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Abstract. The Frenkel-Kontorova model describes how an infinite chain of atoms
minimizes the total energy of the system when the energy takes into account the
interaction of nearest neighbors as well as the interaction with an exterior envi-
ronment. An almost-periodic environment leads to consider a family of interac-
tion energies which is stationary with respect to a minimal topological dynamical
system. We focus, in this context, on the existence of calibrated configurations (a
notion stronger than the standard minimizing condition). In any dimension and
for any continuous superlinear interaction energies, we exhibit a set, called pro-
jected Mather set, formed of environments that admit calibrated configurations.
In the one-dimensional setting, we then give sufficient conditions on the family of
interaction energies that guarantee the existence of calibrated configurations for
every environment. The main mathematical tools for this study are developed in
the frameworks of discrete weak KAM theory, Aubry-Mather theory and spaces
of Delone sets.

Mathematical subject classification: 37B50, 37J50, 37N20, 49L20, 49L25, 52C23

1. Introduction

The original Frenkel-Kontorova model [11] describes a one-dimensional chain of clas-
sical coupled particles which are subjected to an environment via an interaction
energy E : Rd × Rd → R. Given a finite configuration (xm, xm+1, . . . , xn) of points
in Rd, define

E(xm, xm+1, . . . , xn) :=

n−1∑
k=m

E(xk, xk+1).

A minimizing configuration (xk)k∈Z for the interaction energy E is an infinite chain
of points in Rd arranged so that the energy of each finite segment (xm, xm+1, . . . , xn)
cannot be lowered by changing the configuration inside the segment while fixing the
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two boundary points, i.e.: for all m < n, for all ym, ym+1, . . . , yn ∈ Rd satisfying
ym = xm and yn = xn, one has

E(xm, xm+1, . . . , xn) ≤ E(ym, ym+1, . . . , yn). (1)

In the periodic setting, that is, if the interaction energy is C0, coercive and
translation periodic,

lim
R→+∞

inf
‖y−x‖≥R

E(x, y) = +∞ and (2)

∀ t ∈ Zd, ∀x, y ∈ Rd, E(x+ t, y + t) = E(x, y), (3)

it is easy to show (see [2] for d = 1 and [13] for any dimension) that minimizing
configurations do exist. The proof in Aubry and Le Dearon [2] makes heavy use of
the fact that d = 1 and the assumption that E is C2 and twist in the following strong
sense

∂2E

∂x∂y
≤ −α < 0. (4)

We will relax slightly the twist condition allowing us anharmonic interactions, by
using for example E(x, y) = 1

4 |y−x−λ|
4 +V (x) instead of the harmonic interaction

E(x, y) = 1
2 |y − x− λ|

2 + V (x).

For environments which are aperiodic, namely when the energy E is not trans-
lation periodic, few results are known (see, for instance, [8, 12, 26]). For d = 1,
Gambaudo, Guiraud and Petite [12] showed that minimizing configurations do exist
for a family of aperiodic C2 twist energies. They also proved that every minimizing
configuration has a rotation number and any nonnegative real number is the rotation
number of a minimizing configuration.

A notion stronger than the usual minimizing condition is provided by the con-
cept of calibration. A calibrated configuration (at the level c ∈ R) is a sequence
(xn)n∈Z such that, for every m < n,

E(xm, . . . , xn)− (n−m)c ≤ inf
`≥1

inf
y0=xm,...,y`=xn

[
E(y0, . . . , y`)− `c

]
. (5)

Notice that the number of sites on the right hand side is arbitrary.

This paper mainly concerns the existence of calibrated configuration in the ape-
riodic context. A calibrated configuration is obviously minimizing, but the converse
is false in general.

In the periodic setting and for d ≥ 1, an argument using the notion of weak
KAM solutions as in [14, 10, 13] shows that there exist calibrated configurations
at a level Ē depending only on the energy E. Conversely, if d = 1 and E is twist
translation periodic, every minimizing configuration is calibrated for some modified
energy Eλ(x, y) = E(x, y)− λ(y − x), λ ∈ R, at a level Ēλ (see [2]).

Even if d = 1, in the aperiodic context it is not known in general whether
calibrated configurations exist. In order to give conditions to ensure the existence of
calibrated configurations, we will consider in this paper an interaction energy which
is almost periodic in a sense that will include the periodic case. This will lead to look
at a family of interaction energies parameterized by a minimal topological dynamical
system (a weak form of homogeneity). Such an approach is similar to studies for the
Hamilton-Jacobi equation (see, for instance, [5, 6, 7, 15, 16, 20]), where a stationary
ergodic setting has been taken into account.
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We will assume there exists a family of interaction energies {Eω}ω depending
on an environment ω. Let Ω denote the collection of all possible environments. We
assume that every chain of atoms (xk + t)k∈Z, translated in the direction t ∈ Rd and
interacting with the environment ω, has the same local energy that (xk)k∈Z interact-
ing with the shifted environment τt(ω) for some bijective transformation τt : Ω→ Ω.
More precisely, each environment ω defines an interaction Eω(x, y) which is assumed
to be topologically stationary in the following sense

∀ω ∈ Ω, ∀ t ∈ Rd, ∀x, y ∈ Rd, Eω(x+ t, y + t) = Eτt(ω)(x, y). (6)

In order to ensure the topological stationarity, the interaction energy will be
supposed to have a Lagrangian form. Formally, we will use the following definition.

Definition 1. Let Ω be a compact metric space.

1. A minimal Rd-action is a couple
(
Ω, {τt}t∈Rd

)
, where {τt}t∈Rd is a family of

homeomorphisms τt : Ω→ Ω satisfying
– τs ◦ τt = τs+t for all s, t ∈ Rd (the group property),
– τt(ω) is jointly continuous with respect to (t, ω),
– ∀ω ∈ Ω, {τt(ω)}t∈Rd is dense in Ω (the minimality property).

2. A family of interaction energies {Eω}ω∈Ω is said to derive from a Lagrangian
if there exists a continuous function L : Ω× Rd → R such that

∀ω ∈ Ω, ∀x, y ∈ Rd, Eω(x, y) := L(τx(ω), y − x). (7)

3. An almost periodic interaction model is the set of data (Ω, {τt}t∈Rd , L), where
(Ω, {τt}t∈Rd) is a minimal Rd-action and L is a continuous function on Ω×Rd.

Notice that the expression “almost periodic” shall not be understood in the
sense of H. Bohr. The almost periodicity according to Bohr is canonically relied
to the uniform convergence. See [3] for a discussion on the different concepts of
almost periodicity in conformity with the uniform topology or with the compact
open topology.

Because of the particular form (7) of Eω(x, y), these energies are translation
bounded and translation uniformly continuous in the sense that, for all R > 0,
sup‖y−x‖≤REω(x, y) < +∞ and Eω(x, y) is uniformly continuous in ‖y − x‖ ≤ R.
We make precise the notions of coercivity and superlinearity for the Lagrangian form.

Definition 2. Let (Ω, {τt}t∈Rd , L) be an almost periodic interaction model.

1. L is said to be coercive if lim
R→+∞

inf
ω∈Ω

inf
‖t‖≥R

L(ω, t) = +∞.

2. L is said to be superlinear if lim
R→+∞

inf
ω∈Ω

inf
‖t‖≥R

L(ω, t)

‖t‖
= +∞.

Let us illustrate our abstract notions by three typical examples.

Example 3. The one-dimensional periodic Frenkel-Kontorova model [11]. The inter-
action energies are given by Eω(x, y) = W (y− x) + Vω(x), with ω ∈ R/Z, written in
Lagrangian form as

L(ω, t) = W (t) + V (ω) =
1

2
|t− λ|2 +

K

(2π)2

(
1− cos 2πω

)
, (8)

where λ, K are constants. Here Ω = R/Z and τt : R/Z → R/Z is given by τt(ω) =
ω + t. We observe that {τt}t is minimal.
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Example 4. The one-dimensional almost crystalline model based on [12]. For α ∈
(0, 1) \Q, consider the aperiodic subset of R defined by

ω(α) := {k ∈ Z : bkαc − b(k − 1)αc = 1},
where b·c denotes the integer part. Represented as an ordered subset ω(α) = {ωn}n∈Z
possesses the property that the distance between two consecutive points is either b 1

αc
or b 1

αc+1. We choose two smooth functions U0, U1 : R→ R with supports respectively

in (0, b 1
αc) and (0, b 1

αc + 1). We then construct a potential Vω(α) : R → R and an
interaction energy in the following way

∀ ωn ≤ x < ωn+1, Vω(α)(x) = Uωn+1−ωn−b 1
α c

(x− ωn),

∀ x, y ∈ R, Eω(α)(x, y) =
1

2
|x− y − λ|2 + Vω(α)(x).

More generally, one may similarly define a potential Vω(x) and an interaction energy
Eω(x, y) for any subset ω ∈ R having the property that the distance between two
consecutive points belongs to {b 1

αc, b
1
αc+ 1}. Let Ω′ be the set of all such subsets ω.

Then, for any x, t ∈ R, Vω(x + t) = Vω−t(x), where ω − t := {p − t : p ∈ ω}. Let
Ω ⊂ Ω′ be the hull of the ω(α) as explained in section 4. Then Ω is compact, the
group of translations τt(ω) := ω − t acts minimally, and Eω(x, y) derives from the
Lagrangian

L(ω, t) :=
1

2
|t− λ|2 + Vω(t). (9)

We will extend in section 4 the construction given in example 4 to any qua-
sicrystal ω of R. The associated almost periodic interaction model will be of almost
crystalline type as we will describe below. Our third example illustrates an almost
periodic interaction model on R which is not almost crystalline.

Example 5. The one-dimensional almost periodic Frenkel-Kontorova model. The un-
derlying minimal flow is given by the irrational flow τt(ω) = ω + t(1,

√
2) acting on

Ω = R2/Z2. The family of interaction energies Eω derives from the Lagrangian

L(ω, t) :=
1

2
|t− λ|2 +

K1

(2π)2

(
1− cos 2πω1

)
+

K2

(2π)2

(
1− cos 2πω2

)
, (10)

where ω = (ω1, ω2) ∈ R2/Z2.

We will consider calibrated configurations at a specific level.

Definition 6. We call ground energy of a family of interactions {Eω}ω∈Ω of La-
grangian form L : Ω× Rd → R the quantity

Ē := lim
n→+∞

inf
ω∈Ω

inf
x0,...,xn∈Rd

1

n
Eω(x0, . . . , xn).

Since the sequence (infω∈Ω infx0,...,xn∈Rd Eω(x0, . . . , xn))n is superadditive, the
above limit is actually a supremum by Fekete’s Lemma, which is finite if L is assumed
to be coercive. Besides, we clearly have a priori bounds

inf
ω∈Ω

inf
x,y∈Rd

Eω(x, y) ≤ Ē ≤ inf
ω∈Ω

inf
x∈Rd

Eω(x, x). (11)

In the same way, we may define the ground energy Ēω in the environment ω as

Ēω := lim
n→+∞

inf
x0,...,xn∈Rd

1

n
Eω(x0, . . . , xn). (12)
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The ground energy Ēω measures the lowest mean energy per site among all infinite
configurations in the environment ω. We will see (proposition 13) that the minimality
of the group action {τt}t implies that Ē = Ēω for all ω ∈ Ω.

In this context, let us precise the definition of calibrated configuration. For
an environment ω, we say that a configuration (xk)k∈Z is calibrated for Eω (at the
level Ē) if, for all m < n,

Eω(xm, . . . , xn)− (n−m)Ē = inf
`≥1

inf
y0=xm,...,y`=xn

[
Eω(y0, . . . , y`)− `Ē

]
. (13)

We show two results that give sufficient conditions for the existence of cali-
brated configurations. The first one applies to almost periodic interaction models in
any dimension. We describe a set, called projected Mather set, consisting of environ-
ments that allow the existence of calibrated configurations. The second result is more
restrictive and holds only for one-dimensional almost crystalline interaction model.
We then show that a calibrated configuration exists for every environment.

The following definition is basic in our analysis. The vocabulary is borrowed
from the weak KAM theory (see [9, 10, 21]).

Definition 7. Let (Ω, {τt}t∈Rd , L) be an almost periodic interaction model.

1. A measure µ on Ω× Rd is said to be holonomic if it is a probability and

∀ f ∈ C0(Ω),

∫
f(ω)µ(dω, dt) =

∫
f(τt(ω))µ(dω, dt).

Let Mhol denote the set of holonomic measures.
2. A measure µ is said to be minimizing if it is holonomic and Ē =

∫
Ldµ.

3. We call Mather set of L the subset of Ω× Rd defined by

Mather(L) := ∪µ∈Mmin(L)supp(µ),

where Mmin(L) denotes the set of minimizing measures.

The projected Mather set is the projection pr(Mather(L)) of the Mather set into Ω
by the canonical projection pr : Ω× Rd → Ω.

Holonomic measures have been defined in [21] in the context of Lagrangian flows
on tangent spaces. The Rd-action introduced in definition 1 plays the role in the case
d = 1 of the projection of the Lagrangian flow on position space.

Note that Mhol is nonempty as it contains δ(ω,0), ω ∈ Ω. It can be shown that the
Mather set is a nonempty compact set for any superlinear Lagrangian (proposition
13 and lemma 21).

Our first result applies to an almost periodic interaction model in every dimen-
sion and extends the classical periodic Aubry-Mather theory.

Theorem 8. Let (Ω, {τt}t∈Rd , L) be an almost periodic interaction model. Assume L is
superlinear. Then, for all ω ∈ pr(Mather(L)), there exists a calibrated configuration
(xk)k∈Z for Eω at the level Ē such that x0 = 0 and supk∈Z ‖xk+1 − xk‖ < +∞.

Let us recall that, by the stationarity hypothesis (6), a configuration (xk)k∈Z
is calibrated for Eω if, and only if, for all t ∈ Rd, the configuration (xk − t)k∈Z is
calibrated for Eτt(ω). So, by theorem 8, each environment in the {τt}t∈Rd -orbit of the
projected Mather set admits a calibrated configuration.

