Conversely, choose any optimal sequence {x∗k}k≥0 in Rd such that

τL̄(τ) = Lτ (x∗k, x
∗
k+1) + u+(x∗k)− u+(x∗k+1), ∀ k ≥ 0.

Dividing again by n and letting n go to infinity, we then obtain the above lower
bound for τL̄(τ) and the second identity is proved.

Thanks to theorem 4.3, we know that the solutions u± of the Lax-Oleinik op-
erator are continuous. If in addition L is locally α-Hölder continuous, the same
estimate of part i in lemma 4.2 shows that u± is also α-Hölder continuous. In fact,
these solutions possess a stronger regularity if L is supposed to be semiconcave.
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Definition 4.6. A function F : Td × Rd → R is called semiconcave if, for every
R > 0, there exists a nondecreasing upper semicontinuous function θR : R+ → R+

satisfying limρ→0+ θR(ρ) = 0 and

tF (ξ) + (1 − t)F (η) − F (tξ + (1 − t)η) ≤ t(1 − t)‖ξ − η‖θR(‖ξ − η‖)

for all ξ = (x, v), η = (y, w) in Rd × Rd with ‖v‖, ‖w‖ ≤ R and for any t ∈ [0, 1].
We call {θR}R>0 a family of local modulus of semiconcavity for F . A function
G : Td × Rd → R is called semiconvex if −G is semiconcave.

Notice that in the case the function F (x) depends only in x ∈ Td, semicon-
cavity is defined using a unique modulus θ instead of a family {θR}R>0. Any
C2-Lagrangian L(x, v) is an example of a semiconcave function with modulus of
semiconcavity θR(ρ) = CRρ and CR := 1

2 maxx∈Td max‖v‖≤R ‖ Hess(L)(x, v)‖∞.
The proof is standard.

For more details on semiconcave functions, we refer the reader to the book of P.
Cannarsa and C. Sinestrari (see [14]). Let us examine how the forward Lax-Oleinik
operator T+ deals with semiconcavity.

Proposition 4.7. Let L(x, v) be a semiconcave C0 coercive Lagrangian. Then any
solution u ∈ C0(Td) of the forward Lax-Oleinik equation, T+u = u − τL̄(τ), is
semiconvex.

Proof. Given x, y ∈ Rd and t ∈ [0, 1], set z = tx + (1 − t)y. Then there exists an
optimal z∗ ∈ Rd such that

u(z) = u(z∗)− Lτ (z, z∗) + τL̄(τ)

with ‖z − z∗‖∞ ≤ τRτ . Moreover

u(x) ≤ u(z∗)− Lτ (x, z∗) + τL̄(τ) and u(y) ≤ u(z∗)− Lτ (y, z∗) + τL̄(τ).

Combining these two inequalities and the previous identity, we obtain

tu(x) + (1− t)u(y)− u(z) ≥ −
[
tLτ (x, z∗) + (1− t)Lτ (y, z∗)− Lτ (z, z∗)

]
.

Let v∗ and w∗ be defined by z∗ = x+ τv∗ and z∗ = y + τw∗. Hence

z∗ = z + τ(tv∗ + (1− t)w∗) and ‖v∗‖∞, ‖w∗‖∞ ≤ Rτ +
∥∥x− y

τ

∥∥
∞ ≤ 2Rτ .

Then

tu(x) + (1− t)u(y)− u(z) ≥
≥ −τ

[
tL(x, v∗) + (1− t)L(y, w∗)− L(z, tv∗ + (1− t)w∗)

]
≥

≥ −τt(1− t) 2

τ
‖x− y‖∞θ2Rτ

(2

τ
‖x− y‖∞

)
using the fact that ‖v∗−w∗‖∞ = 1

τ ‖x−y‖∞. We have shown that 1
τ u is semiconvex

with a modulus of convexity θ(ρ) = − 2
τ θ2Rτ

(
2
τ ρ
)
.

Similarly, any solution u of the backward Lax-Oleinik equation T−u = u+τL̄(τ)
is semiconcave as soon as L(x, v) is a semiconcave C0 coercive Lagrangian.
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5 Calibrated and minimizing configurations

For conciseness, for any given configuration {xk}k∈Z of points in Rd, for any m < n,
we call normalized interaction energy of a finite configuration the quantity

L̄τ (xm, xm+1, . . . , xn) :=
n−1∑
k=m

[
Lτ (xk, xk+1)− τL̄(τ)

]
.

Let us recall from the introduction the fundamental definition of mimimizing
configurations.

Definition 5.1. Consider a bounded below C0-Lagrangian L(x, v). We say that a
configuration {xk}k∈Z of points of Rd is a minimizing configuration if, for every
pair m < n,

L̄τ (xm, xm+1, . . . , xn) ≤ L̄τ (ym, ym+1, . . . , yn)

whenever {yk}k∈Z satisfies ym = xm and yn = xn. A configuration {xk}k∈Z is
called strongly minimizing configuration if, for any two pairs m < n, m′ < n′ and
any configuration {yk}k∈Z satisfying ym′ = xm and yn′ = xn (mod Zd), we have

L̄τ (xm, xm+1, . . . , xn) ≤ L̄τ (ym′ , ym′+1, . . . , yn′).

For a coercive Lagrangian, notice that definition 3.8 implies consecutive jumps
xk+1 − xk are uniformly bounded for strongly minimizing configurations {xk}k∈Z,
namely,

sup
k∈Z
‖xk+1 − xk‖∞ < τRτ .

In order to introduce an important class of minimizing configurations, we will
need to consider the following notions.

Definition 5.2. Let L(x, v) be a C0 coercive Lagrangian. A function u : Rd → R
is a called sub-action (or τ -sub-action if necessary) with respect to L if u(x) is
Zd-periodic, continuous and satisfies

τL̄(τ) ≤ τL(x, v) + u(x)− u(x+ τv), ∀ (x, v) ∈ Td × Rd.

More restrictively, u is called forward calibrated if it is a sub-action and

u(x) + τL̄(τ) = sup
v∈Rd

[
u(x+ τv)− τL(x, v)

]
, ∀ x ∈ Td,

and similarly u is called backward calibrated if it is a sub-action and

u(x) + τL̄(τ) = inf
v∈Rd

[
u(x− τv) + τL(x− τv, v)

]
, ∀ x ∈ Td.

Notice that the C0 periodic functions u+, u− are forward or backward calibrated
sub-actions if, and only if, they are solutions of the forward or backward Lax-Oleinik
equations given in theorem 4.3. The existence of sub-actions has been proved under
the sole hypothesis of coerciveness.
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Proposition 5.3. Let L(x, v) be a C0 coercive Lagrangian. If L is locally α-Hölder
continuous, then any forward or backward calibrated sub-action u ∈ C0(Td) is α-
Hölder continuous too. Besides, if L is semiconcave, then all forward calibrated
sub-actions are semiconvex and all backward calibrated sub-actions are semiconcave.

Proof. The Hölder case is an immediate consequence of part i of lemma 4.2. The
semiconvex property is just a reinterpretation of proposition 4.7 as well as its ana-
logue for backward calibrated sub-actions mentioned after its demonstration.

Observe that, in terms of the associated local interaction energy Lτ (x, y), a
sub-action u satisfies Lτ (x, y) ≥ u(y)− u(x) + τL̄(τ) everywhere on Rd × Rd.

Definition 5.4. Consider a C0(Td) sub-action u for a C0 coercive Lagrangian
L(x, v). A configuration {xk}k∈Z in Rd is called u-calibrated if, for every k ∈ Z, we
have Lτ (xk, xk+1) = u(xk+1)− u(xk) + τL̄(τ).

It is easy to see that calibrated configurations are minimizing and even strongly
minimizing. We show in the following lemma that the coerciveness assumption
implies the existence of calibrated configurations and therefore the existence of
minimizing configurations.

Lemma 5.5. Suppose L(x, v) is a C0 coercive Lagrangian. If u ∈ C0(Td) is ei-
ther a forward or a backward calibrated sub-action, then there exists a u-calibrated
configuration {xk}k∈Z in Rd passing through some point x0 ∈ [0, 1)d and satisfying
‖xk+1 − xk‖∞ ≤ τRτ , where Rτ >

1
τ has been defined in 3.8.

Lemma 5.6. Let L(x, v) be a C0 coercive Lagrangian. If u ∈ C0(Td) is an ar-
bitrary sub-action, then any u-calibrated configuration {xk}k∈Z in Rd is a strongly
minimizing configuration satisfying ‖xk+1 − xk‖∞ ≤ τRτ for every k ∈ Z.

Proof of lemma 5.5. Let u ∈ C0(Td) be a forward calibrated sub-action. Thanks
to coerciveness, u verifies τL̄(τ) = min‖v‖∞≤Rτ [τL(x, v) + u(x)− u(x+ τv)] or

τL̄(τ) = min
y : ‖y−x‖∞≤τRτ

[Lτ (x, y) + u(x)− u(y)] , ∀ x ∈ Rd.

Hence, for every positive integer n, consider a configuration {xnk}k≥−n in Rd such
that ‖xnk − xnk+1‖∞ ≤ τRτ and τL̄(τ) = Lτ (xnk , x

n
k+1) + u(xnk) − u(xnk+1) for all

k ≥ −n. Since Lτ (x + s, y + s) = Lτ (x, y) for s ∈ Zd, we may assume that
xn0 ∈ [0, 1)d for every n > 0. In particular, we get that ‖xnk‖∞ ≤ τRτ |k|+ 1 for all
k ≥ −n. By a diagonal procedure, we extract a configuration {xk}k∈Z satisfying
τL̄(τ) = Lτ (xk, xk+1) + u(xk)− u(xk+1) for any integer k. A similar proof can be
developed for C0(Td) backward calibrated sub-actions.

Proof of lemma 5.6. Let {xk}k∈Z be a u-calibrated configuration. Thanks to defi-
nition 3.8, if ‖xk+1 − xk‖∞ > τRτ , then

u(xk+1)− u(xk) + τL̄(τ) = Lτ (xk, xk+1) >

> Lτ (xk, xk+1 − bxk+1 − xkc) ≥ u(xk+1 − bxk+1 − xkc)− u(xk) + τL̄(τ).
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The periodicity of u implies that the strict inequality cannot happen. Therefore,
‖xk+1− xk‖∞ ≤ τRτ for all k ∈ Z. Moreover, for any m < n, for any configuration
{yk}k∈Z in Rd satisfying ym′ = xm and yn′ = xn (mod Zd), since

L̄τ (xm, xm+1, . . . , xn) = u(xn)−u(xm) = u(yn′)−u(ym′) ≤ L̄τ (ym′ , ym′+1, . . . , yn′),

we obtain that {xk}k∈Z is a strongly minimizing configuration.

Notice that the existence of a u-calibrated configuration of a sub-action gives
an equivalent definition of the holomic minimizing value L̄(τ) as defined in 3.5

τL̄(τ) = inf
{xk}∈(Rd)Z

lim inf
n−m→∞

1

n−m

n−1∑
k=m

Lτ (xk, xk+1).

Furthermore, u-calibrated configurations are examples of critical configurations
without assuming any ferromagnetic condition.

Lemma 5.7. Let L(x, v) be a C1 coercive Lagrangian. Any u-calibrated configura-
tion of some C0 periodic sub-action u is critical.

Proof. Let {xk}k∈Z be a u-calibrated configuration. Lemma 5.6 implies {xk}k∈Z is
minimizing and in particular satisfies

Lτ (xk−1, xk, xk+1) ≤ Lτ (xk−1, x, xk+1), ∀ x ∈ Rd.

Therefore ∂Lτ
∂y (xk−1, xk)+ ∂Lτ

∂x (xk, xk+1) = 0 for all k ∈ Z and {xk}k∈Z ∈ Γτ (L).

We have seen in remark 3.6 that any holonomic measure can be lifted to a
shift-invariant probability measure in Σ/∼ and that

τL̄(τ) = min
µ̂ σ−invariant

∫
Σ/∼

Lτ (x0, x1) dµ̂(x).

We show in the following proposition how to lift some minimizing holonomic prob-
ability measures to (Γτ (L), σ) or equivalently to (Td × Rd,Φτ ).

Proposition 5.8. Let L(x, v) be a C1 ferromagnetic coercive Lagrangian, then the
minimizing holonomic value of L is given by

L̄(τ) = min
{∫

L(x, v) dµ(x, v) : µ ∈ Pτ (Td × Rd), µ Φτ -invariant
}
.

Proof. We already remarked that any Φτ -invariant probability is holonomic, then

L̄(τ) ≤ min
{∫

L(x, v) dµ(x, v) : µ ∈ Pτ (Td × Rd), µ Φτ -invariant
}
.

If {xk}k∈Z is a u-calibrated configuration for some C0 periodic sub-action u, then
{xk}k∈Z ∈ Γτ (L) by lemma 5.7. Therefore, thanks to the conjugation between
(Γτ (L), σ) and (Td × Rd,Φτ ), if vk :=

xk+1−xk
τ , then (xk, vk) = Φk

τ (x0, v0) for all
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k ∈ Z and vk is uniformly bounded by lemma 5.6. Let µ ∈ Pτ (Td × Rd) be a weak
limit of some convergent subsequence

µnl =
1

nl

nl−1∑
k=0

δΦkτ (x0,v0).

Then µ is Φτ -invariant and we have∫
L(x, v) dµ(x, v) = lim

l→∞

1

nl

nl−1∑
k=0

L ◦ Φk
τ (x0, v0)

= lim
l→∞

1

nl

[
u(xnl)− u(x0)

τ
+ nlL̄(τ)

]
= L̄(τ).

We will see in the next section that, for ferromagnetic Lagrangians, all mini-
mizing holonomic measures are actually Φτ -invariant.