However, it may happen that the orbit of the projected Mather set is a small set.
Indeed, in the one-dimensional almost periodic Frenkel-Kontorova model described in
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example 5, for λ = 0, it is easy to check that Ē = 0, the Mather set is reduced to the
point (0T2 , 0R), and xk = 0, k ∈ Z, defines a calibrated configuration. We conjecture

that there does not exist a calibrated configuration for ω 6∈ {(t, t
√

2) : t ∈ R} when
λ = 0. A similar case occurs when there is no exact corrector for the homogenization
problem in Hamilton-Jacobi equations in the stationary ergodic setting [20, 5].

Our second result applies to a specialized one-dimensional almost periodic in-
teraction model called almost crystalline.

Definition 9. Let (Ω, {τt}t∈R) be a minimal R-action.

1. An open set U ⊂ Ω is said to be a flow box of size R > 0 if there exists a
compact subset Ξ ⊂ Ω, called transverse section, such that:
(a) the induced topology on Ξ admits a basis of closed and open subsets, called

clopen subsets,
(b) the map (t, ω) ∈ BR × Ξ 7→ τ(t, ω) = τt(ω) ∈ Ω is a homeomorphism onto

U , where BR = B(0, R) denotes the open ball of radius R and center 0.
2. Two flow boxes Ui = τ(BRi×Ξi) and Uj = τ(BRj×Ξj) are said to be admissible

if, whenever Ui ∩ Uj 6= ∅, there exists ai,j ∈ R such that

τ−1
(j) ◦ τ(t, ω) = (t− ai,j , τai,j (ω)), ∀ (t, ω) ∈ τ−1

(i) (Ui ∩ Uj),

where τ−1
(i) : Ui → BR × Ξ denotes the inverse map.

3. A flow box decomposition {Ui}i∈I is a cover of Ω by admissible flow boxes.
4. A flow box τ(BR×Ξ) is said to be compatible with respect to a flow box decom-

position {Ui}i∈I , where Ui = τ(BRi ×Ξi), if for every |t| < R, there exist i ∈ I,

|ti| < Ri and a clopen subset Ξ̃i of Ξi such that τt(Ξ) = τti(Ξ̃i).

Of course, the circle has a flow box decomposition. Less trivially, a typical ex-
ample is a suspension of a minimal homeomorphism on a Cantor set with a locally
constant ceiling function. But in general, a minimal R-action does not possess a trans-
verse section. We will describe in section 4 how such a decomposition is obtained for
the hull of a quasicrystal (example 4 is a prototype of a quasicrystal). Yet, our notion
is more general than this one because it also includes, for instance, nonexpansive R
actions. The next definition is central in our second main result.

Definition 10. Let (Ω, {τt}t∈R, L) be an almost periodic interaction model admitting
a flow box decomposition {Ui}i∈I . L is said to be locally transversally constant with
respect to {Ui}i∈I if, for every compatible flow box τ(BR × Ξ),

∀ω, ω′ ∈ Ξ, ∀ |x|, |y| < R, Eω′(x, y) = Eω(x, y).

We will show in section 4 that the Lagrangians in examples 3 and 4 are locally
transversally constant.

The standard one-dimensional Aubry-Mather theory assumes that the inter-
action energy E(x, y) is strongly twist as in (4). An energy of the form E(x, y) =
1
4 |t − λ|

4 + V (x) is not strongly twist. We extend slightly this definition: E(x, y) is

said to be weakly twist if E is a C2 function and satisfies

∀x, y ∈ R,
∂2E

∂x∂y
(x, ·) < 0 and

∂2E

∂x∂y
(·, y) < 0 a.e. (14)

Definition 11. Let (Ω, {τt}t∈R, L) be a one-dimensional almost periodic interaction
model. The interaction model (Ω, {τt}t∈R, L) is said to be almost crystalline if



Calibrated configurations for Frenkel-Kontorova type models in almost-periodic environments7

1. {τt}t∈R is uniquely ergodic (with unique invariant probability measure λ),
2. L is superlinear and weakly twist (for every ω ∈ Ω, Eω is weakly twist),
3. L is locally transversally constant with respect to a flow box decomposition.

Our second result states that calibrated configurations exist for every environ-
ment of an almost crystalline interaction model.

Theorem 12. Let (Ω, {τt}t∈R, L) be an almost crystalline interaction model. Then,
for every ω ∈ Ω, there exists a configuration (xk,ω)k∈Z which is calibrated for Eω,
with bounded jumps and at a bounded distance from the origin uniformly in ω, i.e.:

sup
ω∈Ω

sup
k∈Z

|xk+1,ω − xk,ω| < +∞, sup
ω∈Ω

|x0,ω| < +∞.

Actually, to show this result it is enough, by theorem 8, to prove that the
projected Mather set intersects every {τt}t∈R-orbit.

The paper is organized as follows. Section 2 is dedicated to the proof of the-
orem 8, whose strategy takes advantage of a fundamental characterization of the
ground energy via a sup-inf formula. We give in the appendix another proof of this
formula. In section 3, we improve classical results about the rearranging of the atoms
of a minimizing configuration for weakly twist Lagrangians. We especially show that
no coincidence may happen. In section 4, by extending example 4, we explain how
to construct almost crystalline interaction models using quasicrystals and strongly
equivariant functions. In particular, corollary 32 describes an explicit family of almost
crystalline interaction models. Section 5 is devoted to the proof of theorem 12.

2. Almost periodic interaction models

This section is devoted to the proof of the existence of calibrated configurations for
almost periodic interaction models in any dimension. In the periodic setting, the proof
is done using calibrated sub-actions as in [13]. We do not know how to extend this
tool in the aperiodic case. We use instead a new tool: the Mañé subadditive cocycle.
We start showing different ways of computing the ground energy. The ground energy
computed using the sup-inf formula is fundamental for the construction of the Mañé
subadditive cocycle. In the second subsection, we use this cocycle to build a calibrated
configuration when the environment belongs to the projected Mather set. The proof
of theorem 8 is given at the end of this section. In all this section, we will consider an
almost periodic interaction model (definition 1). Most of the results hold for coercive
Lagragians.

2.1. Ground energy and Mather set

Let ω ∈ Ω be a fixed environment. The ground energy Ēω (equation (12)) is computed
by taking the limit of the minimum 1

nEω(x0, . . . , xn) over all finite configurations. We

will identify this number with quantities defined globally on the phase space Ω×Rd
so that its computation will be interpreted in the framework of ergodic optimization.

To roughly explain this relation, observe that

1

n
Eω(x0, . . . , xn) =

∫
L(ω, t)µn,ω(dω, dt),
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where µn,ω := 1
n

∑n−1
k=0 δ(τxk (ω), xk+1− xk). We then check that, for every f ∈ C0(Ω),∫

f(ω)µn,ω(dω, dt)−
∫
f(τt(ω))µn,ω(dω, dt) =

1

n

(
f ◦ τxn(ω)− f ◦ τx0

(ω)
)
.

If (µn,ω)n≥1 where tight, we could extract a subsequence converging to a probability
measure µ for the weak∗ topology which would be holonomic as in definition 7. But
the tightness or the fact that |xk − xk−1| is uniformly bounded whenever (xk)nk=0

minimizes 1
nEω(x0, . . . , xn) is a priori unclear.

We give several equivalent definitions of the ground energy in the next proposi-
tion. Let us recall that Mhol and Mmin(L) respectively denote the sets of holonomic
probabilities and of minimizing measures (see definition 7).

Proposition 13. Let (Ω, {τt}t∈Rd , L) be an almost periodic interaction model. Assume
L is coercive. Then

1. (the ergodic formula)
Ē = inf

{ ∫
Ldµ : µ ∈Mhol

}
, and Mmin(L) 6= ∅,

2. (the sup-inf formula)
Ē = supu∈C0(Ω) inf

{
L(ω, t) + u(ω)− u ◦ τt(ω) : ω ∈ Ω, t ∈ Rd

}
,

3. (the ground energy per environment)
∀ω ∈ Ω, Ē = limn→+∞ infx0,...,xn∈Rd

1
nEω(x0, . . . , xn).

We remark that, in Aubry-Mather and weak KAM theories, the central constant
known as Mather’s minimal average action/energy or Mañé’s critical value is equal
minus the corresponding ergodic formula. We prefer to use the opposite sign because
this convention allows us to match in harmony the previous definitions.

We also remark that the ground energy per environment actually comes from
the minimality of the action. Observe the sup-inf and ergodic formulas are dual to
each other as in convex analysis. Although the supremum in the sup-inf formula is
achieved for periodic models, we are unable to prove it for general almost periodic
interaction models. We note temporarily

Ēω = lim
n→+∞

inf
x0,...,xn∈Rd

1

n
Eω(x0, . . . , xn), L̄ := inf

{∫
Ldµ : µ ∈Mhol

}
,

and K̄ := sup
u∈C0(Ω)

inf
ω∈Ω, t∈Rd

[
L(ω, t) + u(ω)− u ◦ τt(ω)

]
.

We first prove the equality Ēω = Ē. We next show that Ē ≥ K̄ ≥ L̄ ≥ Ē. We will
use Birkhoff ergodic theorem for the Markov extension of a holonomic measure. For
the convenience of the reader, we recall this construction.

Let Ω̂ := Ω× (Rd)N. Let us recall that every probability measure µ on Ω× Rd
admits a unique disintegration along the first projection pr : Ω× Rd → Ω,

µ(dω, dt) := pr∗(µ)(dω)P (ω, dt),

where {P (ω, dt)}ω∈Ω is a measurable family of probability measures on Rd.

Definition 14. We call Markov extension of µ the probability measure µ̂ defined on Ω̂
by the Markov construction with initial distribution pr∗(µ) and transition probabilities
P (ω, dt),

µ̂(dω, dt) = pr∗(dω)P (ω, dt0)P (τt0(ω), dt1) · · ·P (τt0+···+tn−1(ω), dtn).
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The following lemma shows that the Markov extension of an holonomic measure
is invariant for a map. Since its proof is straightforward, we omit it.

Lemma 15. If µ is holonomic, then µ̂ is invariant with respect to the shift map

τ̂ : (ω, t0, t1, . . .) ∈ Ω̂ 7→ (τt0(ω), t1, t2, . . .) ∈ Ω̂.

Conversely, the projection of every τ̂ -invariant probability measure µ̃ on Ω × Rd is
holonomic. Moreover, if L̂(ω, t) := L(ω, t0) is the natural extension of L on Ω̂, then

L̄ = inf
{ ∫

L̂ dµ̃ : µ̃ is a τ̂ -invariant probability measure
}

.

Proof of proposition 13. Step Ēω = Ē. By stationarity of Eω and minimality of τt,
we have

inf
x0,...,xn∈Rd

Eω(x0, . . . , xn) = inf
x0,...,xn∈Rd

inf
t∈Rd

Eω(x0 + t, . . . , xn + t)

= inf
x0,...,xn∈Rd

inf
t∈Rd

Eτt(ω)(x0, . . . , xn)

= inf
x0,...,xn∈Rd

inf
ω∈Ω

Eω(x0, . . . , xn),

which clearly yields Ēω = Ē for every ω ∈ Ω.
Step Ē ≥ K̄. Given c < K̄, there exists u ∈ C0(Rd) such that, for every ω ∈ Ω

and any t ∈ Rd, u(τt(ω))− u(ω) ≤ L(ω, t)− c. Let uω(x) = u(τx(ω)). Then

∀x, y ∈ Rd, uω(y)− uω(x) ≤ Eω(x, y)− c,

which implies Ē ≥ c for every c < K̄, and therefore Ē ≥ K̄.
Step K̄ ≥ L̄. This part is the core of the proof of Ē = K̄. We give another proof

in appendix A.
Let X := C0

b (Ω × Rd). A coboundary is a function f of the form f(ω, t) =
u ◦ τt(ω)− u(ω) for some u ∈ C0(Ω). Consider

A := {(f, s) ∈ X × R : f is a coboundary and s ≥ K̄} and

B := {(f, s) ∈ X × R : inf
ω∈Ω, t∈Rd

(L− f)(ω, t) > s}.

Then A and B are nonempty convex subsets of X × R. They are disjoint by the
definition of K̄ and B is open because L is coercive. By Hahn-Banach theorem, there
exists a nonzero continuous linear form Λ on X × R which separates A and B. The
linear form Λ is given by λ⊗α, where λ is a continuous linear form on X and α ∈ R.
The linear form λ is, in particular, continuous on C0

0 (Ω×Rd) and, by Riesz-Markov
theorem,

∀ f ∈ C0
0 (Ω× Rd), λ(f) =

∫
f dµ,

for some signed measure µ. By separation, we have

λ(f) + αs ≤ λ(u− u ◦ τ) + αs′,

for u ∈ C0(Ω), f ∈ X and s, s′ ∈ R such that infΩ×Rd(L − f) > s and s′ ≥ K̄. By
multiplying u by an arbitrary constant, one obtains

∀u ∈ C0(Ω), λ(u− u ◦ τ) = 0.

The case α = 0 is not admissible, since otherwise λ(f) ≤ 0 for every f ∈ X and λ
would be the null form, which is not possible. The case α < 0 is not admissible either,
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since otherwise one would obtain a contradiction by taking f = 0 and s→ −∞. By
dividing by α > 0 and changing λ/α to λ (as well as µ/α to µ), one obtains

∀ f ∈ X, λ(f) + inf
Ω×Rd

(L− f) ≤ K̄.

By taking f = c1, one obtains c(λ(1)−1) ≤ K̄− infΩ×Rd L for every c ∈ R, and thus
λ(1) = 1. By taking −f instead of f , one obtains λ(f) ≥ infΩ×Rd L − K̄ for every
f ≥ 0, which (again arguing by contradiction) yields λ(f) ≥ 0. In particular, µ is a
probability measure. We claim that

∀u ∈ C0(Ω),

∫
(u− u ◦ τ) dµ = 0.

Indeed, given R > 0, consider a continuous function 0 ≤ φR ≤ 1, with compact
support on Ω×BR+1(0), such that φR ≡ 1 on Ω×BR(0). Then

u− u ◦ τ ≥ (u− u ◦ τ)φR + min
Ω×Rd

(u− u ◦ τ)(1− φR).

Since λ and µ coincide on C0
0 (Ω× Rd) + R1, one obtains

0 = λ(u− u ◦ τ) ≥
∫

(u− u ◦ τ)φR dµ+ min
Ω×Rd

(u− u ◦ τ)

∫
(1− φR) dµ.

By letting R → +∞, it follows that
∫
(u − u ◦ τ) dµ ≤ 0 and the claim is proved by

changing u to −u. In particular, µ is holonomic. We claim that

∀ f ∈ X,
∫
f dµ+ inf

Ω×Rd
(L− f) ≤ K̄.

Indeed, we first notice that the left hand side does not change by adding a constant
to f . Moreover, if f ≥ 0 and 0 ≤ fR ≤ f is any continuous function with compact
support on Ω× BR+1(0) which is identical to f on Ω× BR(0), the claim follows by
letting R→ +∞ in∫

fR dµ+ inf
Ω×Rd

(L− f) ≤ λ(fR) + inf
Ω×Rd

(L− fR) ≤ K̄.

We finally prove the inequality L̄ ≤ K̄. Given R > 0, denote LR = min(L,R). Since
L is coercive, LR ∈ X. Then L−LR ≥ 0 and

∫
LR dµ ≤ K̄. By letting R→ +∞, one

obtains
∫
Ldµ ≤ K̄ for some holonomic measure µ.

Step L̄ ≥ Ē. We claim the infimum is attained in L̄ := inf{
∫
Ldµ : µ ∈ Mhol}.

Indeed, let

C := sup
ω∈Ω

L(ω, 0) ≥ L̄ and Mhol,C :=
{
µ ∈Mhol :

∫
Ldµ ≤ C

}
.

We equip the set of probability measures on Ω × Rd with the weak topology (con-
vergence of sequence of measures by integration against compactly supported con-
tinuous test functions). By coercivity, for every ε > 0 and M > inf L such that
ε > (C − inf L)/(M − inf L), there exists R(ε) > 0 with infω∈Ω,‖t‖≥R(ε) L(ω, t) ≥M .
By integrating L− inf L, we get

∀ µ ∈Mhol,C , µ
(
Ω× {t : ‖t‖ ≥ R(ε)}

)
≤
∫

L− inf L

M − inf L
dµ ≤ C − inf L

M − inf L
< ε.

We have just proved that the set Mhol,C is tight. Let (µn)n≥0 ⊂ Mhol,C be a se-
quence of holonomic measures such that

∫
Ldµn → L̄. By tightness, we may assume
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that µn → µ∞ with respect to the strong topology (convergence of sequence of mea-
sures by integration against bounded continuous test functions). In particular, µ∞ is
holonomic. Moreover, for every φ ∈ C0(Ω, [0, 1]), with compact support,

0 ≤
∫

(L− L̄)φdµ∞ = lim
n→+∞

∫
(L− L̄)φdµn ≤ lim inf

n→+∞

∫
(L− L̄) dµn = 0.

Therefore, µ∞ is minimizing.
We now prove that L̄ ≥ Ē. Let µ be a minimizing holonomic measure with

Markov extension µ̂ (see definition 14 and lemma 15). If (ω, t) ∈ Ω̂, then

n−1∑
k=0

L̂ ◦ τ̂k(ω, t) = Eω(x0, . . . , xn) with x0 = 0 and xk = t0 + · · ·+ tk−1,

and, by Birkhoff ergodic theorem,

Ē ≤
∫

lim
n→+∞

1

n

n−1∑
k=0

L̂ ◦ τ̂k dµ̂ =

∫
Ldµ = L̄. �

2.2. Mañé subadditive cocycle

As in weak KAM theory, we will make use of the notion of Mañé potential.

Definition 16. We call Mañé potential in the environment ω the function on Rd×Rd
given by

Sω(x, y) := inf
n≥1

inf
x=x0,...,xn=y

[
Eω(x0, . . . , xn)− nĒ

]
.

Observe that a calibrated configuration (xk)k∈Z for Eω (equation (13)) satisfies,
for all m < n,

Eω(xm, . . . , xn)− (n−m)Ē = Sω(xm, xn). (15)

We will see in this section that the Mañé potential is always finite and shares the same
properties as a pseudometric. A calibrated configuration may be seen as a geodesic
for an “algebraic distance” Eω(x, y)− Ē.

Since the interaction energy Eω(x, y) derives from a Lagrangian L(ω, t), the
Mañé potential Sω(x, y) can be lifted to Ω × Rd to a function Φ(ω, t) that we call
Mañé subadditive cocycle.

Definition 17. Let (Ω, {τt}t∈Rd , L) be an almost periodic interaction model. We call
Mañé subadditive cocycle associated with L the function defined on Ω× Rd by

Φ(ω, t) := inf
n≥1

inf
0=x0,x1,...,xn=t

n−1∑
k=0

[
L(τxk(ω), xk+1 − xk)− Ē

]
.

Note that Sω(x, y) = Φ(τx(ω), y − x).

A function U : Ω× Rd → [−∞,+∞) is said to be a subadditive cocycle if

∀ω ∈ Ω, ∀ s, t ∈ Rd, U(ω, s+ t) ≤ U(ω, s) + U(τs(ω), t). (16)

The very definitions of Φ and Ē show that Φ is a subadditive cocycle. In addition,
Φ does not take infinite values and satisfies, for every ω ∈ Ω and s, t ∈ Rd,

0 ≤ Φ(ω, 0) and Ē − L(τt(ω),−t) ≤ Φ(ω, t) ≤ L(ω, t)− Ē. (17)

Inequality 0 ≤ Φ(ω, 0) is proved using the fact that, for a fixed ω, the sequence

Ēn(ω, 0) := inf
x1,...,xn−1

Eω(0, x1, . . . , xn−1, 0)
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is subadditive in n and Ē ≤ limn→∞
1
n Ēn(ω, 0) = infn≥1

1
n Ēn(ω, 0). The inequality

Φ(ω, t) ≤ L(ω, t)− Ē comes from the definition of Φ. These two inequalities together
with the subadditivity lead to

0 ≤ Φ(ω, 0) ≤ Φ(ω, t) + Φ(τt(ω),−t) ≤ Φ(ω, t) + L(τt(ω),−t)− Ē,
showing the remaining inequality in (17).

Note that calibrated configurations are configurations realizing the infimum in
definition 17. We first weaken the notion of calibration in the way described below.
As usual, L is supposed to be coercive.

Definition 18. A measurable subadditive cocycle U : Ω× Rd → [−∞,+∞) is said to
be calibrated (with respect to L) when

1. ∀ω ∈ Ω, ∀ s, t ∈ Rd, U(ω, t) ≤ L(ω, t)− L̄ and U(ω, 0) ≥ 0,
2. for every µ ∈Mhol and µ̂ its Markov extension, if

∫
Ldµ < +∞, then, for every

n ≥ 1,
∫
U(ω,

∑n−1
k=0 tk) µ̂(dω, dt) ≥ 0.

The existence of a calibrated subadditive cocycle enables us to easily construct
calibrated configurations.

Lemma 19. If U is a calibrated subadditive cocycle U , then U grows sublinearly,
supω∈Ω,t∈Rd |U(ω, t)|/(1 + ‖t‖) < +∞, in particular it is finite everywhere. Besides,
for every µ ∈Mmin(L) and µ̂ its Markov extension,

∀n ≥ 1, U
(
ω,

n−1∑
k=0

tk

)
=

n−1∑
k=0

[L̂− L̄] ◦ τ̂k(ω, t), µ̂(dω, dt) a.e.

Proof. Part 1. We show that U is sublinear. Let K := supω∈Ω, ‖t‖≤1[L(ω, t) − L̄].

Given t ∈ Rd, let n = b‖t‖ + 1c and tk = k
n t for k = 0, . . . , n − 1. Then the

subadditive cocycle property implies, on the one hand,

∀ω ∈ Ω, ∀ t ∈ Rd, U(ω, t) ≤
n−1∑
k=0

U(τtk(ω), tk+1 − tk) ≤ nK ≤ (1 + ‖t‖)K.

On the other hand, thanks to the hypothesis U(ω, 0) ≥ 0, we obtain

∀ω ∈ Ω, ∀ t ∈ Rd, U(ω, t) ≥ U(ω, 0)− U(τt(ω),−t) ≥ −(1 + ‖t‖)K.

Part 2. Suppose µ is minimizing. Since

∀ω ∈ Ω, ∀ t0, . . . , tn−1 ∈ Rd,
n−1∑
k=0

[
L̂− L̄

]
◦ τ̂k(ω, t) ≥ U

(
ω,

n−1∑
k=0

tk

)
,

by integrating with respect to µ̂, the left hand side has a null integral whereas the
right hand side has a nonnegative integral. The previous inequality is thus an equality
that holds almost everywhere. �

Proposition 20. Assume that L is coercive. Then Φ is upper semi-continuous and
calibrated. More precisely, for every µ ∈ Mmin(L) and µ̂ its Markov extension, for
every (ω, t) ∈ supp(µ̂), i < j, x0 = 0 and xk+1 = xk + tk, (xk)k≥0 is a one-sided
calibrated configuration for Eω,

Φ
(
τxi(ω), xj − xi

)
=

j−1∑
k=i

[
L− L̄

]
◦ τ̂k(ω, t) = Eω(xi, xi+1, . . . , xj)− (j − i)Ē.
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Proof. Part 1. We first show the existence of a particular measurable calibrated
subadditive cocycle U(ω, t). From the sup-inf formula (proposition 13), for every
p ≥ 1, there exists up ∈ C0(Ω) such that

∀ω ∈ Ω, ∀ t ∈ Rd, up ◦ τt(ω)− up(ω) ≤ L(ω, t)− L̄+ 1/p.

Let Up(ω, t) := up ◦ τt(ω) − up(ω) and U := lim supp→+∞ Up. Then U is clearly a
subadditive cocycle and satisfies U(ω, 0) = 0. Besides, U is finite everywhere, since
0 = U(ω, 0) ≤ U(ω, t) + U(τt(ω),−t) and U(ω, t) ≤ L(ω, t) − L̄. We just check the
second property in definition 18. Let µ ∈ Mhol be such that

∫
Ldµ < +∞. Define,

for every n ≥ 1,

Ŝn,p(ω, t) :=

n−1∑
k=0

[
L̂− L̄+

1

p

]
◦ τ̂k(ω, t)− Up

(
ω,

n−1∑
k=0

tk

)
≥ 0.

Since

Up

(
ω,

n−1∑
k=0

tk

)
=

n−1∑
k=0

Ûp ◦ τ̂k(ω, t), Ûp(ω, t) := Up(ω, t0),

by integrating with respect to µ̂, we obtain

0 ≤
∫

inf
p≥q

Ŝn,p dµ̂ ≤ inf
p≥q

∫
Ŝn,p(ω, t) dµ̂ ≤ n

∫ [
L− L̄+

1

q

]
dµ.

By Lebesgue’s monotone convergence theorem, as q → +∞, we have∫ [
n(L̂− L̄)− U

(
ω,

n−1∑
k=0

tk

)]
dµ̂ ≤

∫
n[L− L̄] dµ and

∫
U
(
ω,

n−1∑
k=0

tk

)
µ̂(dω, dt) ≥ 0.

Part 2. We next show that Φ is calibrated. We have already noticed that Φ satisfies
the subadditive cocycle property, Φ ≤ L − L̄, Φ(ω, 0) ≥ 0, and Φ(ω, t) is finite
everywhere. Moreover, Φ(ω, t) ≥ U(ω, t) and the second property of definition 18
follows from part 1.

Part 3. We show that Φ is upper semi-continuous. Define

∀ ω ∈ Ω, ∀ n ≥ 1, Φn(ω, t) := inf{Eω(x0, . . . , xn) : x0 = 0, xn = t}.

Then Φ = infn≥1(Φn− nĒ) is upper semi-continuous if we prove that Φn is continu-
ous. Let D > 0, c0 := infω,x,y Eω(x, y) and KD := supω∈Ω, ‖t‖≤D Eω(0, . . . , 0, t). By
coercivity, there exists RD > 0 such that

∀x, y ∈ Rd, ‖y − x‖ > RD ⇒ ∀ω ∈ Ω, Eω(x, y) > KD − (n− 1)c0.

Choose ω, x0, . . . , xn such that Eω(x0, . . . , xn) ≤ KD. Then, for every 0 ≤ k < n,

KD ≥ Eω(x0, . . . , xn) ≥ (n− 1)c0 + Eω(xk, xk+1) ⇒ ‖xk+1 − xk‖ ≤ RD.

We have proved that the infimum in the definition of Φn(ω, t), when ω ∈ Ω and
‖t‖ ≤ D, can be realized over ‖xk‖ ≤ kRD, ∀ 0 ≤ k ≤ n. By the uniform continuity
of Eω(x0, . . . , xn) on the product space Ω × Πk{‖xk‖ ≤ kR}, we obtain that Φn is
continuous on Ω× {‖t‖ ≤ D}.
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Part 4. Let µ be a minimizing measure with Markov extension µ̂. We show that every
(ω, t) in the support of µ̂ is calibrated. Let

Σ̂ :=
{

(ω, t) ∈ Ω× (Rd)N : ∀n ≥ 1, Φ
(
ω,

n−1∑
k=0

tk

)
≥
n−1∑
k=0

[
L− L̄

]
◦ τ̂k(ω, t)

}
.

The set Σ̂ is closed, since Φ is upper semi-continuous. By lemma 19, Σ̂ has full µ̂-
measure and therefore contains supp(µ̂). Hence, the proposition is proved thanks to
the subadditive cocycle property of Φ and the τ̂ -invariance of supp(µ̂). �

Lemma 21. Let (Ω, {τt}t∈Rd , L) be an almost periodic interaction model.

1. If L is coercive, then Mmin(L) 6= ∅ and Mather(L) = supp(µ) for some µ ∈
Mmin(L). In particular, the Mather set is closed.

2. If L is superlinear, the Mather set is compact.

Proof of lemma 21. Item 1. The existence of minimizing measures is actually part of
item 1 of proposition 13. Thus, let {Vi}i∈N be a countable basis of the topology of
Ω× Rd and let

I := {i ∈ N : Vi ∩ supp(ν) 6= ∅ for some ν ∈Mmin(L)}.
We reindex I = {i1, i2, . . .} and choose for every k ≥ 1 a minimizing measure µk so
that Vik ∩ supp(µk) 6= ∅ or equivalently µk(Vik) > 0. Let µ :=

∑
k≥1

1
2k
µk. Then µ

is minimizing. Suppose some Vi is disjoint from the support of µ. Then µ(Vi) = 0
and, for every k ≥ 1, µk(Vi) = 0. Suppose by contradiction that Vi ∩ supp(ν) 6= ∅ for
some ν ∈Mmin(L), then i = ik for some k ≥ 1 and, by the choice of µk, µk(Vi) > 0,
which is not possible. Therefore, Vi is disjoint from the Mather set and we have just
proved Mather(L) ⊆ supp(µ) or Mather(L) = supp(µ).