6 Graph property and Mather set

In the setting of continuous-time periodic, strictly convex, superlinear and complete
C2-Lagrangians on a compact and connected C∞ manifold, J. N. Mather showed
(see [51]) that measures invariant under the Euler-Lagrange flow which are action
minimizing can be seen as Lipschitz sections of the tangent bundle. Our main goal
in this section (see theorem 6.10) is to obtain a similar graph property.

Definition 6.1. Let L(x, v) be a C0 coercive Lagrangian. We call Mather set the
set

Mτ (L) = closure
(⋃{

supp(µ) : µ ∈ Pτ (Td × Rd) and µ is minimizing
})
,

where supp(µ) denotes the support of the probability µ.

Proposition 3.7 implies that minimizing holonomic measures do exist, which
shows that the Mather set is nonempty.

Definition 6.2. Let L(x, v) be a C0 coercive Lagrangian and u be a C0 periodic
sub-action for L. We call nil locus of u the set

Nτ (L, u) =
{

(x, v) ∈ Td × Rd : τL(x, v) = u(x+ τv)− u(x) + τL̄(τ)
}
.

We observe that coerciveness guarantees all nil loci are nonempty. The following
proposition shows that Nτ (L, u) actually contains the support of any minimizing
holonomic measure.

Proposition 6.3. Let L(x, v) be a C0 coercive Lagrangian. Then, for any sub-
action u ∈ C0(Td) with respect to L, we have Mτ (L) ⊂ Nτ (L, u).
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Proof. Consider a minimizing holonomic measure µ ∈ Pτ (Td × Rd). Since one has
both τL(x, v) + u(x)− u(x+ τv)− τL̄(τ) ≥ 0 and∫ [

τL(x, v) + u(x)− u(x+ τv)− τL̄(τ)
]
dµ(x, v) = 0,

τL(x, v) = u(x+ τv)− u(x) + τL̄(τ) holds everywhere on the support of µ.

As in the proof of lemma 5.6, the coerciveness assumption of L implies that any
nil locus is compact. More precisely, we have

Corollary 6.4. Let L(x, v) be a C0 coercive Lagrangian and u ∈ C0(Td) be a sub-
action with respect to L. If (x, v) ∈ Nτ (L, u), then ‖v‖∞ ≤ Rτ . In particular, the
support of any minimizing holonomic measure is compact.

Proof. If ‖v‖∞ > Rτ , then L(x, v) > L(x, v − 1
τ bτvc). Assume (x, v) ∈ Nτ (L, u),

then

u(x+ τv)− u(x) = τL(x, v)− τL̄(τ) > τL
(
x, v − 1

τ
bτvc

)
− τL̄(τ)

≥ u
(
x+ τ

(
v − 1

τ
bτvc

))
− u(x) = u(x+ τv)− u(x).

We obtain a contradiction, therefore ‖v‖∞ ≤ Rτ .

We assume from now on in this section that L is C1 and coercive. We prove
that any sub-action is continuously differentiable on the projected Mather set
pr1(Mτ (L)), where pr1 : Td × Rd → Td denotes the first canonical projection.
When L is in addition ferromagnetic, we prove that Mτ (L) is a graph over its
projection into Td. Recall that Πτ has been introduced in definition 2.6.

Lemma 6.5. Let µ be a holonomic measure with compact support, then for any
x ∈ pr1(supp(µ)), there exists a configuration x := {xk}k∈Z in Rd such that x0 = x
and Πτ ◦ σk(x) =

(
xk,

xk+1−xk
τ

)
∈ supp(µ) for all k ∈ Z.

Proof. From proposition 3.4, we naturally associate to µ a normalized invariant
transshipment π in Rd × Rd. Let pr1,2 : Rd × Rd → Rd be the two canonical
projections. Since µ has compact support, the support of π has compact horizontal
and vertical slices. Then S1,2 := pr1,2(supp(π)) are closed sets. We always have
S1,2 ⊆ supp(pr1,2(π)). Since S1,2 are closed, necessarily S1,2 = supp(pr1,2

∗ (π)).
Since π is a transshipment, pr1

∗(π) = pr2
∗(π) and S1 = S2. Let x0 ∈ S1, then

there exists x1 such that (x0, x1) ∈ supp(π). Since x1 ∈ S2 = S1, there exists x2

such that (x1, x2) ∈ supp(π), and so on. We thus obtain a forward and backward
orbit {xk}k∈Z of points (xk, xk+1) in the support of π or equivalently an orbit
{(xk, vk = (xk+1 − xk)/τ)}k∈Z of points in the support of µ.

In order to prove the differentiability of any sub-action on the projected Mather
set, we introduce two intermediate notions of calibration.
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Definition 6.6. Let u ∈ C0(Rd) be a Zd-periodic sub-action for L. A couple
(x0, x1) ∈ Rd × Rd is called u-calibrated if Lτ (x0, x1) = u(x1) − u(x0) + τL̄(τ).
A triple (x−1, x0, x1) is called u-calibrated if both (x−1, x0) and (x0, x1) are u-
calibrated.

Lemma 6.7. Let L(x, v) be a C1 coercive Lagrangian and u ∈ C0(Td) be a sub-
action. Then, for any u-calibrated couple (x0, x1) ∈ Rd × Rd, we have

lim sup
‖h‖∞→0

1

‖h‖∞

[
u(x1 + h)− u(x1)−

〈∂Lτ
∂y

(x0, x1), h
〉]
≤ 0 and

lim inf
‖h‖∞→0

1

‖h‖∞

[
u(x0 + h)− u(x0)−

〈
− ∂Lτ

∂x
(x0, x1), h

〉]
≥ 0.

Proof. Indeed, since u is a sub-action, we have on the one hand

u(x1 + h) ≤ u(x0) + Lτ (x0, x1 + h)− τL̄(τ) and

u(x1) ≤ u(x0 + h) + Lτ (x0 + h, x1)− τL̄(τ), ∀ h ∈ Rd.

On the other hand, u(x1) = u(x0) + Lτ (x0, x1)− τL̄(τ), which implies

u(x1 + h)− u(x1) ≤
[
Lτ (x0, x1 + h)− Lτ (x0, x1)

]
and

u(x0 + h)− u(x0) ≥
[
Lτ (x0, x1)− Lτ (x0 + h, x1)

]
.

The lemma follows from the differentiability of L.

Although we could use the theory of subdifferentiability to derive the next
lemma, for the sake of completeness, we prefer to give a direct proof.

Lemma 6.8. Let L(x, v) be a C1 coercive Lagrangian and u ∈ C0(Td) be a sub-
action. Let Kτ (L, u) denote the set of mid-points x0 of all u-calibrated triples
(x−1, x0, x1).

i. If (x−1, x0, x1) is u-calibrated, then u is differentiable at x0 and

Du(x0) =
∂Lτ
∂y

(x−1, x0) = −∂Lτ
∂x

(x0, x1)

=
∂L

∂v

(
x−1,

x0 − x−1

τ

)
=
∂L

∂v

(
x0,

x1 − x0

τ

)
− τ ∂L

∂x

(
x0,

x1 − x0

τ

)
.

ii. The map Du : Kτ (L, u)→ Rd is uniformly continuous independently of u.

iii. If L is in addition ferromagnetic, then there exists at most one u-calibrated
configuration passing through any x0 ∈ Rd.

Proof. Item i . On the one hand, a u-calibrated triple is critical as in definition 2.3.
Let ∇ be the common derivative

∇ :=
∂Lτ
∂y

(x−1, x0) = −∂Lτ
∂x

(x0, x1).
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On the other hand, lemma 6.7 implies that

lim sup
‖h‖∞→0

u(x0 + h)− u(x0)−
〈
∇, h

〉
‖h‖∞

≤ 0 ≤ lim inf
‖h‖∞→0

u(x0 + h)− u(x0)−
〈
∇, h

〉
‖h‖∞

,

which shows that Du(x0) = ∇.

Item ii . We begin by showing that there exists a positive function Cτ (h) defined
for all h ∈ Rd, depending only on τ and L, such that Cτ (h)→ 0 when h→ 0 and

|u(x0 + h)− u(x0)− 〈Du(x0), h〉| ≤ Cτ (h)‖h‖∞,

for all h ∈ Rd, all x0 ∈ Kτ (L, u) and all sub-action u. Let (x−1, x0, x1) be a
u-calibrated triple. On the one hand,

u(x1)− u(x0)− Lτ (x0, x1) = −τL̄(τ) ≥ u(x1)− u(x0 + h)− Lτ (x0 + h, x1),

and by eliminating u(x1) one obtains

u(x0 +h)−u(x0)−〈Du(x0), h〉 ≥ −
[
Lτ (x0 +h, x1)−Lτ (x0, x1)−〈∂Lτ

∂x
(x0, x1).h〉

]
.

On the other hand,

u(x0)− u(x−1)− Lτ (x−1, x0) = −τL̄(τ) ≥ u(x0 + h)− u(x−1)− Lτ (x−1, x0 + h),

and by eliminating u(x−1) one obtains

u(x0 +h)−u(x0)−〈Du(x0), h〉 ≤ Lτ (x−1, x0 +h)−Lτ (x−1, x0)−〈∂Lτ
∂y

(x−1, x0), h〉.

Notice that ‖x0 − x−1‖∞, ‖x1 − x0‖∞ ≤ τR(τ) whenever (x−1, x0, x1) ∈ Kτ (L, u)
and that Lτ (x, y) is invariant by the diagonal Zd-translation. Define

C ′τ (h) := max
‖x1−x0‖∞≤τR(τ)

max
s∈[0,1]

∥∥∂Lτ
∂x

(x0 + sh, x1)− ∂Lτ
∂x

(x0, x1)
∥∥
∞

C ′′τ (h) := max
‖x0−x−1‖∞≤τR(τ)

max
s∈[0,1]

∥∥∂Lτ
∂y

(x−1, x0 + sh)− ∂Lτ
∂y

(x−1, x0)
∥∥
∞.

Then Cτ (h) = max(C ′τ (h), C ′′τ (h)) is the desired function.

We now show that Du(x0) is uniformly continuous on Kτ (L, u). Notice that

|u(x0)− u(x0 − h)− 〈Du(x0), h〉| ≤ Cτ (−h)‖h‖∞, ∀ h ∈ Rd.

Let x0 and x′0 be two distinct mid-points of Kτ (L, u). Then, for any h,

|u(x0 + h)− u(x0)− 〈Du(x0), h〉| ≤ Cτ (h)‖h‖∞,
|u(x′0)− u(x0 + h)− 〈Du(x′0), x′0 − x0 − h〉| ≤ Cτ (x0 + h− x′0)‖x0 + h− x′0‖∞,

|u(x0)− u(x′0)− 〈Du(x′0), x0 − x′0〉| ≤ Cτ (x0 − x′0)‖x0 − x′0‖∞.
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By adding the three inequalities and by taking any ‖h‖∞ = ‖x0− x′0‖∞, we obtain

|〈Du(x′0)−Du(x0), h〉| ≤ Cτ (x0, x
′
0)‖h‖∞,

where Cτ (x0, x
′
0) := sup‖h‖∞=‖x0−x′0‖∞ [Cτ (h) + 2Cτ (x0 + h − x′0) + Cτ (x0 − x′0)].

Therefore ‖Du(x0)−Du(x′0)‖∞ ≤ Cτ (x0, x
′
0) and Du(x0) is uniformly continuous.

Item iii . If {xk}k∈Z is a u-calibrated configuration, then Du(xk) exists for all k and
the two equations Du(xk) = ∂Lτ

∂y (xk−1, xk) and Du(xk) = −∂Lτ
∂x (xk, xk+1) shows

that xk−1 and xk+1 are known as soon as xk is known and L is ferromagnetic.

The following proposition is now a direct consequence of proposition 6.3 and
lemmas 6.5 and 6.8.

Proposition 6.9. Let L(x, v) be a C1 coercive Lagrangian. Then any sub-action
u ∈ C0(Td) with respect to L is continuously differentiable on the projected Mather
set pr1(Mτ (L)), where pr1 : Td × Rd → Td denotes the first canonical projection.
If L is in addition C1,1, then Du : pr1(Mτ (L))→ R is Lipschitz uniformly in u.

Proof. Recall from lemma 6.8 that Kτ (L, u) denotes the set of mid-points of u-
calibrated triples. From lemmas 6.5 and proposition 6.3, we deduce that

pr1(Mτ (L)) ⊆ Kτ (L, u).

From 6.8, we obtain that Du : Td → Rd is continuous.

Mather graph property is then an easy consequence of the previous study in the
case of ferromagnetic Lagrangians.

Theorem 6.10. Let L(x, v) be a C1 ferromagnetic coercive Lagrangian. Then there
exists a continuous map

Vτ : pr1(Mτ (L))→ Rd, ‖Vτ‖∞ ≤ Rτ ,

such that Mτ (L) is a graph over its projection, that is,

Mτ (L) = graph(Vτ ) = {(x, Vτ (x)) |x ∈ pr1(Mτ (L)}.

Moreover, Mτ (L) is compact and Φτ -invariant, any minimizing holonomic proba-
bility measure µ is Φτ -invariant and, for any sub-action u ∈ C0(Td), one has

Du(x) =
∂L

∂v
(x, Vτ (x))− τ ∂L

∂x
(x, Vτ (x)), ∀ x ∈ pr1(Mτ (L)).

Proof. Let u ∈ C0(Td) be any sub-action. From lemma 6.8, we know that Du(x)
exists and is continuous for all x ∈ Kτ (L, u). Since L is ferromagnetic, we define
uniquely Vτ (x) by the following implicit equation

Du(x) =
∂L

∂v
(x, Vτ (x))− τ ∂L

∂x
(x, Vτ (x)), ∀ x ∈ Kτ (L, u).

Then Vτ becomes continuous on Kτ (L, u).
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Assume now that x ∈ pr1(Mτ (L)). Consider a point x−1 ∈ Td with (x−1, x)
u-calibrated. Take v ∈ Rd such that (x, v) ∈Mτ (L) and define x1 = x+ τv. Then
(x−1, x, x1) is u-calibrated and, thanks to lemma 6.8, we have

Du(x) =
∂L

∂v
(x, v)− τ ∂L

∂x
(x, v).