Item 2. We now assume that L is superlinear. From lemma 19, the Mañé sub-
additive cocycle is sublinear. There exists R > 0 such that

∀ω ∈ Ω, ∀ t ∈ Rd, |Φ(ω, t)| ≤ R(1 + ‖t‖).
By superlinearity, there exists B > 0 such that

∀ω ∈ Ω, ∀ t ∈ Rd, L(ω, t) ≥ 2R‖t‖ −B.
Let µ be a minimizing measure. Since Φ = L− L̄ µ a.e. (lemma 19), we obtain

‖t‖ ≤ (R+B + |L̄|)/R, µ(dω, dt) a.e.

We have proved that the support of every minimizing measure is compact. In partic-
ular, the Mather set is compact. �

Proof of theorem 8. We show that, for every environment ω in the projected Mather
set, there exists a calibrated configuration for Eω passing through the origin. Let µ
be a minimizing measure such that supp(µ) = Mather(L). Let µ̂ denote its Markov
extension. For n ≥ 1, consider

Ω̂n :=
{

(ω, t) ∈ Ω× (Rd)N : Φ
(
ω,

2n−1∑
k=0

tk

)
≥

2n−1∑
k=0

[
L− L̄

]
◦ τ̂k(ω, t)

}
.

From proposition 20, supp(µ̂) ⊆ Ω̂n. From the upper semi-continuity of Φ, Ω̂n is
closed. To simplify the notations, for every t, we define a configuration (x0, x1, . . .)
by

x0 = 0, xk+1 = xk + tk so that τ̂k(ω, t) = (τxk(ω), (tk, tk+1, . . .)).
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Notice that, if (ω, t) ∈ Ω̂n, thanks to the subadditive cocycle property of Φ and
the fact that Φ ≤ L − L̄, the finite configuration (x0, . . . , x2n) is calibrated in the
environment ω, that is,

∀ 0 ≤ i < j ≤ 2n, Φ
(
τxi(ω),

j−1∑
k=i

tk

)
=

j−1∑
k=i

[
L− L̄

]
◦ τ̂k(ω, t),

or written using the family of interaction energies Eω,

∀ 0 ≤ i < j ≤ 2n, Sω(xi, xj) = Eω(xi, . . . , xj)− (j − i)Ē.

Thanks to the sublinearity of Sω, there exists a constant R > 0 such that, uniformly
in ω ∈ Ω and x, y ∈ Rd, we have |Sω(x, y)| ≤ R(1 + ‖y − x‖). Besides, thanks
to the superlinearity of Eω, there exists a constant B > 0 such that Eω(x, y) ≥
2R‖y − x‖ − B. Since Sω(xk, xk+1) = Eω(xk, xk+1) − Ē, we thus obtain a uniform
upper bound D := (R+B + |Ē|)/R on the jumps of calibrated configurations:

∀ (ω, t) ∈ Ω̂n, ∀ 0 ≤ k < 2n, ‖xk+1 − xk‖ ≤ D.

Let Ω̂′n = τ̂n(Ω̂n). Thanks to the uniform bounds on the jumps, Ω̂′n is again closed.

Since µ̂(Ω̂n) = 1, µ̂(Ω̂′n) = 1 by invariance of τ̂ . Let ν := pr∗(µ) be the projected

measure on Ω. Then supp(ν) = pr(Mather(L)). By the definition of Ω̂′n, we have

p̂r(Ω̂′n) = {ω ∈ Ω : ∃ (x−n, . . . , xn) ∈ Rd s.t. x0 = 0 and

Sω(x−n, xn) ≥ Eω(x−n, . . . , xn)− 2nĒ}.

Again by the uniform boundness of the jumps, p̂r(Ω̂′n) is closed and has full ν-

measure. Thus, p̂r(Ω̂′n) ⊇ pr(Mather(L)). By a diagonal extraction procedure, we
obtain, for every ω ∈ Mather(L), a bi-infinite calibrated configuration with uniformly
bounded jumps passing through the origin. �

3. Aubry theory for weakly twist interactions

The one-dimensional Aubry theory is based of the strong form of the twist condi-
tion (4). The main consequence of this condition is that the set of infinite two-sided
minimizing configurations is well ordered. The weak form of the twist condition (14)
allows us to use anharmonic interactions. We extend in this section some proofs of the
Aubry theory for weakly twist Lagrangians. We show that minimizing finite config-
urations are strictly well ordered. The fact that there is no superposition of atoms is
new and more delicate to prove. We will use these results for the proof of theorem 12.

From now on, we consider almost periodic interaction models where L is sup-
posed to be weakly twist. The following lemma extends Aubry crossing lemma. It
enables to give restrictions on the combinatorics of minimizing configurations. In
particular, we will obtain they are ordered.

Lemma 22 (Aubry crossing lemma). Given ω ∈ Ω, if x0, x1, y0, y1 ∈ R satisfy (y0 −
x0)(y1 − x1) < 0, then[
Eω(x0, x1) + Eω(y0, y1)

]
−
[
Eω(x0, y1) + Eω(y0, x1)

]
= α(y0 − x0)(y1 − x1) > 0,

where α = 1
(y0−x0)(y1−x1)

∫ y0

x0

∫ y1

x1

∂2Eω
∂x∂y (x, y) dydx < 0.
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The proof is similar to the standard Aubry crossing lemma [2] and is left to the
reader. We start showing that strictly monotone finite configurations minimize the
energy.

Lemma 23. Let ω ∈ Ω. For n ≥ 2, let x0, . . . , xn ∈ R be a nonmonotone sequence
(that is, a sequence which does not satisfy x0 ≤ . . . ≤ xn nor x0 ≥ . . . ≥ xn).

1. If x0 = xn, then Eω(x0, . . . , xn) >
∑n−1
i=0 Eω(xi, xi).

2. If x0 6= xn, then there exists a subset {i0, i1, . . . , ir} of {0, . . . , n}, with i0 = 0
and ir = n, such that (xi0 , xi1 , . . . , xir ) is strictly monotone and

Eω(x0, . . . , xn) > Eω(xi0 , . . . , xir ) +
∑

i6∈{i0,...,ir}

Eω(xi, xi).

(Note that it may happen that xi = xj for i 6∈ {i0, . . . , ir} and j ∈ {i0, . . . , ir}.)

Proof. We prove the lemma by induction.
Let x0, x1, x2 ∈ R be a nonmonotone sequence. If x0 = x2, then Eω(x0, x1, x2) >

Eω(x0, x0) + Eω(x1, x1). If x0 6= x2 then x0, x1, x2 are three distinct points. Thus,
x0 < x1 implies x2 < x1 and x1 < x0 implies x1 < x2. In both cases, lemma 22 tells
us that

Eω(x0, x1) + Eω(x1, x2) > Eω(x0, x2) + Eω(x1, x1).

Let (x0, . . . , xn+1) be a nonmonotone sequence. We have two cases: either x0 ≤
xn or x0 ≥ xn. We shall only give the proof for the case x0 ≤ xn.

Case x0 = xn. Then (x0, . . . , xn) is nonmonotone and by induction

Eω(x0, . . . , xn+1) > Eω(xn, xn+1) +

n−1∑
i=0

Eω(xi, xi)

= Eω(x0, xn+1) +

n∑
i=1

Eω(xi, xi).

The conclusion holds whether xn+1 = x0 or not.
Case x0 < xn. Whether (x0, . . . , xn) is monotone or not, we may choose a subset

of indices {i0, . . . , ir} such that i0 = 0, ir = n, xi0 < xi1 < . . . < xir and

Eω(x0, . . . , xn+1) ≥
(
Eω(xi0 , . . . , xir ) +

∑
i 6∈{i0,...,ir}

Eω(xi, xi)
)

+ Eω(xn, xn+1).

If xn ≤ xn+1, then (x0, . . . , xn) is necessarily nonmonotone and the previous
inequality is strict. If xn = xn+1, the lemma is proved by modifying ir = n + 1. If
xn < xn+1, the lemma is proved by choosing r + 1 indices and ir+1 = n+ 1.

If xn+1 < xn = xir , by applying lemma 22, one obtains

Eω(xir−1 , xir ) + Eω(xn, xn+1) > Eω(xn, xir ) + Eω(xir−1 , xn+1),

Eω(x0, . . . , xn+1) > Eω(xi0 , . . . , xir−1
, xn+1) +

[ ∑
i 6∈{i0,...,ir}

Eω(xi, xi)
]

+ Eω(xn, xn).

If xir−1
< xn+1, the lemma is proved by changing ir = n to ir = n+1. If xir−1

= xn+1,
the lemma is proved by choosing r− 1 indices and ir−1 = n+ 1. If xn+1 < xir−1 , we
apply again lemma 22 until there exists a largest s ∈ {0, . . . , r} such that xs < xn+1
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or xn+1 ≤ x0. In the former case, the lemma is proved by choosing s+ 1 indices and
by modifying is+1 = n+1. In the latter case, namely, when xn+1 ≤ x0 < xn, we have

Eω(x0, . . . , xn+1) > Eω(x0, xn+1) +

n∑
i=1

Eω(xi, xi)

and the lemma is proved whether xn+1 = x0 or xn+1 < x0. �

As a consequence, note that it is enough to minimize over strictly monotone
configurations, unless t = 0, in the definition 17 of the Mañé subadditive cocycle
Φ(ω, t).

Proposition 24. The Mañé subadditive cocycle Φ(ω, t) satisfies, for every ω ∈ Ω,
– if t = 0, Φ(ω, 0) = Eω(0, 0)− Ē,
– if t > 0, Φ(ω, t) = infn≥1 inf0=x0<x1<...<xn=t[Eω(x0, . . . , xn)− nĒ],
– if t < 0, Φ(ω, t) = infn≥1 inf0=x0>x1>...>xn=t[Eω(x0, . . . , xn)− nĒ].

Proof. Lemma 23 tells us that we can minimize the energy of Eω(x0, . . . , xn) − nĒ
by the sum of two terms:
– either xn = x0, then

Eω(x0, . . . , xn)− nĒ ≥
[
Eω(x0, x0)− Ē

]
+

∑
i/∈{0,n}

[
Eω(xi, xi)− Ē

]
;

– or xn 6= x0, then for some (xi0 , . . . , xir ) strictly monotone, with i0 = 0 and ir = n,

Eω(x0, . . . , xn)− nĒ ≥
[
Eω(xi0 , . . . , xir )− rĒ

]
+

∑
i6∈{i0,...,ir}

[
Eω(xi, xi)− Ē

]
.

We conclude the proof by noticing that Ē ≤ infx∈REω(x, x). �

The next lemma shows that minimizing finite configurations are strictly ordered.

Proposition 25. Let ω ∈ Ω. If (x0, . . . , xn) is a minimizing configuration for Eω such
that xi is strictly between x0 and xn for every 0 < i < n − 1, then (x0, . . . , xn) is
strictly monotone.

Proof. Let (x0, . . . , xn) be such a minimizing sequence. We show, in part 1, it is
monotone, and, in part 2, it is strictly monotone.

Part 1. Assume by contradiction that (x0, . . . , xn) is not monotone. According
to lemma 23, one can find a subset of indices {i0, . . . , ir} of {0, . . . , n}, with i0 = 0
and ir = n, such that (xi0 , . . . , xir ) is strictly monotone and

Eω(x0, . . . , xn) > Eω(xi0 , . . . , xir ) +
∑

i6∈{i0,...,ir}

Eω(xi, xi).

We choose the largest integer r with the above property. Since (x0, . . . , xn) is not
monotone, we have necessarily r < n. Since (x0, . . . , xn) is minimizing, one can find
i 6∈ {i0, . . . , ir} such that xi 6∈ {xi0 , . . . , xir}. Let s be one of the indices of {0, . . . , r}
such that xi is between xis and xis+1 . Then, by lemma 22,

Eω(xis , xis+1
) + Eω(xi, xi) > Eω(xis , xi) + Eω(xi, xis+1

).

We have just contradicted the maximality of r. Therefore, (x0, . . . , xn) must be mono-
tone.

Part 2. Assume by contradiction that (x0, . . . , xn) is not strictly monotone.
Then (x0, . . . , xn) contains a subsequence of the form (xi−1, xi, . . . , xi+r, xi+r+1) with
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r ≥ 1 and xi−1 6= xi = . . . = xi+r 6= xi+r+1. To simplify the proof, we assume
xi−1 < xi+r+1. We want to built a configuration (x′i−1, x

′
i, . . . , x

′
i+r, x

′
i+r+1) so that

x′i−1 = xi−1, x′i+r+1 = xi+r+1 and

Eω(xi−1, xi, . . . , xi+r, xi+r+1) > Eω(x′i−1, x
′
i, . . . , x

′
i+r, x

′
i+r+1).

Indeed, since (xi−1, . . . , xi+r+1) is minimizing, we have

Eω(xi−1, . . . , xi+r+1) = Eω(xi−1, xi + ε, xi+1 − ε, . . . , xi+r − ε, xi+r+1) + o(ε2).

Let

α =
1

xi − xi−1

∫ xi

xi−1

∂2Eω
∂x∂y

(x, xi) dx < 0,

β =
1

xi+r+1 − xi+r

∫ xi+r+1

xi+r

∂2Eω
∂x∂y

(xi+r, y) dy < 0.

By Aubry crossing lemma,

Eω(xi−1, xi + ε) + Eω(xi + ε, xi+1 − ε)
= Eω(xi−1, xi+1 − ε) + Eω(xi + ε, xi + ε)− 2ε(xi − xi−1)α+ o(ε).

Since xi = xi+r, obviously Eω(xi+ε, xi+ε) = Eω(xi+r+ε, xi+r+ε). Again by Aubry
crossing lemma,

Eω(xi+r + ε, xi+r + ε) + Eω(xi+r − ε, xi+r+1)

= Eω(xi+r − ε, xi+r + ε) + Eω(xi+r + ε, xi+r+1)− 2ε(xi+r+1 − xi+r)β + o(ε).

Then, for ε small enough, we have

Eω(xi−1, . . . , xi+r+1) > Eω(xi−1, xi − ε, . . . , xi−r−1 − ε, xi+r + ε, xi+r+1),

which contradicts that (xi−1, . . . , xi+r+1) is minimizing. We have thus proved that
(x0, . . . , xn) is strictly monotone. �

4. Locally constant Lagrangians and quasicrystals

We present in the first subsection a general framework that includes example 4 and
naturally appears in the context of quasicrystals and strongly pattern equivariant
functions. In the second subsection, we recall the construction of Kakutani-Rohlin
towers, transverse measures and homology matrices for uniquely ergodic R-actions,
which will be useful to prove theorem 12.

4.1. One-dimensional quasicrystals

Our purpose in this section is to provide a rich variety of examples of almost crys-
talline interaction models (definition 11). The two main concepts are: the hull of a
quasicrystal and a strongly equivariant function (see [4, 18, 19] for a deeper under-
standing of these notions).

We first recall the definition of a quasicrystal (see [12]). Let ω ⊂ R be a discrete

subset of R. A ρ-patch, or a pattern for short, is a finite set P of the form ω∩Bρ(x) for
some x ∈ ω and some constant ρ > 0, where Bρ(x) denotes the open ball of radius ρ

centered in x. We say that y ∈ ω is an occurrence of P if ω ∩ Bρ(y) is equal to P up
to a translation. A quasicrystal is a discrete set ω ⊂ R satisfying

– finite local complexity: for any ρ > 0, ω has just a finite number of ρ-patches up
to translations;
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– repetitivity: for all ρ > 0, there exists M(ρ) > 0 such that any closed ball of
radius M(ρ) contains at least one occurrence of every ρ-patch of ω;

– uniform pattern distribution: for any pattern P of ω, uniformly in x ∈ R, the
following positive limit exists

lim
r→+∞

# ({y ∈ R : y is an occurrence of P} ∩Br(x))

Leb(Br(x))
= ν(P) > 0.

We notice that the finite local complexity is equivalent to the fact that the
intersection of the difference set ω − ω with any bounded set is finite. The set of
quasicrystals can be equipped with an R-action: τt(ω) := ω − t, for every t ∈ R, by
translating every point in ω by t. A quasicrystal is said to be aperiodic if τt(ω) = ω
implies t = 0, and periodic otherwise. The lattice Z or the Beatty sequence ω(α) =
{k ∈ Z : bkαc − b(k − 1)αc = 1}, α ∈ (0, 1), are basic examples of one-dimensional
quasicrystals. When α is irrational (as in example 4), ω(α) is an aperiodic quasicrystal
for which the repetitivity and the uniform pattern distribution are obtained thanks
to the minimality and the unique ergodicity of an irrational rotation on the circle.
For details, we refer to [19].

The first non trivial concept we need is given by the hull of a quasicrystal.
Given a quasicrystal ω∗ ⊂ R, we equip the set Ω̃(ω∗) := {τt(ω∗) : t ∈ R} of all
the translations of ω∗ with the Gromov-Hausdorff topology. Roughly speaking, two
quasicrystals in this set are close if and only if they have the same pattern, up to
a small translation, in a large neighborhood of the origin. More precisely, we define
a metric as follows (for details, see [4, 17]): the distance between two translations

ω, ω ∈ Ω̃(ω∗) is the real number

dist(ω, ω) := inf
{ 1

r + 1
: ∃ |t|, |t| < 1

r
s.t. (ω + t) ∩Br(0) = (ω + t) ∩Br(0)

}
.

The Gromov-Hausdorff topology is equivalent to the topology given by this distance.
We call hull Ω(ω∗) of the quasicrystal ω∗ the completion of Ω̃(ω∗). The finite local
complexity hypothesis implies that Ω(ω∗) is a compact metric space. Each element
ω ∈ Ω(ω∗) is a quasicrystal with the same patterns as ω∗ up to translations. Each
map τt : Ω(ω∗)→ Ω(ω∗) is a homeomorphism. The orbit of ω∗ is by definition dense
in Ω(ω∗). The repetitivity hypothesis is actually equivalent to the minimality of the
R-action τt. The uniform pattern distribution is equivalent to the unique ergodicity
of τt (the R-action has a unique invariant probability measure). We refer to [18, 4]
for a more detailed analysis. We summarize these facts in the following proposition.

Proposition 26 ([18, 4]). Let ω∗ be a quasicrystal of R. Then the dynamical system
(Ω(ω∗), {τt}t∈R) is minimal and uniquely ergodic.

We call canonical transversal Ξ0(ω∗) of the hull Ω(ω∗) the set of quasicrystals
ω in Ω(ω∗) such that the origin 0 belongs to ω. A basis of the topology on Ξ0(ω∗)
is given by cylinder sets Ξω,ρ with ω ∈ Ξ0(ω∗) and ρ > 0. In general, that is, for
every ω ∈ Ω(ω∗) and ρ > 0 such that ω ∩Bρ(0) 6= ∅, a transverse cylinder set Ξω,ρ is
defined by

Ξω,ρ := {ω ∈ Ω(ω∗) : ω ∩Bρ(0) = ω ∩Bρ(0)}.
If ω ∈ Ξ0(ω∗), then Ξω,ρ ⊂ Ξ0(ω∗).

The designation of transversal comes from the obvious fact that the set Ξ0(ω∗)
is transverse to the action: for any real t small enough, we have τt(ω) 6∈ Ξ0(ω∗) for
any ω ∈ Ξ0(ω∗). This gives a Poincaré section.



20 Eduardo Garibaldi1, Samuel Petite2 and Philippe Thieullen3

Proposition 27 ([18]). The canonical transversal Ξ0(ω∗) and the transverse cylinder
sets Ξω,ρ associated with an aperiodic quasicrystal ω∗ are Cantor sets. If ω∗ is a
periodic quasicrystal, these sets are finite.

This allows us to give a more dynamical description of the hull in one dimension
by considering the return time function Θ : Ξ0(ω∗)→ R+ defined by

Θ(ω) := inf{t > 0 : τt(ω) ∈ Ξ0(ω∗)}, ∀ω ∈ Ξ0(ω∗).

The finite local complexity implies that this function is locally constant. The first
return map T : Ξ0(ω∗)→ Ξ0(ω∗) is then given by

T (ω) := τΘ(ω)(ω), ∀ω ∈ Ξ0(ω∗).

Remark that the unique invariant probability measure on Ω(ω∗) induces a finite
measure on Ξ0(ω∗) that is T -invariant (see [12]).

It is straightforward to check that the dynamical system (Ω(ω∗), {τt}t∈R) is
conjugate to the suspension of the map T on the set Ξ0(ω∗) with the time map given
by the function Θ. Thus, when ω∗ is periodic, the hull Ω(ω∗) is homeomorphic to a
circle. Otherwise, Ω(ω∗) has a laminated structure: it is locally the Cartesian product
of a Cantor set by an interval.

Transverse cylinder sets are base construction pieces of the notion of flow boxes
introduced in definition 9. In the aperiodic case, if ω ∈ Ω(ω∗), r > 0, and ρ is large
enough, the set

Uω,ρ,r := {ω − t : t ∈ Br(0), ω ∈ Ξω,ρ}
is open and homeomorphic to Br(0)×Ξω,ρ by the map (t, ω)→ τt(ω) = ω− t. Their
collection forms a basis of the topology of Ω(ω∗). The set Uω,ρ,r is called a flow box
of basis Ξω,ρ. The following lemma shows that these flow boxes are admissible and
therefore form a flow box decomposition (definition 9).

Lemma 28 ([4]). Let ω∗ be an aperiodic quasicrystal. Let Ui := Uωi,ρi,ri , i = 1, 2, be
two flow boxes such that U1 ∩ U2 6= ∅. Then there exists a real number a ∈ R such
that, for every ωi ∈ Ξωi,ρi , for every |ti| < ri, i = 1, 2,

ω1 − t1 = ω2 − t2 =⇒ t2 = t1 − a.

The second non trivial concept we need is the notion of strongly equivariant
function as introduced in [17]. Let ω∗ be a quasicrystal. We recall that a potential
Vω∗ : R → R is said to be strongly ω∗-equivariant if there exists a constant R > 0
(called the interaction range) such that

Vω∗(x) = Vω∗(y), ∀ x, y ∈ R with (BR(x) ∩ ω∗)− x = (BR(y) ∩ ω∗)− y.

Of course any periodic potential is strongly equivariant with respect to a discrete
lattice of periods. In example 4, the function Vω(α) is strongly ω(α)-equivariant with

range R = b 1
αc + 1. Let us mention another example from [17], which holds for any

quasicrystal ω∗. Let δ :=
∑
x∈ω∗ δx be the Dirac comb supported on the points of a

quasicrystal ω∗ and let g : R→ R be a smooth function with compact support. Then,
one may check that the convolution product δ ∗g is a smooth strongly ω∗-equivariant
function. Actually, any strongly ω-equivariant function can be defined by a similar
procedure [17].

We recall in the following lemma that a strongly ω∗-equivariant function always
arises from a global function defined on the space Ω(ω∗).



Calibrated configurations for Frenkel-Kontorova type models in almost-periodic environments21

Lemma 29 ([12, 17]). Let ω∗ be a quasicrystal and Vω∗ : R → R be a continuous
strongly ω∗-equivariant function with range R. Then, there exists a unique continuous
function V : Ω(ω∗)→ R such that

Vω∗(x) = V ◦ τx(ω∗), ∀x ∈ R.

Besides, V is constant on transverse cylinder sets Ξω,R+S, with ω ∈ Ω(ω∗) and S ≥ 0.
If Vω∗ is C2, then V is C2 along the flow: x ∈ R 7→ V (τx(ω)) is C2, ∀ ω.

The global function given by lemma 29 satisfies the locally transversally constant
property that is at the origin of definition 10. We indeed observe on each flow box
Uω,R+S,S

V (τx(ω)) = V (τx(ω′)) , ∀ |x| < S, ∀ω, ω′ ∈ Ξω,R+S ,

thanks to the fact that τx(ω′) ∈ Ξτx(ω),R whenever ω, ω′ ∈ Ξω,R+S and |x| < S. More
generally, we introduce the following definition.

Definition 30. Let (Ω, {τt}t∈R, L) be an almost periodic interaction model. A function
V : Ω → R is said to be locally transversally constant with respect to a flow box
decomposition {Ui}i∈I , where Ui = τ(BRi × Ξi), if

∀ i ∈ I, ∀ω, ω′ ∈ Ξi, ∀ |x| < Ri, V (τx(ω)) = V (τx(ω′)).

The examples 3 and 4 are of the form

L(ω, t) = W (t) + V1(ω) + V2(τt(ω)) (18)

with locally transversally constant functions V1 and V2. The next lemma shows that
such a Lagrangian L is locally transversally constant as in definition 10.

Lemma 31. Let (Ω, {τt}t∈R, L) be an almost periodic interaction model admitting a
flow box decomposition. Let V1, V2 : Ω → R be two locally transversally constant
functions on the same flow box decomposition, and W = R → R be any function.
Define L(ω, t) = W (t) + V1(ω) + V2(τt(ω)). Then L is locally transversally constant.

Proof. Assume V1 and V2 are locally transversally constant on a flow box decom-
position {Ui}i∈I . Let τ(BR × Ξ) be a flow box which is compatible with respect to
{Ui}i∈I . If |x|, |y| < R and ω, ω′ ∈ Ξ, then

Eω(x, y) = W (y − x) + V1,ω(x) + V2,ω(y).

There exist i ∈ I, |ti| < Ri and Ξ̃i a clopen subset of Ξi such that τx(Ξ) = τti(Ξ̃i).

Then τx(ω) = τti(ωi) and τx(ω′) = τti(ω
′
i) for some ωi, ω

′
i ∈ Ξ̃i. We have

V1,ω(x) = V1,ωi(ti) = V1,ω′i
(ti) = V1,ω′(x).

Similarly V2,ω(y) = V2,ω′(y). We have thus proved Eω′(x, y) = Eω(x, y). �

We conclude this section by describing a family of quasicrystalline interaction
models (Ω, {τt}t∈R, L) for which the conclusions of Theorem 12 hold. We say that a
C2 function W : R→ R is superlinear and weakly convex if

W ′′ > 0 a.e. and lim
|t|→+∞

|W ′(t)| = +∞. (19)
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Corollary 32. Let ω∗ be a quasicrystal, V1∗, V2∗ : R → R be two C2 strongly ω∗-
equivariant functions, and W : R → R be a C2 superlinear, weakly convex function.
Let Ω(ω∗) be the hull of ω∗ and {τt}t∈R be the canonical R-action on Ω(ω∗). Let
V1, V2 : Ω(ω∗)→ R be the extension of V1∗, V2∗ as explained in lemma 29. Define

L(ω, t) = W (t) + V1(ω) + V2(τt(ω)).

Then (Ω, {τt}t∈R, L) is an almost crystalline interaction model.

4.2. Kakutani-Rohlin tower description

Flow boxes are open sets obtained by taking the union of every orbits of size R start-
ing from any point belonging to a closed transverse Poincaré section. The restricted
topology on a transverse section must be special: it must admit a basis of clopen sets.
We recall in lemma 35 how to construct a suspension with locally constant return
maps called Kakutani-Rohlin tower. When the flow is uniquely ergodic, we describe
in the lemmas 36 and 37 how this Kakutani-Rohlin tower enables to characterize the
unique transverse measure associated with each transverse section.

We gather in the following lemma basic results about flow boxes. We leave the
proof of the lemma to the reader.

Lemma 33. Let (Ω, {τt}t∈R) be a minimal R-action. Assume that the action is not
periodic (t ∈ R 7→ τt(ω) ∈ Ω is injective for every ω ∈ Ω). Then

1. If τ(BR ×Ξ) is a flow box, then there exists R′ ≥ R such that Ω = τ(BR′ ×Ξ).
2. If τ(BR×Ξ) is a flow box, then τ : R×Ξ→ Ω is open and τ(BR×Ξ′) is again

a flow box for every clopen subset Ξ′ ⊂ Ξ.
3. If τ(BR × Ξ) is a flow box, then, for every R′ > 0 and ω ∈ Ξ, there exists a

clopen set Ξ′ ⊂ Ξ containing ω such that τ(BR′ × Ξ′) is again a flow box.
4. If τ(B2R+2R′ ×Ξ) and τ(B2R+2R′ ×Ξ′) are flow boxes, and U = τ(BR×Ξ) and

U ′ = τ(BR′ × Ξ′) are admissible flow boxes, then

U ∩ U ′ = τ(B̃ × Ξ̃) = τ(B̃′ × Ξ̃′)

for some clopen sets Ξ̃, Ξ̃′ and some open convex subsets B̃ ⊂ BR, B̃′ ⊂ BR′ .
5. If {Ui}i∈I is a flow box decomposition, then, for every ω ∈ Ω and R > 0, there

exits a flow box τ(BR × Ξ), with a transverse section Ξ containing ω, that is
compatible with respect to {Ui}i∈I .