Necessarily v = Vτ (x), ‖Vτ (x)‖∞ ≤ Rτ and Vτ (x) is independent of the choice of
u. From lemma 6.5, we know there exist u-calibrated triples passing through x
consisting of points of pr1(Mτ (L)). From the ferromagnetic property, we deduce
that this triple is unique. Thus x1 ∈ pr1(Mτ (L)) ⊆ Kτ (L, u) and

Du(x1) =
∂L

∂v
(x, Vτ (x)) =

∂L

∂v
(x1, Vτ (x1))− τ ∂L

∂x
(x1, Vτ (x1)).

From the definition of Φτ (see definition 2.5), we obtain

Φτ (x, v) = (x+ τv, Vτ (x+ τv)) , ∀ (x, v) ∈Mτ (L).

In particular, Φτ preserves the Mather set (the reverse inclusion is proved similarly)

Φτ (Mτ (L)) = Mτ (L).

Let µ ∈ Pτ (Td × Rd) be a minimizing holonomic probability measure. For any
bounded Borel function ϕ : Td × Rd → R, from the previous identity, we have∫

ϕ ◦ Φτ (x, v) dµ(x, v) =

∫
Mτ (L)

ϕ (x+ τv, Vτ (x+ τv)) dµ(x, v)

=

∫
Mτ (L)

ϕ (x, Vτ (x)) dµ(x, v) =

∫
ϕ (x, v) dµ(x, v),

which means the Φτ -invariance of the measure µ.

The last statement of theorem 6.10 is similar to a known result in the case of
Lagrangian theory. For a continuous-time periodic, strictly convex, superlinear and
complete C∞-Lagrangian on a closed Riemannian manifold, R. Mañé showed (see
proposition 1.3 of [44]) that any minimizing holonomic measure is invariant under
the Euler-Lagrange equations.

7 The Aubry set

In Aubry-Mather theory for continuous-time Lagrangian dynamics, there are gen-
erally two strategies for introducing the Aubry set: A. Fathi’s formulation (see
[23]) using the notion of conjugate weak KAM solutions and G. Contreras and R.
Iturriaga construction (see [17]) using the notion of static curves. Both approaches
request intrinsically a differentiable Lagrangian.

We have chosen a different approach which is closer to a more usual definition
in ergodic optimization theory and which has the main advantage of requiring only
C0 smoothness. The Aubry set will be introduced using the following concept.
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Definition 7.1. We call periodic configuration of type (q, p) a finite configuration
(x0, x1, · · · , xq) of points of Rd such that xq = x0 + p, q ≥ 1 and p ∈ Zd. Such a fi-
nite configuration determines uniquely a bi-infinite configuration {xk}k∈Z satisfying
xq+k = xk + p for all k ∈ Z.

The notion of Aubry point below is similar to the one of non-wandering point
with respect a potential used in ergodic optimization (see, for instance, [18, 31, 32]).
A similar projected Aubry set in [35] has also been used in the discrete Aubry-
Mather problem. Recall that L̄τ (x0, x1, · · · , xq) =

∑q−1
k=0[Lτ (xk, xk+1)− τL̄(τ)].

Definition 7.2. Let L(x, v) : Td × Rd → R be a C0 coercive Lagrangian. A point
(x, v) ∈ Td×Rd is said to be an Aubry point if, for any ε > 0, there exists a periodic
configuration of type (q, p), (x0, x1, · · · , xq), such that

‖x− x0‖∞ < ε, ‖x+ τv − x1‖∞ < ε and |L̄τ (x0, x1, · · · , xq)| ≤ ε.

The Aubry set Aτ (L) is by definiton the set of all Aubry points.

Notice that the Aubry set depends on L modulo any coboundary, that is, for
all function ψ ∈ C0(Td) and any constant c ∈ R, Aτ (L) = Aτ (L − ∆τψ − c),
where ∆τψ(x, v) := ψ(x + τv) − ψ(x). Notice also that L̄τ (x0, x1, · · · , xq) ≥ 0 for
any periodic configuration of type (q, p), since L̄τ (x0, x1, · · · , xq) is unchanged if,
instead of L, we use L− 1

τ∆τu− L̄(τ) ≥ 0 for some sub-action u.
It is easy to see that the Aubry set is a closed subset of Td ×Rd. The fact that

it is a non empty set is proved in the following proposition.

Proposition 7.3. Let L(x, v) be a C0 coercive Lagrangian and u ∈ C0(Td) be a
sub-action with respect to L. Then Mτ (L) ⊂ Aτ (L) ⊂ Nτ (L, u).

Proof. We begin by proving the second inclusion. Define the associated normalized
Lagrangian E(x, v) := L(x, v)− 1

τ [u(x+ τv)− u(x)]− L̄(τ) and the corresponding
interaction energy Eτ (x, y). Then E(x, v) ≥ 0 for all (x, v) ∈ Td×Rd and Ē(τ) = 0.
For any ε > 0, there exists a periodic configuration (x0, x1, · · · , xq) such that

0 ≤ Ēτ (x0, x1) ≤ Ēτ (x0, x1, · · · , xq) = L̄τ (x0, x1, · · · , xq) ≤ ε.

Letting ε go to 0, we obtain Eτ (x, x+ τv) = 0 or (x, v) ∈ Nτ (L, u).
We now prove the first inclusion. The proof of this part is non trivial and

requires the use of Atkinson’s theorem which we recall in 7.4. Let µ be a minimiz-
ing holonomic probability measure and (x, v) ∈ supp(µ). By proposition 3.4, the
measure µ can be lifted to a normalized shift-invariant Markov chain µ̂ on Σ/∼.
Remark 3.6 tells us that µ̂ is a minimizing shift-invariant probability in following
sense

τL̄(τ) =

∫
Σ/∼

Lτ (x0, x1) dµ̂(x) = inf
ν̂ σ-invariant

∫
Σ/∼

Lτ (x0, x1) dν̂(x).

Take ε > 0. Let Bε denote an open ball of radius η(ε) ∈ (0, ε) around the point
(x, v) such that the oscilation of Lτ (x0, x1) on B̂ε := Π−1

τ (Bε) is less than ε. Then
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µ̂(B̂ε) = µ(Bε) > 0 and, by the ergodic decomposition theorem (see, for instance,
chapter 7 of [36]), there exists an ergodic minimizing shift-invariant probability ν̂
which satisfies

ν̂(B̂ε) > 0 and τL̄(τ) =

∫
Σ/∼

Lτ (x0, x1) dν̂(x).

Atkinson’s theorem implies that there exist a point x = {xk}k∈Z ∈ B̂ε and in-
finitely many positive integers q such that σq(x) ∈ B̂ε and |L̄τ (x0, x1, · · · , xq)| < ε.
By definition of B̂ε, we may assume x0 and x1 close to x and x + τv within η(ε).
Moreover, xq is close to x0 +p within η(ε) for some p ∈ Zd. We have obtained a pe-
riodic configuration (xq−p, x1, · · · , xq) beginning close to (x, x+τv) and satisfying
|L̄τ (xq − p, x1, · · · , xq)| < 2ε. We have shown that (x, v) ∈ Aτ (L).

Atkinson’s theorem is well known. We recall the statement for completeness.

Theorem 7.4. (Atkinson’s theorem [2]) Let (Z,C, λ) be a probability space,
T : Z → Z an ergodic measure preserving map, f : Z → R an integrable function,
f ∈ L1(λ), and D ∈ C a measurable set of positive measure, λ(D) > 0. Denote

Ξ(f,D) :=
{
z ∈ D : ∀ ε > 0, ∃ n ≥ 1 with

Tn(z) ∈ D and
∣∣ n−1∑
k=0

f ◦ T k(z)− n
∫
Z
f dλ

∣∣ < ε
}
.

Then λ (Ξ(f,D)) = λ(D).

We want now to prove that any sub-action is continuously differentiable on
the Aubry set. We first show that a finite configuration with bounded interaction
energy has bounded jumps independently of the length of the configuration.

Lemma 7.5. Let L(x, v) be a C0 coercive Lagrangian. Then for any E > 0 there
exists RE > 0 such that, for any n ≥ 1 and any finite configuration (x0, x1, · · · , xn)
of length n with interaction energy bounded from above by E,

L̄τ (x0, x1, · · · , xn) ≤ E =⇒ ‖xk − xk−1‖∞ ≤ RE , ∀ k = 1, · · · , n.

Proof. Let u be a fixed C0(Td) sub-action. By coerciveness of L, for every E > 0
there exists RE > 0 such that |L̄τ (x, y)| ≤ E + 4‖u‖0 ⇒ ‖y − x‖∞ < RE . Then

0 ≤ L̄τ (xk−1, xk) + u(xk−1)− u(xk) ≤
≤ L̄τ (x0, x1, · · · , xn) + u(x0)− u(xn) ≤ E + 2‖u‖0,

|L̄τ (xk−1, xk)| ≤ E + 4‖u‖0 and ‖xk − xk−1‖ < RE .

We can now extend the conclusion of proposition 6.9.

Proposition 7.6. Let u ∈ C0(Td) be a sub-action with respect to a C1 coercive
Lagrangian L(x, v). Then u is continuously differentiable on the projected Aubry
set pr1(Aτ (L)). If L is in addition C1,1 then Du : pr1(Aτ (L)) → R is Lipschitz
uniformly in u.
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Proof. As in the proof of proposition 6.9, we just need to prove that

pr1(Aτ (L) ⊆ Kτ (L, u).

We normalize again by defining

Ēτ (x0, · · · , xn) = L̄τ (x0, · · · , xn) + u(x0)− u(xn) ≥ 0.

Let (x, v) ∈ Aτ (L), x0 = x and x1 = x+τv. Then there exist a sequence of periodic
configurations (xl0, x

l
1, · · · , xlq(l)) and a sequence of integers pl ∈ Zd such that

xl0 → x0, xl1 → x1, xlq(l) = xl0 + pl and Ēτ (xl0, x
l
1, · · · , xlq(l))→ 0.

From lemma 7.5 we obtain that {xlq(l) − x
l
q(l)−1}l is uniformly bounded. One can

extract a converging subsequence of {xlq(l)−1 − p
l}l to some x−1 ∈ Rd. Since

0 ≤ Ēτ (xlq(l)−1 − p
l, xlq(l) − p

l) ≤ Ēτ (xl0, x
l
1, · · · , xlq(l)),

Ēτ (x−1, x0) = 0 and (x−1, x0, x1) is a u-calibrated triple: x ∈ Kτ (L, u).

We can now improve theorem 6.10 in the ferromagnetic case. As in definition 2.5,
we recall that (Td × Rd,Φτ ) denotes the discrete Euler Lagrange map.

Theorem 7.7. Let L(x, v) be a C1 ferromagnetic coercive Lagrangian. Then
Aτ (L) is compact, Φτ -invariant and equal to the graph of some continuous map
Vτ : pr1(Aτ (L))→ Rd.

Proof. The proof is similar to the proof of theorem 6.10 thanks to the fact that
pr1(Aτ (L)) ⊆ Kτ (L, u) for any continuous and periodic sub-action u and to the
fact that any x ∈ pr1(Aτ (L)) is the projection of a configuration x = {xk}k∈Z
satisfying Πτ (σk(x)) ∈ Aτ (L) for all k ∈ Z. This is similar to lemma 6.5. The proof
of this fact is given in the following lemma 7.8.

Lemma 7.8. Let L(x, v) be a C0 coercive Lagrangian. For any (x, v) ∈ Aτ (L) there
exists a configuration x = {xk}k∈Z of points of Rd such that Πτ (x0, x1) = (x, v) and
Πτ (σk(x)) ∈ Aτ (L) for all k ∈ Z.

Proof. We begin by normalizing L by assuming L(x, v) ≥ 0 and L̄ = 0. Let
(x, v) ∈ Aτ (L), x0 = x and x1 = x0 + τv. Then there exists a sequence of periodic
configurations xl = (xl0, x

l
1, · · · , xlq(l)), x

l
q(l) = xl0 + pl for some pl ∈ Zd such that

xl0 → x0, xl1 → x1 and 0 ≤ L̄τ (xl0, x
l
1, · · · , xlq(l))→ 0.

From lemma 7.5 we know there exists R > 0 such that all jumps are bounded
uniformly, ‖xlk − xlk+1‖∞ < R for all k ∈ Z. By a diagonal procedure of extraction,

there exists a subsequence of {xl}l, that we call again {xl}l, such that, for all
k ≥ 0, when l→∞ one has xlk → xk and xlq(l)−k−p

l → x−k for some configuration

{xk}k∈Z. By definition of the Aubry set, each Πτ (xk, xk+1) belongs to Aτ (L). A
special care should be given in the previous argument when the length l remains
bounded.
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8 Mañé potential and Peierls barrier

We introduce in this section two new definitions: the Mañé potential and the Peierls
barrier. We prove that these notions give an equivalent characterization of the
Aubry set and that they give a different way to construct calibrated sub-actions.
They will play a fundamental role in the next section to classify all calibrated
sub-actions.

Definition 8.1. Let L(x, v) : Td × Rd → R be a C0 coercive Lagrangian. We call
Mañé potential the function Sτ : Rd × Rd → R defined by

Sτ (x, y) = inf
n≥1

inf
p∈Zd

inf
x0=x

xn=y+p

L̄τ (x0, . . . , xn) = inf
n≥1

inf
p∈Zd

inf
x0=x+p
xn=y

L̄τ (x0, . . . , xn).

Notice that Sτ (x, y) is periodic in both variables x and y.

We first give obvious properties of the Mañé potential.