The existence of a flow box decomposition enables us to build a global transverse
section of the flow with locally constant return times.

Definition 34. Let (Ω, {τt}t∈R) be a one-dimensional minimal R-action possessing a
flow box decomposition {Ui}i∈I . We call Kakutani-Rohlin tower a partition {Fα}α∈A
of Ω of the form

Fα = τ
(
[0, Hα)× Σα

)
= ∪0≤t<Hατt(Σα)

for some some height Hα > 0 and some transverse section Σα (closed set admitting a
basis of clopen subsets), where τ

(
(0, Hα)×Σα

)
is a flow box (open and homeomorphic

to (0, Hα)×Σα), and ∪α∈Aτ({Hα}×Σα) = ∪α∈Aτ({0}×Σα) = ∪α∈AΣα. Moreover,
we say that a Kakutani-Rohlin tower is compatible with respect to {Ui}i∈I if, for every

α ∈ A, there exist i ∈ I, ti ∈ R and a clopen subset Ξ̃i ⊂ Ξi such that Σα = τti(Ξ̃i)
and [ti, ti +Hα) ⊂ [−Ri, Ri).

The proof of the existence of a Kakutani-Rohlin tower for one-dimensional min-
imal R-actions is similar to the construction given in [12] for quasicrystals.
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Lemma 35. Let (Ω, {τt}t∈R) be a one-dimensional minimal R-action possessing a
flow box decomposition {Ui}i∈I . Then there exists a Kakutani-Rohlin tower {Fα}α∈A
which is compatible with respect to {Ui}i∈I .

The existence of a Kakutani-Rohlin tower enables us to build a global transverse
section ∪α∈AΣα with a return time constant on each Σα and equal to Hα. The
induction of the R-action on a particular section Σα0 gives a second Kakutani-Rohlin
tower with larger heights. We explain in the next paragraph the notations that will
be used for these successive towers.

If {F 0
α}α∈A0 is a Kakutani-Rohlin tower of order 0, denote F 0

α := τ
(
[0, H0

α) ×
Σ0
α

)
. We say that Σ0 := ∪αΣ0

α is the basis of the tower. Let ω∗ be a reference point

of the base Σ0. Consider α0 such that ω∗ ∈ Σ0
α0

. The construction of the tower of

order 1 is done by inducing the flow on Σ1 := Σ0
α0

. We obtain a partition of Σ1 given

by {Σ1
β}β∈A1 , where β = (α0, . . . , αp), p ≥ 1, αp = α0, αi 6= α0 for i = 1, . . . , p− 1,

Σ1
β = Σ0

α0
∩ τ−1

H0
α0

(Σ0
α1

) ∩ . . . ∩ τ−1
H0
α0

+...+H0
αp−1

(Σ0
αp).

By minimality, there is a finite collection of such nonempty sets Σ1
β . Define then

H1
β := H0

α0
+ . . .+H0

αp−1
,

F 1
β := τ

(
[0, H1

β)× Σ1
β

)
=

p−1⋃
i=0

τ
(
[ti, ti +H0

αi)× Σ0
αi

)
, with ti =

i−1∑
j=0

H0
αj . (20)

We have just obtained a new Kakutani-Rohlin tower {F 1
β}β∈A1 of basis Σ0

α0
. We

induce again on the section Σ1
β0

that contains ω∗ and build the tower of order 2. We

shall write {F lα}α∈Al for the successive towers that are built using this procedure and
F l∗ for the tower of height H l

∗ whose basis Σl∗ contains ω∗ . The preceding construction
gives minα∈Al+1 H l+1

α ≥ H l
∗ and in particular H l+1

∗ ≥ H l
∗. It may happen that

H l
∗ = H l+1

∗ = H l+2
∗ = . . . In that case, the flow is a suspension over Σl∗ of constant

return time H l
∗ (and Ω is isomorphic to Σl∗×S1). In order to exclude this situation, we

split the basis Σlα0
which contains ω∗ into two disjoint clopen sets Σlα0

= Σlα′0
∪Σlα′′0

.

We obtain again a Kakutani-Rohlin tower and we induce as before on the subset
which contains ω∗. If (Ω, {τt}t∈R) is not periodic, we may choose the splitting so that
H l+1
∗ > H l

∗ at each step of the construction.
We assume that the flow (Ω, {τt}t∈R) is uniquely ergodic. Let λ be the unique

ergodic invariant probability measure. The average frequency of return times to a
transverse section of a flow box measures the thickness of the section. The next lemma
gives a precise definition of a family of transverse measures {νΞ}Ξ parameterized by
every transverse section Ξ. The proof is standard and we leave it to the reader.

Lemma 36. Let (Ω, {τt}t∈R) be a minimal and uniquely ergodic R-action admitting a
flow bx decomposition. For every transverse section Ξ, the set of return times to Ξ is
given by

RΞ(ω) := {t ∈ R : τt(ω) ∈ Ξ}, ∀ω ∈ Ω.

Then, for every nonempty clopen set Ξ′ ⊂ Ξ, the following limit exists uniformly with
respect to ω ∈ Ω and is positive:

νΞ(Ξ′) := lim
T→+∞

#(RΞ′(ω) ∩BT )

Leb(BT )
> 0.



24 Eduardo Garibaldi1, Samuel Petite2 and Philippe Thieullen3

Moreover, νΞ extends to a σ-finite measure on Ξ of finite mass, called transverse
measure to Ξ, and, for every flow box U = τ(BR × Ξ),

λ(τ(B′ × Ξ′)) = Leb(B′)νΞ(Ξ′), for all Borel sets B′ ⊂ BR, Ξ′ ⊂ Ξ.

Let {F lα}α∈Al be a tower of order l and {F l+1
β }β∈Al+1 be the subsequent tower

as introduced in (20). The homology matrix explained in lemma 2.7 of [12] may be
here similarly defined. Indeed, for every α ∈ Al and β ∈ Al+1, β = (α0, . . . , αp),
α0 = αp, αi 6= α0 for i = 1, . . . , p− 1, we denote

M l
α,β := #{0 ≤ k ≤ p− 1 : αk = α}.

A flow box of order l+ 1, τ
(
[0, H l+1

β )×Σl+1
β

)
, is obtained as a disjoint union of flow

boxes of order l of the type τ
(
[ti, ti + H l

αi) × Σlαi
)
. The integer M l

α,β counts the
number of times a flow box of order l + 1 indexed by β cuts a flow box of order l
indexed by α. The main result that we shall need is given by the following lemma.

Lemma 37. Let (Ω, {τt}t∈R) be a minimal and uniquely ergodic R-action. Let {F lα}α∈Al
be a sequence of Kakutani-Rohlin towers built as in (20). Let νl be the transverse
measure associated with the transverse section ∪α∈AlΣlα. If νlα := νl(Σlα), then

νlα =
∑

β∈Al+1

M l
α,βν

l+1
β .

Proof. Let Ξ = ∪β∈Al+1Σl+1
β . For ω ∈ Ξ, let 0 = t0, t1, t2, . . . be its successive return

times to Ξ. We introduce as in lemma 36 the set of return times to the transverse
section Σlα, say, Rlα(ω) := {t ∈ R : τt(ω) ∈ Σlα}. The set Rl+1

β (ω) is defined similarly.
Since

#
(
Rlα(ω) ∩ [0, tn)

)
=

∑
β∈Al+1

M l
α,β #

(
Rl+1
β (ω) ∩ [0, tn)

)
,

we divide by tn and apply lemma 36 to conclude. �

5. Almost crystalline interaction models

This section is devoted to the proof of the second main result of this paper, theo-
rem 12. By recalling definition 11, we consider a one-dimensional almost crystalline
interaction model (Ω, {τt}t∈R, L). By hypothesis, L is transversally constant with
respect to a flow box decomposition {Ui = τ(BRi × Ξi)}i∈I .

If for some ω ∈ Ω and x ∈ R, Eω(x, x) = Ē, then δ(τx(ω),0) ∈ Mmin(L), τx(ω)
belongs to the projected Mather set, and the configuration xk,ω = x fulfills the two
items of theorem 12. We thus assume from now on

∀ ω ∈ Ω, ∀x ∈ R, Eω(x, x) > Ē.

We first prove in proposition 39 that a finite configuration (xn0 , . . . , x
n
n) which

realizes the minimum of the energy among all configurations of the same length must
be strictly monotone and must have bounded jumps, |xnk − xnk−1| ≤ R, uniformly

in n. We next prove in proposition 42 that lim infn→+∞
1
n |x

n
n − xn0 | > 0. We finally

conclude this section with the proof of theorem 12.

Lemma 38. There exists R > 0 such that, if ω ∈ Ω, if (x0, . . . , xn) ∈ R is minimizing
for Eω and |xn − x0| ≥ R, then (x0, . . . , xn) is strictly monotone.



Calibrated configurations for Frenkel-Kontorova type models in almost-periodic environments25

Proof. Since {Ui}i∈I is a finite cover, we may choose R large enough so that every
orbit of size R meets every box entirely: for every ω, for every |y − x| ≥ R, for every
i ∈ I, there exists ti ∈ R such that (ti −Ri, ti +Ri) ⊂ [x, y] and τti(ω) ∈ Ξi.

We first show that there cannot exist r ≥ 0 and 0 < k < n− r such that

xk < xk−1, xk = . . . = xk+r and xk < xk+r+1.

Otherwise, Aubry crossing lemma implies that

Eω(xk−1, xk) + Eω(xk, xk+r+1) > Eω(xk−1, xk+r+1) + Eω(xk, xk).

We rewrite the configuration (x0, . . . , xk−1, xk+r+1, . . . , xn) as (y0, . . . , yn−r−1). Let
Ui be a flow box containing τxk(ω). There exists |s| < Ri and ω′ ∈ Ξi such that
τxk(ω) = τs(ω

′). By the choice of R, there exists t such that (t−Ri, t+Ri) ⊂ [x0, xn]
and τt(ω) ∈ Ξi. Let z0 = . . . = zr := t + s and 1 ≤ l ≤ n − r − 1 be such that
yl−1 < z0 ≤ yl. Using the fact that L is transversally constant on Ui, we have

Eω(xk, xk) = Eω′(s, s) = Eτt(ω)(s, s) = Eω(z0, z0).

By applying again Aubry crossing lemma, we obtain

Eω(yl−1, yl) + Eω(z0, z0) ≥ Eω(yl−1, z0) + Eω(z0, yl),

(possibly with a strict inequality if z0 < yl). We have just obtained a new configura-
tion (y0, . . . , yl−1, z0, . . . , zr, yl, . . . , yn−r−1) of n points with a strictly lower energy,
which contradicts the fact that (x0, . . . , xn) is minimizing.

Similarly, there cannot exist r ≥ 0 and 0 < k < n− r such that

xk > xk−1, xk = . . . = xk+r and xk > xk+r+1.

There cannot exist either a sub-configuration (xk−1, xk, . . . , xk+r, xk+r+1), r ≥ 1, of
the form xk−1 6= xk+r+1 and xk = . . . = xk+r strictly between xk−1 and xk+r+1

thanks to proposition 25. We are thus left to a configuration of the form

x0 = . . .= xr <. . .< xn−r′ = . . .= xn or x0 = . . .= xr >. . .> xn−r′ = . . .= xn

for some r, r′ ≥ 0.

Assume by contradiction that x0 = x1 (the case xn−1 = xn is done similarly).
Exactly as before, there exist Ui containing τx0

(ω), |s| < Ri and ω′ ∈ Ξi such
that τx0

(ω) = τs(ω
′), as well as there exists t ∈ R such that (t − Ri, t + Ri) ⊂

[min{x0, xn},max{x0, xn}] and τt(ω) ∈ Ξi. One can show in an analogous way
that, whenever z := t + s belongs to (min{xl−1, xl},max{xl−1, xl}] for 2 ≤ l ≤ n,
Eω(x0, x1, . . . , xn) ≥ Eω(x1, . . . , xl−1, z, xl, . . . , xn), with strict inequality if z <
max{xl−1, xl}. Since (x0, x1, . . . , xn) is a minimizing configuration, this implies that
z = max{xl−1, xl} 6∈ {x0, xn}, and (x1, . . . , xl−1, z, xl, . . . , xn) is a minimizing con-
figuration. The first part of this proof shows that this cannot happen.

The proof that (x0, . . . , xn) is strictly monotone is complete. �

Proposition 39. There exists R > 0 such that, for every ω ∈ Ω, n ≥ 2, and
(x0, . . . , xn) ∈ R, if

Eω(x0, . . . , xn) = min
(y0,...,yn)

Eω(y0, . . . , yn) and max
0≤k<l≤n

|xk − xl| ≥ R,

then (x0, . . . , xn) is strictly monotone and sup1≤k≤n |xk − xk−1| ≤ R.
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Proof. Consider ω ∈ Ω, n ≥ 2, and (x0, . . . , xn) realizing the minimum of the energy
among all configurations of length n in the environment ω.

Part 1. We show there exists R′ > 0 (independent of ω and n) such that
|x1 − x0| ≤ R′ and |x2 − x1| ≤ R′. Indeed, we have

Eω(x0, x1) ≤ Eω(x1, x1) and Eω(x0, x1, x2) ≤ Eω(x2, x2, x2),

which implies

Eω(x0, x1) ≤ sup
x∈R

Eω(x, x) and Eω(x1, x2) ≤ 2 sup
x∈R

Eω(x, x)− inf
x,y∈R

Eω(x, y).

The existence of R′ follows then from the coercivity of L, which is uniform with
respect to ω. Similarly, we have |xn−1 − xn−2| ≤ R′ and |xn − xn−1| ≤ R′.