Remark 8.2. For any x, y, z in Rd, we have

i. Sτ (x, y) ≤ infp∈Zd
[
Lτ (x, y + p)− τL̄(τ)

]
≤ Lτ (x, y)− τL̄(τ) = L̄τ (x, y),

ii. u(y)− u(x) ≤ Sτ (x, y), for any sub-action u ∈ C0(Td),

iii. Sτ (x, y) ≤ Sτ (x, z) + Sτ (z, y),

iv. Sτ (x, x) ≥ 0.

We just have seen that coerciveness implies the Mañé potential is a finite func-
tion. We show in the next propostion that Sτ (x, y) is continuous with respect to
both x and y.

Proposition 8.3. Let L(x, v) be a C0 coercive Lagrangian. Then

i. Sτ (x, y) : Rd × Rd → R is continuous and periodic in x and y,

ii. For every x, y ∈ Rd, Sτ (x, ·) and −Sτ (·, y) are C0(Td) sub-actions.

Proof. We prove the first assertion. Fix ε > 0. Take arbitrary points (x, y), (x′, y′)
in Rd × Rd. Then there exist two configurations (x0, . . . , xm), (y0, . . . , yn) and two
vectors with integer coordinates r, s ∈ Zd such that

L̄τ (x0, . . . , xm−1, xm + r) ≤ Sτ (x, y′) + ε/2, x0 = x, xm = y′,

L̄τ (y0 + s, y1, . . . , yn) ≤ Sτ (x, y) + ε/2, y0 = x, yn = y.

Then Sτ (x′, y′)−Sτ (x, y) = Sτ (x′, y′)−Sτ (x, y′)+Sτ (x, y′)−Sτ (x, y) can be bounded
from above using the estimates

Sτ (x′, y′)− Sτ (x, y′) ≤
≤ L̄τ (x′, x1, . . . , xm−1, y

′ + r)− L̄τ (x, x1, . . . , xm−1, y
′ + r) + ε/2

≤ L̄τ (x′, x1)− L̄τ (x, x1) + ε/2,

Sτ (x, y′)− Sτ (x, y) ≤
≤ L̄τ (x+ s, y1, . . . , yn−1, y

′)− L̄τ (x+ s, y1, . . . , yn−1, y) + ε/2

≤ L̄τ (yn−1, y
′)− L̄τ (yn−1, y) + ε/2.
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Since Sτ (x, y) is uniformly bounded from above by periodicity and item ii of re-
mark 8.2, lemma 7.5 guarantees that the points x1 and yn−1 which depend on ε
and x, y, x′ and y′ are uniformly bounded. So the estimation above shows Sτ is a
continuous map.

The second assertion is an immediate corollary of item iii of remark 8.2

Sτ (x, z)− Sτ (x, y) ≤ Sτ (y, z) ≤ Lτ (y, z)− τL̄, ∀ y, z ∈ Rd,

or in terms of the Lagranigan L

Sτ (x, y + τv)− Sτ (x, y) ≤ τL(x, v)− τL̄, ∀ (y, v) ∈ Td × Rd.

We just have proved that Sτ (x, ·) is a sub-action. Similarly −Sτ (·, y) is a sub-
action.

For a C0 coercive Lagrangian, we clearly deduce Sτ (x, x) ≥ 0 from item ii of
remark 8.2. We show in the following proposition that Sτ (x, x) = 0 characterizes
the Aubry set.

Proposition 8.4. Suppose L(x, v) is a C0 coercive Lagrangian. Then Sτ (x, x) = 0
if, and only if, x (mod Zd) ∈ pr1(Aτ (L)).

Proof. Let us first show that (x, v) ∈ Aτ (L) implies Sτ (x, x) = 0. One can find a
sequence of periodic configurations (xl0, x

l
1, . . . , x

l
q(l)), x

l
q(l) = xl0 + pl, such that

xl0 → x, xl1 → x+ τv and L̄τ (xl0, x
l
1, . . . , x

l
q(l))→ 0.

Since Sτ (xl0, x
l
0) = Sτ (xl0, x

l
q(l)) ≤ L̄τ (xl0, x

l
1, . . . , x

l
q(l)), thanks to the continuity of

Sτ and item iv of remark 8.2, we obtain Sτ (x, x) = 0.
Conversely, assume Sτ (x, x) = 0. Then there exists a sequence of periodic con-

figurations (xl0, . . . , x
l
q(l)) such that xl0 = x = xlq(l)−p

l and L̄τ (xl0, x
l
1, . . . , x

l
q(l))→ 0.

Thanks to lemma 7.5, xl1 − xl0 remains uniformly bounded. So one can find a sub-
sequence of l’s such that {(xl1− xl0)/τ}l converges to some v ∈ Rd. By definition of
the Aubry set, (x, v) ∈ Aτ (L).

Mañé potential enables us to construct continuous sub-actions without using
the Lax-Oleinik operator. These sub-actions may not be calibrated. We introduce
in the following definition a barrier which is similar to Mañé potential, being con-
tinuous, periodic with respect to both variables and in addition defining calibrated
sub-actions (see theorem 8.10).

Definition 8.5. Let L(x, v) : Td × Rd → R be a C0 coercive Lagrangian. We call
Peierls barrier the function hτ : Rd × Rd → R ∪ {+∞} defined by

hτ (x, y) = lim inf
n→+∞

inf
p∈Zd

inf
x0=x

xn=y+p

L̄τ (x0, . . . , xn) = lim inf
n→+∞

inf
p∈Zd

inf
x0=x+p
xn=y

L̄τ (x0, . . . , xn).

Again notice that hτ (x, y) is periodic with respect to both variables x and y.

We first gather simple properties of the Peierls barrier.
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Remark 8.6. For any x, y, z in Rd

i. Sτ (x, y) ≤ hτ (x, y),

ii. hτ (x, y) ≤ Sτ (x, z) + hτ (z, y),

iii. hτ (x, y) ≤ hτ (x, z) + Sτ (z, y).

We will prove in a moment that hτ (x, y) satisfies additional properties: hτ (x, y)
takes finite values (proposition 8.7), hτ (x, ·) and −hτ (·, y) are continuous, periodic
calibrated sub-actions for all x, y ∈ Rd (theorem 8.10).

We first prove that Sτ and hτ coincide on the projected Aubry set.

Proposition 8.7. Let L(x, v) be a C0 coercive Lagrangian. Then for any points
x, y (mod Zd) ∈ pr1(Aτ (L)), Sτ (x, ·) = hτ (x, ·) and Sτ (·, y) = hτ (·, y). In particu-
lar hτ (x, y) is finite for all x, y ∈ Rd.

Proof. We only prove the first identity. Let x (mod Zd) ∈ pr1(Aτ (L)) and y ∈ Rd.
For every ε > 0, there exists a configuration (x, y1, . . . , ym−1, y + s) in Rd, with
m ≥ 1 and s ∈ Zd, such that

L̄τ (x, y1, . . . , ym−1, y + s) < Sτ (x, y) + ε/2.

As Sτ (x, x) = 0, for every positive integer l, one can also find a finite configuration
(x, x1, . . . , xn−1, x+ r), with n ≥ 1 and r ∈ Zd, such that

L̄τ (x, x1, . . . , xn−1, x+ r) < ε/2l.

Notice that the configuration

(x, x1, . . . , xn−1, x+ r, x1 + r, . . . , xn−1 + r, x+ 2r, x1 + 2r, . . . , xn−1 + 2r, . . .

x+ (l − 1)r, . . . , xn−1 + (l − 1)r, x+ rl, y1 + lr, . . . , ym−1 + lr, y + lr + s)

is of the form (z0, z1, . . . , znl+m) satisfying z0 = x, znl+m = y + lr + s and

L̄τ (z0, . . . , znl+m) ≤ lL̄τ (x, x1, . . . , xn−1, x) + L̄τ (y, y1, . . . , ym−1, y) ≤ Sτ (x, y) + ε.

Since l can be chosen arbitrarily large, we deduce that hτ (x, y) ≤ Sτ (x, y)+ε, which
immediately yields hτ (x, y) ≤ Sτ (x, y).

The fact that hτ (x, y) is finite comes from the inequality

hτ (x, y) ≤ Sτ (x, z) + hτ (z, y) = Sτ (x, z) + Sτ (z, y),

where z ∈ pr1(Aτ (L)) is arbitrarily chosen.

Thanks to proposition 8.3, we conclude that hτ (x, ·) and −hτ (·, y) are contin-
uous, Zd-periodic sub-actions with respect to L as soon as x, y ∈ pr1(Aτ (L)). As
a matter of fact, they are also calibrated sub-actions on the projected Aubry set
(which is a first step in the proof of theorem 8.10).
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Proposition 8.8. Let L(x, v) be a C0 coercive Lagrangian.

i. For any x (mod Zd) ∈ pr1(Aτ (L)), Sτ (x, ·) is backward calibrated.

ii. For any y (mod Zd) ∈ pr1(Aτ (L)), −Sτ (·, y) is forward calibrated.

Proof. We need to show that, for every y′ ∈ Rd, there exists y ∈ Rd satisfying

hτ (x, y′) = hτ (x, y) + L̄τ (y, y′).

Since hτ (x, ·) is a sub-action, we already know that hτ (x, y′) ≤ hτ (x, y)+ L̄τ (y, y′).
Conversely, one can find a sequence of configurations in Rd, (xk0, x

k
1, . . . , x

k
n(k)), such

that xk0 = x+ pk for some pk ∈ Zd, xkn(k) = y′,

n(k)→ +∞ and L̄τ (xk0, x
k
1, . . . , x

k
n(k))→ hτ (x, y′).

Thanks to lemma 7.5, a subsequence of {xkn(k)−1}k converges to some y ∈ Rd. Then

hτ (x, xkn(k)−1) + L̄τ (xkn(k)−1, y
′) ≤ Sτ (x, xkn(k)−1) + L̄τ (xkn(k)−1, y

′)

≤ L̄τ (xk0, x
k
1, . . . , x

k
n(k)).

Letting k go to +∞, we obtain hτ (x, y) + L̄τ (y, y′) ≤ hτ (x, y′). In an analogous
way, we can prove that −hτ (·, x) = −Sτ (·, x) is a forward calibrated sub-action.

We have seen that Sτ (x, ·) and −Sτ (·, y) are continuous, periodic sub-actions
for any x, y ∈ Rd. The following proposition shows that the Peierls barrier can be
defined using Mañé potential. (That fact will be used in the proof of theorem 8.10.)

Proposition 8.9. Assume L(x, v) is a C0 coercive Lagrangian. Then

hτ (x, y) = min
z∈pr1(Aτ (L))

[
Sτ (x, z) + Sτ (z, y)

]
, ∀ x, y ∈ Td.

Proof. Proposition 8.7 tells us hτ (·, y) = Sτ (·, y) and hτ (x, ·) = Sτ (x, ·) whenever
x, y ∈ pr1(Aτ (L)). Hence, from item ii of remark 8.6, we immediately get

hτ (x, y) ≤ min
z∈pr1(Aτ (L))

[
Sτ (x, z) + Sτ (z, y)

]
.

So it suffices to find z ∈ pr1(Aτ (L)) satisfying Sτ (x, z) + Sτ (z, y) ≤ hτ (x, y). Let
u be a C0(Td) sub-action. By taking L(x, v)− 1

τ [u(x+ τv)− u(x)]− L̄(τ), we may
assume L ≥ 0 and L̄(τ) = 0. Let L̄τ (x, y) = τL(x, 1

τ (y − x)) for x, y ∈ Rd.
By definition of hτ (x, y), there exists a sequence of configurations (xk0, . . . , x

k
n(k))

in Rd of length n(k) and a sequence pk ∈ Zd such that xk0 = x, xkn(k) = y + pk,

n(k)→ +∞ and lim
k→∞

L̄τ (xk0, . . . , x
k
n(k)) = hτ (x, y).

Since hτ (x, y) < ∞ and L̄τ ≥ 0, for k large enough, one can find m(k) and m′(k)
in {0, . . . , n(k)− 1} such that

m′(k)−m(k) = b
√
nkc and 0 ≤ L̄τ (xkm(k), . . . , x

k
m′(k)) <

hτ (x, y) + 1

b√nkc − 1
.
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Otherwise, we would reach a contradiction, because for arbitrarily large k

L̄τ (xk0, . . . , x
k
nk

) ≥
b√nkc−2∑
i=0

L̄τ (xkib√nkc, . . . , x
k
(i+1)b√nkc)

≥ (b
√
nkc − 1)

hτ (x, y) + 1

b√nkc − 1
= hτ (x, y) + 1.

Thanks to the invariance of Lτ by the diagonal action of Zd, Lτ (x+ s, y+ s) =
Lτ (x, y) for all s ∈ Zd, we may assume xkm(k) ∈ [0, 1)d. Using a diagonal procedure,

lemma 7.5 allows us to find a subsequence {kj} of integers and a forward infinite
configuration {zl}l≥0 of Rd such that

lim
j→∞

x
kj
m(kj)

= z0 ∈ [0, 1)d and lim
j→∞

x
kj
m(kj)+l

= zl ∈ Rd, ∀ l ≥ 1.

From the construction of the sequence {mk}, it follows that Lτ (zl, zl+1) = 0
for any nonnegative integer l, which clearly yields Sτ (zl, zl+1) = 0. From item iii
of remark 8.2, we get Sτ (zl, zl′) = 0 whenever l′ > l ≥ 0. Therefore, if z∞ ∈ Td
is an arbitrary accumulation point of {zl (mod Zd)}l≥0, then Sτ (z∞, z∞) = 0 or
z∞ ∈ pr1(Aτ (L)). Observe that, for any l ≥ 0,

L̄τ (x
kj
0 , . . . , x

kj
n(kj)

) = L̄τ (x
kj
0 , . . . , x

kj
m(kj)+l

) + L̄τ (x
kj
m(kj)+l

, . . . , x
kj
n(kj)

)

≥ Sτ (x, x
kj
m(kj)+l

) + Sτ (x
kj
m(kj)+l

, y).