Part 2. We show there exists R′′ > 0 such that, if (x0, . . . , xm) is strictly mono-
tone, then |xi − xi−1| ≤ R′′ for every 1 ≤ i ≤ m. We can find a collection of
transverse sections {Ξ′i}i∈I′ such that {U ′i = τ(B2R′ × Ξ′i)}i∈I′ is a flow box decom-
position, {τ(BR′ × Ξ′i)}i∈I′ is a covering of Ω, and L is transversally constant with
respect to {U ′i}i∈I′ . We choose R′′ > 0 large enough so that every orbit of length R′′

meets entirely each U ′i .
Let τ(BR′ × Ξ′i) be a flow box containing τx1(ω): there exist |s1| < R′ and

ω′ ∈ Ξ′i such that τx1
(ω) = τs1(ω′). From part 1, we deduce that U ′i contains

{τx0
(ω), τx1

(ω), τx2
(ω)}. Denote s0 := s1 + x0 − x1 and s2 := s1 + x2 − x1, so

that |s0|, |s2| < 2R′, τx0
(ω) = τs0(ω′) and τx2

(ω) = τs2(ω′). Assume by contra-
diction |xi − xi−1| > R′′. Then, there exists t ∈ R such that (t − 2R′, t + 2R′) ⊂
[min{xi−1, xi},max{xi−1, xi}] and τt(ω) ∈ Ξ′i. Let z0 = t + s0, z1 = t + s1 and
z2 = t+ s2. Notice that (xi−1, xi) and (z0, z1, z2) are ordered in the same way. As L
is transversally constant on U ′i , we obtain

Eω(x0, x1, x2) = Eω′(s0, s1, s2) = Eτt(ω)(s0, s1, s2) = Eω(z0, z1, z2).

Aubry crossing lemma applied twice gives

Eω(xi−1, xi) + Eω(z0, z1, z2) > Eω(xi−1, z1) + Eω(z0, xi) + Eω(z1, z2),

> Eω(xi−1, z1, xi) + Eω(z0, z2).

As L is transversally constant, Eω(z0, z2) = Eω(x0, x2) and we obtain

Eω(xi−1, xi) + Eω(x0, x1, x2) > Eω(xi−1, z1, xi) + Eω(x0, x2).

The configuration (x0, x2, . . . , xi−1, z1, xi, . . . , xm) has a strictly lower energy, which
contradicts the fact that (x0, . . . , xm) is minimizing. We obtain similarly that, if
(xm, . . . , xn) is strictly monotone, then |xi−1 − xi| ≤ R′′ for every m+ 1 ≤ i ≤ n.

Part 3. Let R′′′ be the constant given by lemma 38. Take R > 2R′′ + 4R′′′. If
|xn − x0| > R′′′, then (x0, . . . , xn) is strictly monotone by lemma 38 and the jumps
|xi − xi−1| are uniformly bounded by R′′. The proof is finished.

Assume by contradiction that |xn − x0| ≤ R′′′. Let a = min0≤k≤n xk and b =
max0≤k≤n xk. Since diam({xk : 0 ≤ k ≤ n}) ≥ R, one of the two inequalities
|a−x0| > R/2 or |b−x0| > R/2 must be satisfied. Assume to simplify |b−x0| > R/2
(the case |a − x0| > R/2 is done similarly). Hence, b = xm for some 0 < m < n.
Since (x0, . . . , xm) and (xm, . . . , xn) are minimizing and satisfy |xm − x0| > R′′′ and
|xm−xn| > R′′′, these two configurations are strictly monotone. Then, part 2 tells us
that the jumps |xi−xi−1| are uniformly bounded by R′′. In particular, |xm+1−xm| ≤
R′′. The configuration (x0, . . . , xm+1) is minimizing and, since |xm−x0| > R′′+2R′′′,
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it satisfies |xm+1 − x0| > R′′′. By lemma 38, it must be strictly monotone, which is
in contradiction with the maximum xm.

Thus, |xn−x0| > R′′′, (x0, . . . , xn) is strictly monotone and |xi−xi−1| ≤ R′′. �

The proof of the fact that |xk − xk−1| is uniformly bounded uses the same
ideas as in lemma 3.1 of [12]. The fact that L is transversally constant enables us
to translate subconfigurations without modifying the total energy. For a minimizing
and strictly monotone configuration, by minimality of the energy, two consecutive
points cannot enclose a translated subconfiguration of three points. More precisely,
we have the following lemma that extends lemma 3.2 of [12].

Lemma 40. For R > 0, let τ(BR × Ξ) be a flow box compatible with respect to
{Ui}i∈I . Let (x0, . . . , xn) be a strictly monotone minimizing configuration for some
environment ω ∈ Ω. Let (a − R, a + R) and (b − R, b + R) be two disjoint intervals
such that τa(ω) ∈ Ξ and τb(ω) ∈ Ξ. Assume that (a−R, a+R) is a subset of [x0, xn].
Let A be the number of sites 0 ≤ k ≤ n such that xk belongs to (a−R, a+R) and let
B be defined similarly. Then B ≤ A+ 2. In particular, if (b− R, b+ R) ⊂ [x0, xn],
then |A−B| ≤ 2.

Proof. To simplify we assume that (x0, . . . , xn) is strictly increasing. The proof is
done by contradiction by assuming B ≥ A+ 3. Denote

{y1, . . . , yA} := {x0, . . . , xn} ∩ (a−R, a+R) and

{y′1, . . . , y′B} := {x0, . . . , xn} ∩ (b−R, b+R).

Let y0 be the greatest xk ≤ a − R and yA+1 be the smallest xk ≥ a + R. We write
sk := y′k − b and zk := a + sk for k = 1, . . . , B. The partition into A + 1 disjoint

intervals ∪A+1
k=1 (yk−1, yk] must contain A+ 3 distinct points {z1, . . . , zA+3}. We have

therefore to consider two cases.
Case 1. Either some interval (yk−1, yk], 2 ≤ k ≤ A, contains three points

(zi−1, zi, zi+1). By Aubry crossing lemma,

Eω(yk−1, yk) + Eω(zi−1, zi) > Eω(yk−1, zi) + Eω(zi−1, yk),

Eω(zi−1, yk) + Eω(zi, zi+1) ≥ Eω(zi−1, zi+1) + Eω(zi, yk).

Since L is transversally constant on τ(BR × Ξ), we obtain

Eω(y′i−1, y
′
i, y
′
i+1) + Eω(yk−1, yk) = Eω(zi−1, zi, zi+1) + Eω(yk−1, yk)

> Eω(zi−1, zi+1) + Eω(yk−1, zi, yk)

= Eω(y′i−1, y
′
i+1) + Eω(yk−1, zi, yk).

We have obtained a configuration (if, for instance, b < a) of the form

(x0, . . . , y
′
i−1, y

′
i+1, . . . , y

′
B , . . . , y1, . . . , yk−1, zi, yk, . . . , xn)

with strictly lower energy, which contradicts the fact that (x0, . . . , xn) is minimizing.
Case 2. Or there exist two distinct intervals (yk−1, yk] and (yl−1, yl], with 2 ≤

k < l ≤ A, that contain each two points (zi−1, zi) and (zj−1, zj), respectively. Notice
that we may have yk = yl−1, but we must have zi < zj−1, zi+1 ∈ (a − R, a + R),
and possibly zi+1 = zj−1. We want to obtain a contradiction by showing that one
can decrease the sum of energies Eω(y′i−1, . . . , y

′
j) +Eω(yk−1, . . . , yl) while fixing the

four boundary points.
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In the case zi = yk, we perturb the point zi slightly by a small quantity ε and
allow an increase of the energy of order ε2. Since (zi−1, zi, zi+1) is minimizing, we
have

Eω(zi−1, zi, zi+1) = Eω(zi−1, zi − ε, zi+1) + o(ε2).

By Aubry crossing lemma, either zi < yk, and the reminder in lemma 22 takes the
form

reminder := (zi−1 − yk−1)(zi − yk)α > 0,

where α =
1

(zi−1 − yk−1)(zi − yk)

∫ zi−1

yk−1

∫ zi

yk

∂2Eω
∂x∂y

(x, y) dydx < 0,

(in that case, we define ε := 0), or zi = yk, and the reminder becomes

reminder := −ε(zi−1 − yk−1)α+ o(ε) > o(ε2),

where α =
1

zi−1 − yk−1

∫ zi−1

yk−1

∂2Eω
∂x∂y

(x, yk) dx < 0.

In both cases,

Eω(yk−1, yk) + Eω(zi−1, zi − ε) = Eω(yk−1, zi − ε) + Eω(zi−1, yk) + reminder,

Eω(yk−1, yk) + Eω(zi−1, zi, zi+1) > Eω(yk−1, zi − ε, zi+1) + Eω(zi−1, yk).

Again by Aubry crossing lemma,

Eω(yl−1, yl) + Eω(zj−1, zj) ≥ Eω(yl−1, zj) + Eω(zj−1, yl),

with possibly equality if zj = yl. Since L is transversally constant, we obtain

Eω(y′i−1, . . . , y
′
j) + Eω(yk−1, . . . , yl)

= Eω(zi−1, . . . , zj) + Eω(yk−1, . . . , yl)

> Eω(zi−1, yk, . . . , yl−1, zj) + Eω(yk−1, zi − ε, zi+1, . . . , zj−1, yl)

= Eω(y′i−1, wk, . . . , wl−1, y
′
j) + Eω(yk−1, zi − ε, zi+1, . . . , zj−1, yl),

with tk := yk − a, wk := b+ tk,. . . ,tl−1 := yl−1 − a, wl−1 := b+ tl−1. Hence, we have
a configuration (. . . , y′i−1, wk, . . . , wl−1, y

′
j , . . . , yk−1, zi−ε, zi+1, . . . , zj−1, yl, . . .) with

strictly lower energy, which contradicts the fact that (x0, . . . , xn) is minimizing. �

We recall that we have assumed infω∈Ω, x∈REω(x, x) > Ē.

Lemma 41. Let ω ∈ Ω. For n ≥ 1, let (xn0 , . . . , x
n
n) be a configuration realizing the

minimum of Eω(x0, . . . , xn) over all (x0, . . . , xn). Then limn→+∞ |xnn − xn0 | = +∞.

Proof. The proof is done by contradiction. Let ω ∈ Ω and R > 0. Assume there exist
infinitely many n’s for which every configuration (xn0 , . . . , x

n
n) realizing the minimum

of Eω(x0, . . . , xn) satisfies |xnn − xn0 | ≤ R. If (xn0 , . . . , x
n
n) is not monotone, thanks

to lemma 23, we can find distinct indices {i0, . . . , ir} of {0, . . . , n} such that i0 = 0,
ir = n, (xni0 , . . . , x

n
ir

) is monotone (possibly not strictly monotone) and

Eω(xn0 , . . . , x
n
n) ≥ Eω(xni0 , . . . , x

n
ir ) +

∑
i 6∈{i0,...,ir}

Eω(xni , x
n
i ).
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Let ε > 0 be chosen so that Eω(x, y) ≥ Ē+ε for every |y−x| ≤ ε. Thus, if θn denotes
the number of indices 1 ≤ k ≤ r such that |xnik −x

n
ik−1
| > ε, it is clear that θn ≤ R/ε.

Since

nĒ ≥ Eω(xn0 , . . . , x
n
n) ≥ (n− θn)(Ē + ε) + θn inf

x,y∈R
Eω(x, y),

we obtain a contradiction by letting n→ +∞. �

We show in the following proposition that a configuration (xn0 , · · · , xnn) realizing
the minimum of the energy Eω(x0, . . . , xn) among all configurations of length n
admits a rotation number from below in the sense that

lim inf
n→+∞

|xnn − xn0 |
n

> 0. (21)

This means that, for such a finite minimizing configuration, the average distance be-
tween consecutive atoms is bounded from below. The existence of a rotation number
for an infinite minimizing configuration (xk)k∈Z has been established in [12]. The
following proposition extends partially this result in two directions: Firstly, the in-
teraction model is more general and secondly, whereas in [12] the rotation number is
obtained for an infinite configuration, we get the rotation number from below for a
sequence of finite configurations.

Proposition 42. Let (Ω, {τt}t∈R, L) be an almost crystalline interaction model satis-
fying infω∈Ω, x∈REω(x, x) > Ē. Given ω ∈ Ω, for n ≥ 1, suppose (xn0 , . . . , x

n
n) is a

configuration realizing the minimum of Eω(x0, . . . , xn) over all (x0, . . . , xn). Then,

1. Ē = limn→+∞
1
nEω(xn0 , · · · , xnn) = supn≥1

1
nEω(xn0 , · · · , xnn),

2. for n sufficiently large, (xn0 , · · · , xnn) is strictly monotone,
3. there is R > 0 (independent of ω) such that supn≥1 sup1≤k≤n |xnk − xnk−1| ≤ R,

4. lim infn→+∞
1
n |x

n
n − xn0 | > 0.

Proof. To avoid trivialities, we assume that the flow (Ω, {τt}t∈R) is not periodic.
Step 1. The first item has been proved in proposition 13; the limit exists as a

supremum by superadditivity. Moreover, from lemma 41, |xnn − xn0 | → +∞. From
proposition 39, the configuration (xn0 , . . . , x

n
n) must be strictly monotone and have

uniformly bounded jumps R. We are left to prove the last item of the proposition.
Step 2. By definition of an almost crystalline interaction model, L is transver-

sally constant with respect to some flow box decomposition {Ui}i∈I (definitions 9
and 10). Let {Fα}α∈A be a Kakutani-Rohlin tower that is compatible with respect
to {Ui}i∈I (definition 34) and let Σ = ∪α∈AΣα be its basis. We may assume that
minα∈AHα is as large as we want and, in particular, larger than R (see the construc-
tion (20)). We also assume that n is sufficiently large so that every tower Fα of basis
Σα is completely cut by the trajectory τt(ω) for t ∈ (min{xn0 , xnn},max{xn0 , xnn}).
We consider ν the transverse measure to Σ (as defined in lemma 36) and we denote
να := ν(Σα).