Passing to the limit when j →∞, we obtain hτ (x, y) ≥ Sτ (x, zl)+Sτ (zl, y). Taking
then a suitable subsequence of {zl}, we get hτ (x, y) ≥ Sτ (x, z∞) + Sτ (z∞, y).

Theorem 8.10. Let L(x, v) be a C0 coercive Lagrangian. Then the Peierls barrier
hτ : Rd × Rd → R is continuous, Zd × Zd periodic. Moreover, hτ (x, ·) : Rd → R
is a forward calibrated sub-action and −hτ (·, y) : Rd → R is a backward calibrated
sub-action for any x, y ∈ Rd.
Proof. Consider arbitrary points (x, y), (x′, y′) ∈ Td × Td. Thanks to proposi-
tion 8.9, there exists zx,y ∈ pr1(Aτ (L)) satisfying hτ (x, y) = Sτ (x, zx,y)+Sτ (zx,y, y).
Then

hτ (x′, y′)− hτ (x, y) ≤
[
Sτ (x′, zx,y)− Sτ (x, zx,y)

]
+
[
Sτ (zx,y, y

′)− Sτ (zx,y, y)
]
.

Since Sτ is uniformly continuous on Td ×Td, the estimation above assures that hτ
is a continuous map.

We already know that hτ (x, ·) and −hτ (·, x) are Td periodic and continuous.
Take (y, y′) ∈ Rd×Rd. Thanks to proposition 8.9, there exists z ∈ pr1(Aτ (L)) such
that hτ (x, y) = Sτ (x, z)+Sτ (z, y). Then, using the fact that Sτ (z, ·) is a sub-action

hτ (x, y′)− hτ (x, y) ≤ Sτ (z, y′)− Sτ (z, y) ≤ L̄(y, y′).

We have proved that hτ (x, ·) is a sub-action. Since Sτ (z, ·) is also backward cali-
brated, one can find y′′ ∈ Rd such that Sτ (z, y) = Sτ (z, y′′) + L̄(y′′, y). Then

hτ (x, y) = Sτ (x, z) + Sτ (z, y′′) + L̄(y′′, y) ≥ hτ (x, y′′) + L̄(y′′, y).

We have proved that hτ (x, ·) is calibrated. Analogously, one can show that−hτ (·, y)
is a calibrated sub-action too.
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9 Representation formulas for calibrated sub-actions

In the continuous-time Aubry-Mather theory, Contreras has characterized in [16]
the set of weak KAM solutions of the Hamilton-Jacobi equation in terms of their
values at each static class. We remark that weak KAM solutions are similar to
calibrated sub-actions and the set of static classes is similar to the projected Aubry
set. We show in the following theorem how a calibrated sub-action is completely
known when it is known on the Aubry set. In the context of ergodic optimization
for symbolic dynamics, a similar result has been proved in [31].

Theorem 9.1. Let L(x, v) be a C0 coercive Lagrangian. If u+ ∈ C0(Td) is a
forward calibrated sub-action or u− ∈ C0(Td) is a backward calibrated sub-action,
then, for every x, y ∈ Rd,

u+(x) = max
y∈pr1(Aτ (L))

[u+(y)− Sτ (x, y)] = max
y∈pr1(Aτ (L))

[u+(y)− hτ (x, y)],

u−(y) = min
x∈pr1(Aτ (L))

[u−(x) + Sτ (x, y)] = min
x∈pr1(Aτ (L))

[u−(x) + hτ (x, y)].

Proof. Thanks to proposition 8.7, we just need to prove the two first equalities.
From item ii of remark 8.2, we verify without difficulty that

u+(x) ≥ max
y∈pr1(Aτ (L))

[u+(y)− Sτ (x, y)].

As u+ is a forward calibrated sub-action, one can find a forward configuration
{xk}k≥0 of Rd such that x0 = x and u+(xk) = u+(xk+1)−L̄τ (xk, xk+1) for every k ≥
0. From u+(xl)−u+(xk) ≤ Sτ (xk, xl) ≤ L̄τ (xk, . . . , xl) = u+(xl)−u+(xk) whenever
l > k ≥ 0, we conclude that Sτ (xk, xl) = u+(xl) − u+(xk). Therefore, if y ∈ Td
is an arbitrary accumulation point of {xk (mod Zd)}, it follows that Sτ (y, y) = 0,
namely, y ∈ pr1(Aτ (L)). Furthermore, by taking a suitable subsequence, u+(x) =
u+(xk)− Sτ (x, xk) tends to u+(x) = u+(y)− Sτ (x, y).

Analogously, one can demonstrate the existence of a point x ∈ pr1(Aτ (L))
achieving u−(y) = u−(x) + Sτ (x, y).

Corollary 9.2. Suppose u, u′ ∈ C0(Td) are both either forward or backward cali-
brated sub-actions with respect to a C0 coercive Lagrangian L(x, v).

i. If u|pr1(Aτ (L)) ≤ u′|pr1(Aτ (L)), then u ≤ u′ everywhere on Rd.

ii. If u|pr1(Aτ (L)) = u′|pr1(Aτ (L)), then u = u′ everywhere on Rd.

Theorem 9.1 admits a reciprocal.

Theorem 9.3. Let L(x, v) be a C0 coercive Lagrangian and ψ be any function
defined on the projected Aubry set pr1(Aτ (L)).

i. If ψ is bounded above, the following u is a continuous forward calibrated sub-
action

u(x) := sup
y∈pr1(Aτ (L))

[ψ(y)− Sτ (x, y)] = sup
y∈pr1(Aτ (L))

[ψ(y)− hτ (x, y)].
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ii. If ψ is bounded below, the following u is a continuous backward calibrated
sub-action

u(y) := inf
x∈pr1(Aτ (L))

[ψ(x) + Sτ (x, y)] = inf
x∈pr1(Aτ (L))

[ψ(x) + hτ (x, y)].

iii. If ψ(y)− ψ(x) ≤ Sτ (x, y) for all x, y ∈ pr1(Aτ (L)), then u|pr1(Aτ ) = ψ.

Proof. In any case, u : Rd → R is clearly a well defined periodic function. Since
both constructions are similar, we will discuss just the second one. So let us show
that u ∈ C0(Td). Fix ε > 0 and consider y, y′ ∈ Rd. Take x (mod Zd) ∈ pr1(Aτ (L))
such that ψ(x) + Sτ (x, y) < u(y) + ε. Thus u(y′)− u(y) ≤ Sτ (x, y′)− Sτ (x, y) + ε.
Since Sτ is uniformly continuous on Rd × Rd and ε > 0 is arbitrary, it is easy to
deduce that

|u(y′)− u(y)| ≤ max
x∈pr1(Aτ (L))

|Sτ (x, y′)− Sτ (x, y)|,

which guarantees the continuity of u.
We now show that u is backward calibrated. Given y ∈ Rd and ε > 0, choose

x ∈ pr1(Aτ (L)) satisfying ψ(x) + Sτ (x, y) < u(y) + ε. Thanks to proposition 8.3,
Sτ (x, ·) is a sub-action and

u(y + τw)− u(y)− ε < Sτ (x, y + τw)− Sτ (x, y) ≤ τL(y, w)− τL̄(τ), ∀ w ∈ Rd.

Letting ε go to 0, we obtain that u is a sub-action. To prove that u is a calibrated
sub-action, we use the fact that the sub-actions {Sτ (x, ·)}x∈pr1(Aτ (L)) are calibrated

(see proposition 8.8). Let y ∈ Rd. It suffices to show there exists v ∈ Rd such
that u(y) ≥ u(y − τv) + τL(y − τv, v) − τL̄(τ). By definiton of u(y), there exists
a sequence of points xk ∈ pr1(Aτ (L)) such that ψ(xk) + Sτ (xk, y) < u(y) + 1

k .
Moreover, there exists a sequence of vk ∈ Rd such that

Sτ (xk, y) = Sτ (xk, y − τvk) + τL(y − τvk, vk)− τL̄(τ).

Remember we can assume ‖vk‖∞ ≤ Rτ (see lemma 5.5) for some constant Rτ >
1
τ

(see definition 3.8). Let v ∈ Rd be an accumulation point of the sequence {vk}k≥0.
Since u(y − τvk) ≤ ψ(xk) + Sτ (xk, y − τvk), we obtain

u(y − τvk) + τL(y − τvk, vk)− τL̄(τ) < u(y) +
1

k
.

Taking a suitable subsequence, we get u(y − τv) + τL(y − τv, v)− τL̄(τ) ≤ u(y).
Suppose ψ(y)− ψ(x) ≤ Sτ (x, y) for all x, y ∈ pr1(Aτ (L)) and u is defined as in

item ii . Let y (mod Zd) ∈ pr1(Aτ (L)). On the one hand, u(y) ≤ ψ(y) by taking
x = y in the definition of u and noticing that Sτ (y, y) = 0. On the other hand, for
any x ∈ pr1(Aτ (L)), Sτ (x, y) + ψ(x) ≥ ψ(y) by hypothesis on ψ. By taking the
infimum on x we obtain u(y) ≥ ψ(y). We have proved that u|pr1(Aτ (L)) = ψ.

Thanks to item ii of remark 8.2, an immediate but important consequence of
theorem 9.3 is the fact that the restriction of any sub-action to the projected Aubry
set behaves as a forward or backward calibrated sub-action.
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Corollary 9.4. Let u ∈ C0(Td) be an arbitrary sub-action for a C0 coercive La-
grangian L(x, v). Then, for every point x ∈ pr1(Aτ (L)), we have

u(x) = max
v∈Rd

[u(x+τv)−τL(x, v)+τL̄(τ)] = min
v∈Rd

[u(x−τv)+τL(x−τv, v)−τL̄(τ)].

Theorem 9.3 motivates the introduction of the following notion.

Definition 9.5. Let L(x, v) be a C0 coercive Lagrangian. Suppose that u+ is a
C0(Td) forward calibrated sub-action and that u− is a C0(Td) backward calibrated
sub-action. We say that u+ and u− are conjugated sub-actions, and we use the
notation u+ ∼ u−, if u+|pr1(Aτ (L)) = u−|pr1(Aτ (L)).

Notice that coerciveness is a sufficient condition for the existence calibrated
sub-actions. Moreover, corollary 9.2 implies that, given a forward calibrated sub-
action u+, there exists at most one backward calibrated u− conjugated to u+ and
vice versa. Finally, theorem 9.3 shows that such a backward calibrated sub-action
does exist. More precisely, if u− is given, the conjugated u+ takes necessarily the
form

u+(x) := max
y∈pr1(Aτ (L))

[
u−(y)− Sτ (x, y)

]
and conversely if u+ is given, the conjugated u− has the form

u−(x) := min
y∈pr1(Aτ (L))

[
u+(y) + Sτ (y, x)

]
.

Fathi points out in [22] that, for a continuous-time, autonomous, strictly con-
vex, superlinear C3-Lagrangian on a compact C∞ manifold without boundary, the
Peierls barrier admits a characterization in terms of conjugated sub-actions. We
obtain in the following theorem a similar result in the discrete Aubry-Mather the-
ory.

Proposition 9.6. Let L(x, v) be a C0 coercive Lagrangian. Then

hτ (x, y) = max
u+∼u−

[
u−(y)− u+(x)

]
, ∀ x, y ∈ Rd.

Proof. For any z ∈ pr1(Aτ (L)) and a pair of sub-actions u+ and u−, we have

u+(z)− u+(x) ≤ Sτ (x, z) and u−(y)− u−(z) ≤ Sτ (z, y), ∀ x, y ∈ Rd.

If u+ ∼ u− are conjugated then u+(z) = u−(z) and we obtain

u−(y)− u+(x) ≤ Sτ (x, z) + Sτ (z, y), ∀ z ∈ pr1(Aτ (L)).

Thanks to proposition 8.9, we get u−(y)−u+(x) ≤ hτ (x, y), which obviously yields
supu+∼u− [u−(y)− u+(x)] ≤ hτ (x, y).

Fix x, y ∈ Rd. Consider then the forward calibrated sub-action u+ = −hτ (·, y)
and define a backward calibrated sub-action u− ∈ C0(Td) by

u−(x′) := min
z∈pr1(Aτ (L))

[u+(z) + Sτ (z, x′)] = min
z∈pr1(Aτ (L))

[−Sτ (z, y) + Sτ (z, x′)].

By construction, u+ and u− are conjugated sub-actions. Furthermore, u−(y) = 0.
Thus u−(y)− u+(x) = hτ (x, y).
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Theorems 9.1 and 9.3 together provide an interesting description of the cali-
brated sub-actions. In order to present it, we decided to adopt a slightly different
point of view.

Definition 9.7. Let L(x, v) be a C0 coercive Lagrangian. We call positive-time
Mañé-Peierls transform the application F+ defined on C0(pr1(Aτ (L))) by

F+(ψ)(x) = max
y∈pr1(Aτ (L))

[ψ(y)− Sτ (x, y)] = max
y∈pr1(Aτ (L))

[ψ(y)− hτ (x, y)], ∀ x ∈ Rd.

In the same way, we call negative-time Mañé-Peierls transform the application F−
defined on C0(pr1(Aτ (L))) by

F−(ψ)(y) = min
x∈pr1(Aτ (L))

[ψ(x) + Sτ (x, y)] = min
x∈pr1(Aτ (L))

[ψ(x) + hτ (x, y)], ∀ y ∈ Rd.

We summarize then all the main properties of the Mañé-Peierls transforms.

Theorem 9.8. Let L(x, v) be a C0 coercive Lagrangian. Consider arbitrary func-
tions ψ,ψ′ ∈ C0(pr1(Aτ (L))). Then

i. F−(ψ) ≤ ψ ≤ F+(ψ) everywhere on pr1(Aτ (L));

ii. ψ ≤ ψ′ implies F+(ψ) ≤ F+(ψ′) and F−(ψ) ≤ F−(ψ′);

iii. F+(ψ) is a continuous forward calibrated sub-action;

iv. F−(ψ) is a continuous backward calibrated sub-action;

v. if ψ(y) − ψ(x) ≤ Sτ (x, y) for all x, y ∈ pr1(Aτ (L)), then F+ and F− act as
extension operators: F+(ψ)|pr1(Aτ (L)) = ψ = F−(ψ)|pr1(Aτ (L));

vi. if u ∈ C0(Td) is a forward calibrated sub-action, then

F+(u|pr1(Aτ (L))) = u = F+(F−(u|pr1(Aτ (L)))|pr1(Aτ (L))) everywhere on Rd

and F−(u|π(Aτ (L))) is the unique sub-action conjugated to u;

vii. if u ∈ C0(Td) is a backward calibrated sub-action, then

F−(u|pr1(Aτ (L))) = u = F−(F+(u|pr1(Aτ (L)))|pr1(Aτ (L))) everywhere on Rd

and F+(u|pr1(Aτ (L))) is the unique sub-action conjugated to u;

viii. F+ is a bijective and isometric correspondence between the set of the functions
ψ ∈ C0(pr1(Aτ (L))) satisfying, for x, y ∈ pr1(Aτ (L)), ψ(y)−ψ(x) ≤ Sτ (x, y)
and the set of continuous forward calibrated sub-actions;

ix. F− is a bijective and isometric correspondence between the set of the functions
ψ ∈ C0(π(Aτ (L))) satisfying, for x, y ∈ pr1(Aτ (L)), ψ(y) − ψ(x) ≤ Sτ (x, y)
and the set of continuous backward calibrated sub-actions.
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Proof. Items i and ii follow immediately from the respective definitions of the
Mañé-Peierls transforms. In truth, items iii , iv and v can be seen as theorem 9.3
rewritten. Besides, items vi and vii result from theorems 9.1 and 9.3 without
difficulty.

Since items viii and ix are very similar, we will discuss just the first one. As
F+(ψ) = ψ everywhere on pr1(Aτ (L)), F+ is injective. Moreover, when u ∈ C0(Td)
is a forward calibrated sub-action, the identity F+(u|π(Aτ (L))) = u guarantees that

F+ is surjective. In fact, this correspondence is an isometry. Indeed, fixing x ∈ Rd,
there exists a point y ∈ pr1(Aτ (L)) such that F+(ψ)(x) = ψ(y)− Sτ (x, y). Hence,
one has

F+(ψ)(x)− F+(ψ′)(x) ≤ ψ(y)− ψ′(y) ≤ ‖ψ − ψ′‖0.

Since x ∈ Rd is arbitrary and since we can interchange the roles of ψ and ψ′, we
get ‖F+(ψ) − F+(ψ′)‖0 ≤ ‖ψ − ψ′‖0. On the other hand, F+(ψ)|π(Aτ (L)) = ψ and
F+(ψ′)|π(Aτ (L)) = ψ′ imply ‖F+(ψ)− F+(ψ′)‖0 ≥ ‖ψ − ψ′‖0.

10 Separating sub-actions

If u ∈ C0(Td) is a sub-action for a C0 coercive Lagrangian, proposition 7.3 estab-
lishes that Aτ (L) ⊂ Nτ (L, u). So it is natural to ask if there exists a sub-action
whose nill locus is the smallest possible one, namely, it is equal to the Aubry set.
We introduce then the following concept.

Definition 10.1. Let L(x, v) be a C0 coercive Lagrangian. We say that a sub-
action u ∈ C0(Td) is separating if Nτ (L, u) = Aτ (L).

In weak KAM theory, global critical subsolutions of the Hamilton-Jacobi equa-
tion are analogous notions to separating sub-actions. Working with continuous-
time, autonomous, strictly convex and superlinear C2-Lagrangians on a smooth
manifold without boundary, A. Fathi and A. Siconolfi (see [24]) proved the exis-
tence of C1 critical subsolutions. Keeping the hypotheses on the Lagrangians but
focusing on compact manifolds, P. Bernard showed in [8] not only the existence of
C1,1 critical subsolutions but also their density in the set of C0 subsolutions for the
uniform topology.

In a similar way, we prove in theorem 10.2 that separating sub-actions are quite
typical in the discrete Aubry-Mather context. During the preparation of this pa-
per, we become aware of a related study by M. Zavidovique [54] on separating sub-
actions (or strict sub-solutions) in a general discrete setting given by cost functions
defined on certain length spaces. We mention yet that the genericity of separat-
ing sub-actions has been proved in [32] in the context of ergodic optimization for
symbolic dynamics.

Theorem 10.2. Let L(x, v) be a C0 coercive Lagrangian. Then, in the uniform
topology, the subset of the continuous separating sub-actions is generic among all
continuous sub-actions.

We will need some preliminary results.
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Lemma 10.3. Let L(x, v) be a C0 coercive Lagrangian. Then

pr1
(⋂

u is a sub-action
Nτ (L, u)

)
=
⋂

u is a sub-action
pr1
(
Nτ (L, u)

)
.

In other words, if x ∈ Rd and for any sub-action u there exists y ∈ Rd such that
(x, y) is u-calibrated, then there exists y ∈ Rd such that (x, y) is u-calibrated for
any sub-action u.

Proof. The inclusion pr1(∩uNτ (L, u)) ⊂ ∩upr1(Nτ (L, u)) is obvious. Consider then
x /∈ pr1(∩uNτ (L, u)). We want to show there exists a sub-action u ∈ C0(Td) such
that x /∈ pr1(Nτ (L, u)). Let u0 ∈ C0(Td) be a fixed sub-action. We know from
corollary 6.4 that one can choose a constant Rτ > 0 such that (x, v) /∈ Nτ (L, u0)
whenever ‖v‖∞ > Rτ . By hypothesis, for any ‖v‖∞ ≤ Rτ , there exist a sub-
action uv ∈ C0(Td) and a constant ηv > 0 satisfying (x,w) /∈ Nτ (L, uv) whenever
‖v − w‖ < ηv. By extracting a finite subcover, one can find a finite collection of
sub-actions {u1, . . . , un} ⊂ C0(Td), with uk = uvk for some ‖vk‖∞ ≤ Rτ , such that
(x, v) /∈

⋂n
k=1 Nτ (L, uk) for any ‖v‖∞ ≤ Rτ .

Define thus u := 1
n+1

∑n
k=0 uk ∈ C0(Td). Since the set of sub-actions is convex,

u turns out to be a sub-action. Besides, from Nτ (L, u) =
⋂n
k=0 Nτ (L, uk), we

immediately obtain x /∈ pr1(Nτ (L, u)).

Lemma 10.4. Let L(x, v) be a C0 coercive Lagrangian. If (x, v) ∈ Td × Rd, then

(x, v) ∈
⋂

u is a sub-action
Nτ (L, u) =⇒ x+ τv ∈ pr1

(⋂
u is a sub-action

Nτ (L, u)
)
.

In other words, if (x, y) ∈ Rd × Rd is u-calibrated for any sub-action u, then there
exists z ∈ Rd such that (y, z) is u-calibrated for any sub-action u.

Proof. Let us introduce a similar transform as in definition 9.7 by considering

F̃+(u)(x) := max
y∈Rd

[
u(y)− Sτ (x, y)

]
, ∀ x ∈ Rd,

where u ∈ C0(Td) is any sub-action. It is easy to see that F̃+(u) ∈ C0(Td) is again
a sub-action satisfying F̃+(u) ≤ u, with equality everywhere whenever u behaves
as a forward calibrated sub-action (see corollary 9.4).

We begin by proving

pr1
(
Nτ (L, u)

)
=
{
x ∈ Td : F̃+(u)(x) = u(x)

}
, ∀ u sub-action.

Indeed, if (x, y) is u-calibrated, then u(y)−u(x) ≤ Sτ (x, y) ≤ L̄τ (x, y) = u(y)−u(x)
which implies F̃+(u)(x) ≥ u(y) − Sτ (x, y) = u(x) and therefore F̃+(u)(x) = u(x).
Conversely if x /∈ pr1(Nτ (L, u)) then, by coerciveness of L and periodicity of u,
there exists η > 0 such that L̄τ (x, y) ≥ u(y) − u(x) + η for any y ∈ Rd. For any
finite configuration (x0, x1, . . . , xn) satisfying x0 = x, one has

L̄τ (x0, x1, . . . , xn) = L̄τ (x0, x1) + L̄τ (x1, . . . , xn)

≥ [u(x1)− u(x0) + η] + [u(xn)− u(x1)] ≥ u(xn)− u(x0) + η.
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By definition of Sτ (x, y), one gets Sτ (x, y) ≥ u(y) − u(x) + η for any y ∈ Rd or
equivalently u(x) ≥ F̃+(u)(x) + η.

We now prove the main induction step:

F̃+(u)(x) = u(x) and L̄τ (x, y) = F̃+(u)(y)− F̃+(u)(x) =⇒ F̃+(u)(y) = u(y).

Indeed, u(y) − u(x) ≤ Sτ (x, y) ≤ L̄τ (x, y) = F̃+(u)(y) − F̃+(u)(x), which implies
first u(y) ≤ F̃+(u)(y) and therefore u(y) = F̃+(u)(y).

We conclude the proof. If (x, y) is u-calibrated for any sub-action u, on the one
hand, F̃+(u)(x) = u(x), on the other hand, since (x, y) is also F̃+(u)-calibrated,
F̃+(u)(y) = u(y). We have proved that y ∈ ∩u{F̃+(u) = u} = pr1(∩uNτ (L, u))
thanks to lemma 10.3.

The following proposition gives another equivalent definition of the Aubry set.

Proposition 10.5. Let L(x, v) be a C0 coercive Lagrangian. Then

Aτ (L) =
⋂

u is a sub-action
Nτ (L, u).

Proof. Let (x, v) ∈ ∩uNτ (L, u). Lemma 10.4 shows there exists a configuration
x = {xk}k≥0 such that Πτ (x) = (x, v) and (xk, xk+1) is u-calibrated for any sub-
action u. Let us first show that

lm := L̄τ (x0, . . . , xm) + Sτ (xm, x0)→ 0 when m→ +∞.

Since {L̄τ (x0, . . . , xm) + Sτ (xm, x0)}m≥0 is uniformly bounded, one can choose a
converging subsequence of {lm} and assume in addition that {xm (mod Zd)} con-
verges to a point x∞ ∈ Td. Define u(x) := Sτ (x∞, x), for all x ∈ Rd. Proposition 8.3
shows that u is a sub-action. By hypothesis of calibration on {xk}, we have

L̄τ (xk, xk+1) = Sτ (xk, xk+1) = u(xk+1)− u(xk), ∀ k ≥ 0.

More generally,

L̄τ (xk, xk+1, . . . , xm) = Sτ (xk, xm) = u(xm)− u(xk), ∀ m > k ≥ 0.

By taking a subsequence of {xm}, one obtains first Sτ (xk, x∞) = u(x∞) − u(xk),
for all k ≥ 0. By taking a subsequence of {k}, one obtains next

u(x∞) = Sτ (x∞, x∞) = 0 and Sτ (xk, x∞) + Sτ (x∞, xk) = 0, ∀ k ≥ 0.

Notice that x∞ necessarily belongs to pr1(Aτ (L)). Moreover,

lm = L̄τ (x0, . . . , xm) + Sτ (xm, x0) = Sτ (x0, xm) + Sτ (xm, x0), ∀ m ≥ 0.

Letting m→ +∞, one gets lm → 0 along a subsequence. We thus have shown that
any accumulation point of {lm} is necessarily 0.

Let us prove now that (x, v) ∈ Aτ (L). By definition of Sτ , there exist finite
configurations (xεm, x

ε
m+1, . . . , x

ε
n(m,ε)) such that xεm = xm, xεn(m,ε) = x0 + pεm for

some pεm ∈ Zd and, for any m fixed,

L̄τ (xεm, x
ε
m+1, . . . , x

ε
n(m,ε))→ Sτ (xm, x0) when ε→ 0.
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We conclude that

L̄τ (x0, . . . , xm−1, x
ε
m, x

ε
m+1, . . . , x

ε
n(m,ε)) =

= lm + L̄τ (xεm, x
ε
m+1, . . . , x

ε
n(m,ε))− Sτ (xm, x0)

tends to 0 when m is first chosen large enough and then ε is chosen close enough
to 0. Thus (x, v) ∈ Aτ (L).

We now prove that separating sub-actions are generic among sub-actions.

Proof of theorem 10.2. Let {On}n be a countable family of open neighborhoods of
the Aubry set such that ∩nOn = Aτ (L). Let Un be the set of all C0(Td) sub-actions
u such that Nτ (L, u) ⊂ On. Since the subset of C0(Td) separating sub-actions is
equal to ∩nUn, the statement of the theorem will be obtained if we show that, for
the uniform topology, every Un is open and dense in the set of C0(Td) sub-actions.

Suppose on the contrary that Un is not open. So there exists a sequence of
C0(Td) sub-actions {uk}k≥0 converging to some u ∈ Un and a sequence of points
{(xk, vk)}k≥0 such that, for all k ≥ 0, (xk, vk) ∈ Nτ (L, uk)−On. From corollary 6.4,
we know there exists a positive constant Rτ such that ‖vk‖ ≤ Rτ for all k. By
considering a suitable subsequence, we obtain a point (x, v) ∈ Nτ (L, u) − On in
contradiction with Nτ (L, u) ⊂ On.

Let us prove now that Un is dense. We first notice that, if t ∈ (0, 1), u ∈ Un
and u′ ∈ C0(Td) is any arbitrary sub-action, then

Nτ (L, tu+ (1− t)u′) = Nτ (L, u) ∩Nτ (L, u′) ⊂ On

and therefore tu+ (1− t)u′ ∈ Un. In particular, in order to prove that Un is dense,
it suffices to argue that Un is nonempty.