Step 3. Let Sn < Tn be the two return times to Σ (namely, τSn(ω) ∈ Σ and
τTn(ω) ∈ Σ) that are chosen so that [Sn, Tn) is the smallest interval containing the
sequence (xnk )nk=0. From the definition of a Kakutani-Rohlin tower, [Sn, Tn) can be
written as a disjoint union of intervals of type Iα,i := [tα,i, tα,i +Hα), where the list
{tα,i}i, i = 1, . . . , Cnα , denotes the successive return times to Σα between Sn and
Tn. We distinguish two exceptional intervals among this list: the two intervals which
contain xn0 and xnn. If xn0 < xnn, then Nn

α,i denotes the number of points (xnk )nk=1



30 Eduardo Garibaldi1, Samuel Petite2 and Philippe Thieullen3

belonging to Iα,i and Nn
α denotes the maximum of Nn

α,i. If xnn < xn0 , then Nn
α,i and

Nn
α are defined similarly by considering in this case (xnk )n−1

k=0 . From lemma 40, we
obtain Nn

α − 2 ≤ Nn
α,i ≤ Nn

α for every nonexceptional interval Iα,i. We show that
supn≥1N

n
α < +∞ for every α ∈ A. The proof is done by contradiction.

Let Enα,i be the energy of the configuration localized in Iα,i. More precisely,

assume first xn0 < xnn; index the part of (xnk )nk=1 in Iα,i by (xnk,α,i)
N
k=1 with N = Nn

α,i;
denote by xn0,α,i the nearest point strictly smaller than xn1,α,i and define the partial

energy Enα,i := Eω(xn0,α,i, . . . , x
n
N,α,i). If xnn < xn0 , the part of (xnk )n−1

k=0 in Iα,i is indexed

by (xnk,α,i)
N−1
k=0 with N = Nn

α,i; denote by xnN,α,i the nearest point strictly larger than
xnN−1,α,i and define Enα,i similarly.

Thanks to the hypothesis infx∈REω(x, x) > Ē, one can choose ε > 0 such that
Eω(x, y) ≥ Ē+ε as soon as |y−x| ≤ ε. Let H̄ := maxα∈AHα. Then, if θnα,i denotes the
number of consecutive points xnk,α,i in Iα,i satisfying |xnk,α,i−xnk−1,α,i| > ε, obviously

θnα,i ≤ H̄/ε. Thus, since n =
∑
α∈A

∑
1≤i≤Cnα

Nn
α,i, we have that

nĒ ≥ Eω(xn0 , . . . , x
n
n) =

∑
α∈A

∑
1≤i≤Cnα

Enα,i

≥
∑
α∈A

∑
1≤i≤Cnα

[
θnα,i inf

x,y∈R
Eω(x, y) +

(
Nn
α,i − θnα,i

)
(Ē + ε)

]
= n(Ē + ε) +

∑
α∈A

∑
1≤i≤Cnα

θnα,iE ≥ n(Ē + ε) +
∑
α∈A

Cnα
H̄

ε
E, (22)

where E := (infx,y∈REω(x, y)− Ē − ε) < 0. For α fixed, among the intervals (Iα,i)i,
i = 1, . . . , Cnα , at most two of them are exceptional and the other intervals satisfy
Nn
α,i ≥ Nn

α − 2. We thus get n ≥
∑
α∈A(Cnα − 2)(Nn

α − 2). For n sufficiently large, we
have

Cnα
Tn − Sn

≤ (1 + ε)να,
Cnα − 2

Tn − Sn
≥ (1− ε)να and

1

n

∑
α∈A

Cnα ≤
(1 + ε)

∑
α∈A να

(1− ε)
∑
α∈A να(Nn

α − 2)
.

If Nn
α → +∞ for some α and a subsequence n→ +∞, then 1

n

∑
α∈A C

n
α → 0 and we

obtain a contradiction with the previous inequality (22).
Step 4. For every α, Iα,i ⊂ [xn0 , x

n
n] except maybe for at most two of them. Then

|xnn − xn0 |
n

≥
∑
α∈A(Cnα − 2)Hα∑

α∈A C
n
αN

n
α

.

Denote N̄α := lim supn→+∞Nn
α . From step 3 we know that N̄α < +∞. By dividing

by (Tn − Sn) and by letting n→ +∞, we obtain

lim inf
n→+∞

|xnn − xn0 |
n

≥
∑
α∈A ναHα∑
α∈A ναN̄α

=
1∑

α∈A ναN̄α
> 0.

�

Now we are able to prove theorem 12. Thanks to theorem 8 and the above re-
sults, we only have to show that the intersection of each {τt}t-orbit with the projected
Mather set is a nonempty relatively dense subset of the orbit.
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Proof of theorem 12. Let (Ω, {τt}t∈R, L) be an almost crystalline interaction model.
We discuss two cases.

Case 1. Either infω∈Ω infx∈REω(x, x) = Ē. Then Eω∗(x∗, x∗) = Ē for some
ω∗ and x∗. By hypothesis, L is transversally constant with respect to a flow box
decomposition {Ui = τ(BRi × Ξi)}i∈I . Let i ∈ I be such that τx∗(ω∗) ∈ Ui. Let
|ti| < Ri and ωi ∈ Ξi be such that τx∗(ω∗) = τti(ωi). Then

Ē = Eω∗(x∗, x∗) = Eωi(ti, ti) = Eω(ti, ti), ∀ ω ∈ Ξi.

We have just proved that δ(τti (ω),0) is a minimizing measure for every ω ∈ Ξi. The

projected Mather set contains τti(Ξi). By minimality of the flow, we have Ω = τ(BR×
Ξi), for some R > 0, thanks to item 1 of lemma 33. The projected Mather set thus
meets every sufficiently long orbit of the flow.

Case 2. Or infω∈Ω infx∈REω(x, x) > Ē. Proposition 42 shows that, if ω∗ ∈ Ω
has been fixed, if for every n ≥ 1 a sequence (xnk )0≤k<n of points of R realizing the
minimum Eω∗(x

n
0 , . . . , x

n
n) = minx0,...,xn Eω∗(x0, . . . , xn) has been fixed, then

– Ē = limn→+∞
1
nEω∗(x

n
0 , . . . , x

n
n),

– (xnk )0≤k<n is strictly monotone for n large enough,

– there is R > 0 (independent of ω∗) such that supn≥1 sup1≤k≤n |xnk − xnk−1| < 2R,

– ρ := lim infn→+∞
1
n |x

n
n − xn0 | > 0.

Let µn,ω∗ be the probability measure on Ω× R defined by

µn,ω∗ :=
1

n

n−1∑
k=0

δ(τxn
k

(ω∗), xnk+1− x
n
k ).

Notice that
∫
Ldµn,ω∗ = 1

nEω∗(x
n
0 , . . . , x

n
n). Since the consecutive jumps of xnk are

uniformly bounded, the sequence of measures (µn,ω∗)n≥1 is tight. By taking a sub-
sequence, we may assume that µn,ω∗ → µ∞ with respect to the weak topology.
Moreover, µ∞ is holonomic and minimizing. Let Ξ ⊂ Ω be a transverse section of
a flow box τ(BR × Ξ). Let RΞ(ω∗) be the set of return times to Ξ as defined in
lemma 36. Let pr1 : Ω× R→ Ω be the first projection. Then

pr1
∗(µn,ω∗)(τ(BR × Ξ)) =

1

n
#
{
k : xnk ∈ ∪t∈RΞ(ω∗)BR(t)

}
≥ 1

n
#(BTn(cn) ∩ RΞ(ω∗)),

with Tn := 1
2 |x

n
n−xn0 | and cn := 1

2 (xn0 +xnn). The previous inequality comes from the
fact that the intervals BR(t) are disjoint and contain at least one xnk . Then

pr1
∗(µn,ω∗)(τ(BR × Ξ)) ≥ 2Tn

n

#(BTn(0) ∩ RΞ(τcn(ω∗))

Leb(BTn(0))
.

By taking the limit as n → +∞, one obtains pr1
∗(µ∞)(τ(BR × Ξ)) ≥ ρνΞ(Ξ) > 0.

Therefore, since Ξ is arbitrary, every orbit of the flow of length 2R meets the projected
Mather set. �
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Appendices

Appendix A. The ergodic and sup-inf formulas

We give a second proof of the equality K̄ = L̄ in proposition 13. We will use basic
properties of the Kantorovich-Rubinstein topology on the set of probabilities mea-
sures on a Polish space (Z, d) and a version of the Topological Minimax Theorem
which is a generalization of Sion’s classical result [24]. For a recent review on the last
topic, see [25]. We state a particular case of theorem 5.7 there.

Theorem A.1 (Topological Minimax Theorem [25]). Let X and Y be Hausdorff topo-
logical spaces. Let F (x, y) : X × Y → R be a real-valued function. Define η :=
supy∈Y infx∈X F (x, y) and assume there exists a real number α∗ > η such that

1. ∀α ∈ (η, α∗), for every finite set ∅ 6= H ⊂ Y , ∩y∈H{x ∈ X : F (x, y) ≤ α} is
either empty or connected;

2. ∀α ∈ (η, α∗), for every set K ⊂ X, ∩x∈K{y ∈ Y : F (x, y) > α} is either empty
or connected;

3. for any y ∈ Y and x ∈ X, F (x, y) is lower semi-continuous in x and upper
semi-continuous in y;

4. there exists a finite set M ⊂ Y such that ∩y∈M{x ∈ X : F (x, y) ≤ α∗} is
compact and nonempty.

Then,

inf
x∈X

sup
y∈Y

F (x, y) = sup
y∈Y

inf
x∈X

F (x, y).

We recall basic facts on the Kantorovich-Rubinstein topology (see [23] or [1]).
Given a Polish space Z and a point z0 ∈ Z, let us consider the set of probability
measures on the Borel sets of Z that admit a finite first moment, i.e.,

P1(Z) =
{
µ :

∫
Z

d(z0, z) dµ(z) < +∞
}
.

Notice that this set does not depend on the choice of the point z0. The Wasserstein
distance or Kantorovitch-Rubinstein distance on P1(Z) is a distance between two
probabilities µ, ν ∈ P1(Z) defined by

W1(µ, ν) := inf
{∫

Z×Z
d(x, y) dγ(x, y) : γ ∈ Γ(µ, ν)

}
,

where Γ(µ, ν) denotes the set of all the probability measures γ on Z×Z with marginals
µ and ν on the first and second factors, respectively.

Recall that a continuous function L : Z → R is said to be superlinear on a Polish
space Z if the map defined by z ∈ Z 7→ L(z)/

(
1 + d(z, z0)

)
∈ R is proper. Notice

that this definition is also independent of the choice of z0 and, by considering the

distance d̂ := min(d, 1) on Z, any proper function is superlinear for d̂. The following
lemma is easy to prove and gives us a sufficient condition for relative compactness in
P1(Z) (see theorem 6.9 in [23] or [1] for a more detailed discussion).

Lemma A.2. Let Z be a Polish space, L : Z → R be a continuous function, and
X := {µ ∈ P1(Z) :

∫
Ldµ < +∞} be equipped with the Kantorovich-Rubinstein

distance. Then

1. the map µ ∈ X 7→
∫
Ldµ is lower semi-continuous;
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2. if L is a superlinear, then, for every α ∈ R, the set {µ ∈ X :
∫
Ldµ ≤ α} is

compact (the map µ ∈ X 7→
∫
Ldµ is proper).

Second proof of K̄ = L̄ in proposition 13. Lemma A.2 applied to the C0 superlinear
Lagrangian L : Ω × Rd → R guarantees the existence of a minimizing probability
for L. This minimizing measure is holonomic since the set of holonomic measures is
a closed subset of P1(Ω×Rd) for the Kantorovich-Rubinstein distance. Notice that,
for every u ∈ C0(Ω),

inf
ω∈Ω, t∈Rd

(L+ u− u ◦ τ)(ω, t) = inf
ω∈Ω, t∈Rd

∫
(L+ u− u ◦ τ) dδ(ω,t)

≥ inf
µ∈P1(Ω×Rd)

∫
(L+ u− u ◦ τ) dµ

≥ inf
ω∈Ω, t∈Rd

(L+ u− u ◦ τ)(ω, t).

Let X := {µ ∈ P1(Ω× Rd) :
∫
Ldµ < +∞} and Y := C0(Ω). Then

K̄ = sup
u∈Y

inf
µ∈X

∫
(L+ u− u ◦ τ) dµ ≤ min

ω∈Ω
L(ω, 0).

Define α∗ := minω∈Ω L(ω, 0) + 1 > K̄ and

F : (µ, u) ∈ X × Y 7→
∫

(L+ u− u ◦ τ) dµ.

Since F is affine in both variables, it satisfies items 1 and 2 of theorem A.1. Item 3
is also satisfied since F (µ, u) is lower semi-continuous in µ and continuous in u.
By taking M = {0}, the singleton set reduced to the null function in Y , the set
∩u∈M{µ ∈ X : F (µ, u) ≤ α∗} is compact and nonempty, so that item 4 is satisfied.
The Topological Minimax Theorem therefore implies

K̄ = inf
µ∈X

sup
u∈Y

∫
(L+ u− u ◦ τ) dµ. (A.1)

We show that every µ ∈ X such that supu∈Y
∫

(L+u−u◦τ) dµ < +∞ is holonomic. If
not, there would exist a function u ∈ C0(Ω) such that

∫
(u−u◦τ) dµ > 0. Multiplying

(u− u ◦ τ) by a positive scalar λ and letting λ→ +∞ would lead to a contradiction.
Thus, the infimum in (A.1) may be taken over holonomic measures with respect to
which L is integrable. We finally conclude that

K̄ = inf
µ∈X

sup
u∈Y

∫
(L+ u− u ◦ τ) dµ = inf

µ∈Mhol

∫
Ldµ = L̄. �
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[1] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of
probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel,
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[21] R. Mañé, Generic properties and problems of minimizing measures of Lagrangian sys-
tems, Nonlinearity 9 (1996), 273–310.

[22] J. N. Mather, Existence of quasiperiodic orbits for twist homeomorphisms of the annu-
lus, Topology 21 (1982), 457–467.

[23] C. Villani, Optimal transport: old and new, Grundlehren der mathematischen Wis-
senschaften 338, Springer-Verlag, 2008.

[24] M. Sion, On general minimax theorems, Pacific Journal of Mathematics 8 (1958), 171–
176.



35

[25] H. Tuy, Topological minimax theorems: old and new, Vietnam Journal of Mathematics
40 (2012), 391–405.

[26] T. S. van Erp, Frenkel-Kontorova model on quasi-periodic substrate potential, PhD the-
sis, Katholieke Universiteit Nijmegen, 1999.

Eduardo Garibaldi1, Samuel Petite2 and Philippe Thieullen3
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