Corollary 6.4 assures that (x, v) /∈ Nτ (L, u) for any ‖v‖ > Rτ and any sub-
action u. Let Bτ denote the closed ball of center 0 ∈ Rd and radius Rτ . Thanks to
proposition 10.5, for every point (x, v) ∈ (Td×Bτ )−On, one can find a sub-action
u(x,v) ∈ C0(Td) and an open set V(x,v) ⊂ Td × Rd containing (x, v) such that

(y, w) /∈ Nτ (L, u(x,v)), ∀ (y, w) ∈ V(x,v).

Hence, thanks to the compactness of (Td × Bτ ) − On, there exist a finite cover
by open sets {V1, . . . ,Vm} of (Td × Bτ )− On and a finite collection of sub-actions
{u1, . . . , um} ⊂ C0(Td), where Vk = V(xk,vk) and uk = u(xk,vk) for some (xk, vk),

satisfying
⋂m
k=1 N(L, uk) ⊂ On. Clearly u := 1

m

∑m
k=1 uk ∈ C0(Td) belongs to

Un.

11 Some results on rotation vectors

We are interested in this section whether a minimizing configuration {xn}n∈Z in Rd
is distributed according to a periodic pattern, that is, whether 1

n(xn − x0) → τω,
where ω is some fixed vector in Rd called rotation vector. The case of monotone
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twist maps of the annulus (the one dimensional smooth ferromagnetic Frenkel-
Kontorova model) has been completely solved by Aubry [3], Bangert [7] and Mather
[49], [50] and [51]. One knows that a recurrent minimizing configuration admits
a rotation number ω and belongs to the support of a minimizing measure of a
Lagrangian of the form L(x, v) − 〈λ, v〉, with λ and ω related by the Legendre

relation ω = −∂L̄
∂λ , where L̄(λ) denotes the minimizing holonomic value of L −

λ. In particular, they proved that L̄(λ) is concave, decreasing and continuously
differentiable with respect to λ. Moreover, L̄(λ) does not admit any open interval
with irrational constant slope.

Our purpose in this section is to partially extend these results to the multidi-
mensional case and to prove the existence of recurrent minimizing configurations
with rotation vector as large in norm as we want.

Definition 11.1. We call rotation vector of a configuration {xk}k∈Z in Rd the limit
(when it exists)

ω[{xk}k∈Z] :=
1

τ
lim

n−m→+∞

xn − xm
n−m

.

We call rotation vector of a holonomic measure µ ∈ Pτ (Td × Rd) with bounded
support the vector

ω[µ] :=

∫
Td×Rd

v dµ(x, v).

Following Mather’s terminology we introduce the so-called α and β functions.

Definition 11.2. Let L(x, v) be a C0 superlinear Lagrangian. We call Mather’s
alpha function the opposite of the minimizing holonomic value of L(x, v) − 〈λ, v〉,
λ ∈ Rd,

−αL(τ, λ) := L̄(τ, λ) = min
{∫ (

L(x, v)− 〈λ, v〉
)
dµ(x, v) : µ ∈ Pτ (Td × Rd)

}
.

We call Mather’s beta function the function

βL(τ, ω) := inf
{∫

L(x, v) dµ(x, v) : µ ∈ Pτ (Td × Rd) has bounded support

and rotation vector

∫
v dµ(x, v) = ω

}
.

(We recall that Pτ (Td × Rd) denotes the set of holonomic measures.)

We notice that, because of the superlinearity of L, L − λ is again coercive
(actually superlinear) and that L̄(τ, λ) is indeed a minimum and not an infimum.
We also point out that, in the definition of βL, we prefer to restrict µ to have
bounded support so that

∫
v dµ is well defined. We will show in a moment that

the set where this infimum is taken is not empty and that the infimum is actually
attained. Using standard convex analysis, we obtain the following proposition.
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Proposition 11.3. Let L(x, v) be a C0 superlinear Lagrangian. Then the two func-
tions λ ∈ Rd 7→ αL(τ, λ) ∈ R and ω ∈ Rd 7→ βL(τ, ω) ∈ R are convex superlinear
obtained by Legendre transform:

αL(τ, λ) = sup
ω∈Rd

[
〈λ, ω〉 − βL(τ, ω)

]
and βL(τ, ω) = sup

λ∈Rd

[
〈λ, ω〉 − αL(τ, λ)

]
.

In particular, both suprema are maxima.

The next lemma shows that Mather’s beta function is well defined.

Lemma 11.4. For every ω ∈ Rd, there exists a holonomic measure µ such that∫
v dµ(x, v) = ω and supp(µ) ⊂ Td ×B‖ω‖∞ ,

where B‖ω‖∞ denotes the closed ball of center 0 and radius ‖ω‖∞.

Proof. If ω = p/q, with q ∈ Z∗+ and p ∈ Zd, then clearly

µp/q :=
1

q

q−1∑
k=0

δ( kp
q
, p
τq

)

is a holonomic measure satisfying the statement of the lemma. For a general ω ∈ Rd,
consider a sequence {pn/qn}, with qn ∈ Z∗+ and pn ∈ Zd, such that limn→∞ pn/qn =
ω and ‖pn/qn‖∞ ≤ ‖ω‖∞. Let {µpn/qn} be the corresponding sequence of holonomic
measures defined as above. Then this sequence is relatively compact for the narrow
topology and any accumulation point µω is holonomic, µω ∈ Pτ (Td × Rd), and
admits ω as a rotation vector.

We first recall a standard fact in convex analysis (see [14] for complete references).

Lemma 11.5. Let f, g : Rd → R be convex functions with full domain. Suppose
that f is the Legendre transform of g, namely,

f(λ) = g∗(λ) := sup
{
〈λ, ω〉 − g(ω) : ω ∈ Rd

}
, ∀ λ ∈ Rd.

Then f and g are superlinear and g is the Legendre transform of f . Moreover, for
every λ fixed (respectively ω fixed), the equation f(λ)+g(ω) = 〈λ, ω〉 admits at least
one solution in ω (respectively in λ).

Proof of proposition 11.3. We show that −L̄(x, λ) is convex in λ ∈ Rd. Indeed,
for any λ, λ∗ ∈ Rd and t ∈ [0, 1], if µ ∈ Pτ (Td × Rd) is a minimizing measure for
Ltλ+(1+t)λ∗ , then

L̄(τ, tλ+ (1 + t)λ∗) =

∫
Ltλ+(1+t)λ∗(x, v) dµ(x, v)

= t

∫
Lλ(x, v) dµ(x, v) + (1 + t)

∫
Lλ∗(x, v) dµ(x, v)

≥ tL̄(τ, λ) + (1 + t)L̄(τ, λ∗).
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We now show that −L̄(τ, ·) is the Legendre transform of βL(τ, ·). Thanks to corol-
lary 6.4, we have

− L̄(τ, λ) = sup
{∫

[〈λ, v〉 − L(x, v)] dµ(x, v) : µ ∈ Pτ (Td × Rd),

and supp(µ) is bounded
}
.

Therefore, one can write

− L̄(τ, λ) = sup
ω∈Rd

sup
{
〈λ, ω〉 −

∫
L(x, v) dµ(x, v) : µ ∈ Pτ (Td × Rd),

supp(µ) is bounded, and

∫
v dµ(x, v) = ω

}
,

namely, −L̄(τ, λ) = supω∈Rd [〈λ, ω〉 − βL(ω)]. Proposition 11.3 follows then from
lemma 11.5.

We are now able to prove the infimum is attained in the definition of βL(τ, ω).

Proposition 11.6. Let L(x, v) be a C0 superlinear Lagrangian. For every ω ∈ Rd,
there exists a holonomic measure µ ∈ Pτ (Td × Rd) with bounded support such that∫

Td×Rd
v dµ(x, v) = ω and βL(τ, ω) =

∫
Td×Rd

L(x, v) dµ(x, v).

Proof. We follow Mather’s idea which says that the superlinearity of L implies that,
given a constant C ∈ R, the set of Borel measures{

‖v‖µ(dx, dv) : µ ∈ Pτ (Td × Rd), and

∫
L(x, v) dµ(x, v) ≤ C

}
is tight. Let χR(x, v) be a test function taking its values in [0, 1] and satisfying
χ(x, v) = 1 for all ‖v‖ ≤ R− 1 and χR(x, v) = 0 for all ‖v‖ ≥ R. Let {µn}n≥0 be a
sequence of Borel probability measures for which {

∫
L(x, v) dµn(x, v)} is uniformly

bounded. So notice that, for every ε > 0 and R sufficiently large, we have the
inequality ‖v‖(1− χR) ≤ ε(L(x, v)− inf L), which clearly yields

lim
R→+∞

lim sup
n→+∞

∫
‖v‖(1− χR) dµn(x, v) = 0.

Suppose in addition that µn is holonomic,

lim
n→+∞

∫
L(x, v) dµn(x, v) = βL(τ, ω) and

∫
v dµn(x, v) = ω.

We first extract a subsequence, that we again call {µn}n≥0, converging to a Borel
measure µ in the sense that∫

f dµ = lim
n→+∞

∫
f dµn, ∀ f ∈ C0

compact(Td × Rd),∫
f dµ ≤ lim inf

n→+∞

∫
f dµn, ∀ f ∈ C0

bounded(Td × Rd), f ≥ 0.
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The tighness property actually implies for any f ∈ C0
bounded(Td × Rd)∫

f dµ = lim
n→+∞

∫
f dµn,

∫
fv dµ = lim

n→+∞

∫
fv dµn.

In particular, µ is a holonomic measure, it possesses a rotation vector ω and∫
L(x, v) dµ(x, v) ≤ βL(τ, ω). However, as βL(τ, ·) is the Legendre transform of
−L̄(τ, ·), there exists λω ∈ Rd such that βL(τ, ω) = L̄(τ, λω) + 〈λω, ω〉. We obtain∫ (

L(x, v)− 〈λω, v〉
)
dµ(x, v) =

∫
L(x, v) dµ(x, v)− 〈λω, ω〉 ≤ L̄(τ, λω),

which implies that µ is minimizing for Lλω and, by corollary 6.4, has bounded
support.

Let us recall the definition of subdifferentials of a convex function. We restrict
ourself to superlinear convex functions in order to avoid to pay attention to domains
of definition.

Definition 11.7. Let α(λ) be a superlinear convex function with full domain. We
call subdifferential of α at λ∗ the set

∂α(λ∗) :=
{
ω ∈ Rd : α(λ) ≥ α(λ∗) + 〈ω, λ− λ∗〉, ∀ λ ∈ Rd

}
.

A simple analysis of the definition of subdifferentials implies the following
lemma.

Lemma 11.8. Let α(λ), β(ω) : Rd → R be convex functions with full domain and
obtained by Legendre transform one from the other. Then

λ ∈ ∂β(ω) ⇐⇒ ω ∈ ∂α(λ) ⇐⇒ α(λ) + β(ω) = 〈λ, ω〉.

In particular α(λ) is affine of slope ω on int(∂β(ω)) (if not empty).

We summarize in the next proposition the properties of Mather’s alpha and
beta functions that are immediate consequences of convexity arguments.

Proposition 11.9. Let L(x, v) be a C0 superlinear Lagrangian.

i. Let ω, λ ∈ Rd be related by Legendre relation λ ∈ ∂βL(τ, ω). Let µ be a
holonomic measure of rotation vector ω. Then µ realizes the minimum in the
definition of βL(τ, ω) if, and only if, µ is minimizing for L− λ.

ii. Let λ ∈ Rd. Then

∂αL(τ, λ) =
{
ω[µ] : µ is holonomic and minimizing for L− λ

}
.

In particular, if L̄(τ, .) is differentiable at λ, then all minimizing measures of

L− λ have rotation vector ω[µ] =
∫
v dµ(x, v) = −∂L̄

∂λ (τ, λ).

iii. Let ω ∈ Rd be such that int(∂βL(τ, ω)) is not empty. Then L̄(τ, .) is affine
of slope ω on int(∂βL(τ, ω)) and the Mather set of L − λ is independent of
λ ∈ int(∂βL(τ, ω)).
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Proof. Part i. Let λ be a subdifferential of βL(τ, .) at ω and µ be a holonomic
measure of rotation vector ω. If µ realizes the minimum of βL(τ, ω), then∫ [

L(x, v)− 〈λ, v〉
]
dµ(x, v) = βL(τ, ω)− 〈λ, ω〉 = −αL(τ, λ) = L̄(τ, λ),

and µ is minimizing for L− λ. Conversely, if µ is minimizing for L− λ, then∫
L(x, v) dµ(x, v) =

∫ [
L(x, v)− 〈λ, v〉

]
dµ(x, v) + 〈λ, ω〉

= L̄(τ, λ) + 〈λ, ω〉 = −αL(τ, λ) + 〈λ, ω〉 = βL(τ, ω),

and µ realizes the minimum of βL(τ, ω).

Part ii. Let ω be the rotation vector of a holonomic measure µ which is mini-
mizing for L− λ. Then∫

v dµ(x, v) = ω and

∫ [
L(x, v)− 〈λ, v〉

]
dµ(x, v) = L̄(τ, λ).

On the one hand, αL(τ, λ) + βL(τ, ω) ≥ 〈λ, ω〉 since αL(τ, .) is the Legendre trans-
form of βL(τ, .). On the other hand,

αL(τ, λ) + βL(τ, ω) ≤ −L̄(τ, λ) +

∫
L(x, v) dµ(x, v) =

∫
〈λ, v〉 dµ(x, v) = 〈λ, ω〉.

We just have proved that αL(τ, λ) + βL(τ, ω) = 〈λ, ω〉, that is, ω ∈ ∂αL(τ, λ).

Conversely, suppose ω ∈ ∂αL(τ, λ). Then λ is a subdifferential of βL(τ, .) at ω.
Let µ be a holonomic probability measure of rotation ω realizing the minimum of
βL(τ, ω). From part i, we know that µ is minimizing for L− λ.

Part iii. Let µ be a holonomic minimizing measure with respect to L − λ for
some λ ∈ int(∂βL(τ, ω)). Then L̄(τ, .) is differentiable at λ and µ has rotation vector
ω. From part i, µ realizes the minimum in βL(τ, ω) and therefore is minimizing for
L− λ∗ for any λ∗ ∈ ∂βL(τ, ω).

An important issue in the multidimensional setting is to know whether or not
any rotation vector is obtained by some minimizing configuration. In the ferromag-
netic case, a simple application of ergodic theory shows that any ω = −∂L̄

∂λ , when λ
is a point of differentiability of L̄(τ, .), is obtained by generic recurrent calibrated
minimizing configurations for L − λ. Proposition 11.13 gives a sligth extension of
this fact. We follow Gomes’ approach (see [34]) to show that actually all calibrated
configurations of L− λ have a rotation vector whenever L̄(λ) is differentiable at λ.
Contrary to Gomes, we do not assume L(x, v) to be ferromagnetic. We also prove
the existence of minimizing configurations satisfying a stronger notion of rotation
vector: for any λ where L̄(τ, ·) is differentiable in a neighborhood of λ and has
constant differential, any minimizing configuration of L − λ stays at a bounded
distance from a particular straight line.
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By standard convexity argument, the following directional differentials exist for
all λ, h ∈ Rd

∂+
h L̄(τ, λ) := lim

ρ→0+

L̄(τ, λ+ ρh)− L̄(τ, λ)

ρ
,

∂−h L̄(τ, λ) := lim
ρ→0+

L̄(τ, λ)− L̄(τ, λ− ρh)

ρ
.

Theorem 11.10. Suppose L(x, v) is C0 and superlinear. Let uλ ∈ C0(Td) be an
arbitrary sub-action for L− λ. Then

i. For any h ∈ Rd, for any uλ-calibrated configuration {xk}k∈Z, one has

−τ∂−h L̄(τ, λ) ≤ lim inf
n−m→∞

〈
h,
xn − xm
n−m

〉
≤ lim sup

n−m→∞

〈
h,
xn − xm
n−m

〉
≤ −τ∂+

h L̄(τ, λ).

ii. If L̄(τ, ·) is differentiable at λ, then any uλ-calibrated configuration {xk}k∈Z
has a rotation vector given by

ω
[
{xk}k∈Z

]
= −∂L̄

∂λ
(τ, λ) =

∫
v dµ(x, v), ∀ µ ∈Mτ (Lλ).

There exist minimizing configurations for L with rotation vector ω of arbi-
trarily large norm which are calibrated for L− λ, where ω = −∂L̄

∂λ .

iii. Let ω ∈ Rd be given and Λω := {λ ∈ Rd : −∂L̄
∂λ (τ, λ) exists and is equal to ω}.

If the interior of Λω is not empty, for any λ ∈ int(Λω), for any uλ-calibrated
configuration {xk}k∈Z of L− λ, one has

sup
k,n∈Z

‖xk+n − xk − nτω‖∞ < +∞.

We recall that a configuration is minimizing for L if, and only if, it is minimizing
for L−λ for any λ. The previous theorem shows that the rotation vector of a mini-
mizing configuration is in duality with the parameter λ which let the configuration
be calibrated by L − λ. In Mather theory, λ is seen as a cohomology and ω as an
homology. The parameter λ in the standard one dimensional Frenkel-Kontorova
model plays thus a special role.

Proof of theorem 11.10. Without loss of generality, we can suppose that L̄(τ) = 0.
Part i. Since uλ calibrates {xk}k∈Z, one has

uλ(xn) = uλ(xm) + Lτ (xm, . . . , xn)− 〈λ, xn − xm〉 − (n−m)τL̄(τ, λ), ∀ m < n.

Let ρ > 0, h ∈ Rd and λh := λ− ρh. If uλh is a continuous sub-action for L− λh,

uλh(xn) ≤ uλh(xm) + Lτ (xm, . . . , xn)− 〈λh, xn − xm〉 − (n−m)τL̄(τ, λh).

Therefore, by substracting the first equality to the above inequality, one obtains

τ
L̄(τ, λ− ρh)− L̄(τ, λ)

ρ
− 2

ρ

‖uλ − uλh‖0
n−m

≤
〈
h,
xn − xm
n−m

〉
,
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from which we immediately deduce

−τ∂−h L̄(τ, λ) = τ lim
ρ→0+

L̄(τ, λ− ρh)− L̄(τ, λ)

ρ
≤ lim inf

n−m→∞

〈
h,
xn − xm
n−m

〉
.

Replacing h by −h, one thus gets

lim sup
n−m→∞

〈
h,
xn − xm
n−m

〉
≤ τ lim

ρ→0+

L̄(τ, λ)− L̄(τ, λ+ ρh)

ρ
= −τ∂+

h L̄(τ, λ).

Part ii. If L̄(τ, ·) is differentiable at λ ∈ Rd, the previous inequalities become

〈
lim

n−m→∞

xn − xm
n−m

+ τ
∂L̄

∂λ
(τ, λ), h

〉
= 0, ∀ h ∈ Rd.

We just have proved ωλ := ω
[
{xk}k∈Z

]
= −∂L̄

∂λ (τ, λ) exists. Notice yet that ωλ
satisfies the relation 〈λ, ωλ〉 = βL(τ, ωλ) − L̄(τ, λ). So if ‖λ‖ → +∞ among the
set of points of differentiability of −L̄(τ, ·), the superlinearity of −L̄(τ, ·) implies
‖ωλ‖ → +∞.

Part iii. Let λ0 ∈ int(Λω) and {xk}k∈Z be u0-calibrated for some continuous sub-
action u0 with respect to L− λ0. Then, for any k ∈ Z and n ∈ Z+,

Lτ (xk, xk+1, . . . , xk+n) = u0(xk+n)− u0(xk) + 〈λ0, xk+n − xk〉+ nτL̄(τ, λ0).

Since L̄(τ, ·) is affine on Λω, we have L̄(τ, λ) − L̄(τ, λ0) = −〈ω, λ − λ0〉, for any
λ ∈ Λω. By taking any sub-action uλ of L− λ, one gets

Lτ (xk, . . . , xk+n)− 〈λ, xk+n − xk〉 − nτL̄(τ, λ)− uλ(xk+n) + uλ(xk) =

= 〈λ0 − λ, xk+n − xk − nτω〉+ (u0 − uλ)(xk+n)− (u0 − uλ)(xk).

Since the left hand side of the previous equality is nonnegative, one finally gets

〈λ− λ0, xk+n − xk − nτω〉 ≤ 4 sup
‖λ−λ0‖≤ε

‖uλ‖0

and ‖xk+n − xk − nτω‖ ≤ 4
ε sup‖λ−λ0‖≤ε ‖uλ‖0.

We present an example where a calibrated configuration may not have a well
defined rotation vector.

Example 11.11. Assume d = 1 and τ = 1. Let ` : R×R→ [0, 1] be a C∞ function
such that

`−1(1) = {(0, 0), (0, 1/2), (1/2, 0)} and `−1(0) ⊃ R2 − (−1/4, 3/4)2.

Define then L1 : R× R→ R+ by

L1(x, y) = 1−
∑
s∈Z

`(x+ s, y + s), ∀ x, y ∈ R.
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Clearly, L1 is a C∞ function invariant by the diagonal action of Z,

L1 ≥ 0, L−1
1 (0) = S :=

⋃
s∈Z
{(s, s), (s, s+ 1/2), (s+ 1/2, s)}

and L1 > 0 everywhere on R2− S. If L2(x, y) = |x− y|2|x− y+ 1|2|x− y− 1|2, let
us consider a nonnegative local interaction energy map given by

L(x, y) = L1(x, y)L1(x− 1, y)L1(x, y − 1) + L2(x, y), ∀ x, y ∈ R.

Notice that L is C∞, superlinear, invariant by the diagonal action of Z,

L ≥ 0 and L−1(0) =
⋃
s∈Z
{(s, s), (s, s+ 1), (s+ 1, s)}.

However, L does not satisfy a twist condition: there are points (x0, y0) ∈ R2 such

that ∂2L
∂x∂y (x0, y0) = 0. Indeed, since ∂L

∂y (0, 0) = 0 = ∂L
∂y (1, 0), Rolle’s theorem states

that ∂2L
∂x∂y (x0, 0) = 0 for some x0 ∈ (0, 1).

Let then L : T× R→ R denote the corresponding C∞ superlinear Lagrangian.
We will exhibit a configuration {xk} u-calibrated for any sub-action u ∈ C0(T) but
without a well defined rotation vector. To that end, notice we have

(x, v) ∈ A1(L) ⇔ L(x, x+ v) = 0 ⇔ x = 0 (mod Z) and v ∈ {−1, 0, 1}.

So consider any sequence of positive integers {ri}i≥1 such that 1
n

∑n
i=1 ri has at

least two distinct accumulation points: 1/ω1 and 1/ω2. We define a configuration
{xk} by

x0 = 0 and xk = n if
n−1∑
i=1

ri < |k| ≤
n∑
i=1

ri.

Notice that (xk (mod Z), xk−1 − xk) ∈ {(0,−1), (0, 0), (0, 1)} = A1(L). There-
fore, proposition 7.3 guarantees {xk} is u-calibrated for any sub-action u ∈ C0(T).
Nevertheless, the fact that

n∑n
i=1 ri

≤ xk
k
<

n∑n−1
i=1 ri

whenever

n−1∑
i=1

ri < k ≤
n∑
i=1

ri

and the choice of the sequence {ri} imply that, when k → +∞, xk/k has ω1 and
ω2 as accumulation points, which shows the configuration {xk} does not admit a
rotation vector.

From now on we assume L to be C1, superlinear and ferromagnetic. We first
notice that the set of critical configurations Γτ (L− λ) is independent from λ, that
is, Γτ (L) = Γτ (L− λ). A configuration calibrated for L− λ is therefore critical for
L. We also notice that L − λ is ferromagnetic if, and only if, L is ferromagnetic,
and that the definition of the discrete-time Lagrangian dynamics (Td × Rd,Φτ ) is
independent of λ too.

According to theorem 7.7, Aubry sets are nonempty compact Φτ -invariant sets.
Hence, as a consequence of theorem 11.10, the next result gives a sufficient con-
dition for the existence of disjoint invariant sets with respect to the discrete-time
Lagrangian dynamics.
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Proposition 11.12. Let L(x, v) be a C1 ferromagnetic superlinear Lagrangian.
Suppose λ, λ∗ ∈ Rd are points of differentiability of L̄(τ, ·). Then

∂L̄

∂λ
(τ, λ) 6= ∂L̄

∂λ
(τ, λ∗) =⇒ Aτ (L− λ) ∩Aτ (L− λ∗) = ∅.

Proof. Suppose on the contrary (x0, v0) ∈ Aτ (L−λ)∩Aτ (L−λ∗). By the invariance
of Aubry sets, we have

(xk, vk) := Φk
τ (x0, v0) ∈ Aτ (L− λ) ∩Aτ (L− λ∗), ∀ k ∈ Z.

Define then y0 = x0 ∈ [0, 1)d and recursively

yk+1 = yk + τvk ∈ Rd for k ≥ 0 and yk−1 = yk − τvk−1 ∈ Rd for k ≤ 0.

Let uλ ∈ C0(Td) be a sub-action for L − λ and let uλ∗ ∈ C0(Td) be a sub-action
for L − λ∗. By proposition 7.3, the configuration {yk}k∈Z is simultaneously uλ-
calibrated and uλ∗-calibrated. Hence, theorem 11.10 implies

−∂L̄
∂λ

(τ, λ) = ω
[
{yk}k∈Z

]
= −∂L̄

∂λ
(τ, λ∗),

which is a contradiction. Thus Aτ (L−λ) and Aτ (L−λ∗) are necessarily disjoint.

We have seen in theorem 11.10 that, if λ is a point of differentiability of L̄(τ, ·),
ω = −∂L̄

∂λ (τ, λ) is the rotation vector of all configuration of Aτ (L − λ). In the
one dimensional case, L̄(λ) is differentiable everywhere and therefore all rotation
numbers come from a minimizing configuration. We do not know whether this
result persists in the multidimensional case. The following proposition is a step in
that direction. We show that a vector ω which is extremal in ∂αL(τ, λ) for some λ
is the rotation vector of some minimizing configuration.

Proposition 11.13. Let L(x, v) be a C1 ferromagnetic superlinear Lagrangian. If
ω is an extremal vector of ∂αL(τ, λ) for some λ ∈ Rd, then it is the rotation vector
of some minimizing configuration {xk}k∈Z calibrated for L− λ.

Proof. Let ω be an extremal point of ∂αL(τ, λ). By hypothesis, there exists a
holonomic measure µ such that∫

v dµ(x, v) = ω and

∫
[L(x, v)− 〈λ, v〉] dµ(x, v) = L̄(τ, λ).

Theorem 6.10 guarantees that µ is Φτ -invariant. Furthermore, thanks to the ex-
tremal conditions on ω and on L̄(τ, λ), we may assume that µ is Φτ -ergodic.

By the ergodicity of µ, for almost all (x, v) ∈ Td ×Rd, if x0 is a representant of
x and xn = x0 + τ

∑n−1
k=0 pr

2 ◦ Φτ (x, v), then

1

τ
lim

n−m→+∞

xn − xm
n−m

= lim
n−m→+∞

n−1∑
k=m

pr2 ◦ Φτ (x, v) =

∫
v dµ(x, v) = ω.

Moreover, {xk}k∈Z is uλ-calibrated for any sub-action uλ of L− λ since(
xk ( mod Zd),

xk+1 − xk
τ

)
= Φk

τ (x, v) ∈Mτ (L− λ) ⊂ Nτ (L− λ, uλ).
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Séances de l’Académie des Sciences, Série I, Mathématique 325 (1997), 649–652.
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