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Abstract

Given a translation-invariant Hamiltonian H, a ground state on the lattice
74 is a configuration whose energy, calculated with respect to H, cannot be
lowered by altering its states on a finite number of sites. The set formed by
these configurations is translation-invariant. Given an observable ¥ defined
on the space of configurations, a minimizing measure is a translation-invariant
probability which minimizes the average of W. If ¥, is the mean contribution
of all interactions to the site 0, we show that any configuration of the support
of a minimizing measure is necessarily a ground state.
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1 Introduction

A dynamical system, in a very broad sense, is given by a compact metric space
Q and a Z%action #7 : Q — Q, j € Z¢, acting continuously on . A probability
measure £ is said to be translation invariant if u(67(B)) = u(B) for any Borel set
B of Q. The central matter of ergodic optimization is to understand the set of the
probability measures which minimize the average of a given continuous observable
U : Q) — R. We call minimizing ergodic value of ¥ the quantity

U = inf { / W dy : pis a translation-invariant probability}.
A minimizing measure is a translation-invariant probability which attains the above

infimum. For Z-actions, the subject has been extensively studied (for details, see
Jenkinson’s notes [5]). Apparently no general result is known for Z9-actions.
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A similar problem exists in the theory of Gibbs measures on bounded-spin
lattice systems, as described, for instance, in [1, 2, 3]. The configuration space
Q) is then given by the lattice Z¢ of sites whose states belong to a fixed compact
space 2. Formally 2 = Q%d is equipped with the product topology. The energy
of a configuration w € {2 is usually understood as an infinite-volume limit, to be
properly defined, of energies calculated on finite volumes. A finite volume is simply
a finite subset A of Z? and the energy of a configuration restricted to a finite
volume A is computed using a single continuous function Hp : @ — R. Usually
H)p describes all admissible interaction energies (internal to A or representing some
coupling with the exterior), and has the form Hy =) 4,5 29 Pa for some family of
continuous functions ® 4 : Q — R indexed by finite subsets A C Z%. A ground-state
configuration w is a configuration whose energy Hp(w) on ea ch fixed volume A
cannot be lowered by changing the states of the sites restricted to A. We denote
by Qcs(H) the set of ground-state configurations. Although Qgs(H) is defined
without mentioning the temperature, it may be seen as a set containing the support
of limit Gibbs states obtained as the absolute temperature tends to zero. More
informations can be found in [2], appendix B.2. We shall not say anything on this
issue. Our goal will consist in showing that Qggs(H) contains the support of any
minimizing measure of a particular observable W =3 -, ﬁ@ A that summarizes
the total mean energy contribution to the site 0.

2 Framework and Main Results

The spin values are described here by a compact metrizable space {29. We introduce
then the configuration space 1 = Q%d. A configuration w €  is described by
giving the states w = {w;};cze at all sites j € Z?. Endowed with the product
topology, {2 is a compact metrizable space. If dg is a metric compatible with the
topology of Qo and if ||j]| := [ji| + ... + |4| denotes the L! norm of an index
§ = (j1....,ja) € Z%, one may define a metric on  compatible with the product
topology by d(w,w) =3 _;cza 27l dg(w;, @;).

Notice that Z¢ acts on by translation. Let {e1,...,eq} be the canonical basis
for the lattice Z?. For each i € {1,...,d}, we consider the shift transformation
0; : Q — Q given by 0;(w) = {Wj+e; }jeza- Given j = (ji,...,ja) € 74, we define
07 := 0] 0 0P o 00

Let F denote the collection of finite subsets of Z?. We call diameter of a set
A € F the real number diam(A) = max{||j — k|| : j,k € A}. For r > 0, we call
inner r-boundary 9, (A) and outer r-boundary 9, (A) the two sets adjacent to A

O (A):={jeA:|j— k| <r for some k € Z¢\ A},

Of(A):={j €eZ*\ A:|j— k| <r for some k € A}.
We call r-boundary 9,(A) := 9, (A) U9, (A). For A € F and w € , the notation
w|a or simply wy will denote the restriction of the configuration w to the set A.
The cardinality of a subset A C Z% is denoted by #A, and the complement by AC.
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The Hamiltonian of the system will be defined through a family of local inter-
actions 4 : @ — R, where each ®4(w) takes into account the local interaction
energy of the configuration w,. More precisely, we recall a standard definition.

Definition 2.1. We call translation-invariant interaction family any collection of
continuous maps P4 : Q — R, indexed by A € F such that

i ®jpa(w) = Pa(0(w)), for all j € Z¢ and w € Q;
. wg = wa implies Py(w) = P4(@).

In addition, we say that {® 4} ac5 is absolutely summable if

> 1®allo < oo

A:0€A
We also recall the following related notions.

Definition 2.2. A translation-invariant interaction family {® a} acy is said to have
finite-range if there exists an integer r > 0 such that ® 4 = 0 whenever diam(A) > r.
In this case, we also say that the translation-invariant interaction family has range
r > 0. In particular for r = 1, the interaction takes into account the nearest
neighbors only. (Notice that any translation-invariant interaction family with finite-
range is absolutely summable.) We say that {®a}acy is a long-range interaction
family if ® 4 Z 0 for sets A with arbitrarily large diameter.

Given a translation-invariant absolutely summable interaction family {® 4} ¢,
the associated Hamiltonian H : F x Q0 — R is defined by

H(A-)=Hy:= » @4 VYAET. (2.1)
A: ANAA£D

It follows from the absolute summability condition of the interaction family that the
associated Hamiltonian is a well defined function. For each A € F, Hy is actually
a continuous function obtained as a uniform limit of continuous functions on €.
Moreover, from its uniform continuity, it follows that Hy is quasi-local in the sense
that

lim su Hjy(w) — Hp(w)) = 0.
A1z w@SQ ( ( ) ( ))
WR=Wx

Notice also that the Hamiltonian inherits the invariance of the interaction family
Hyo6l = Hjyp VjeZl VAT,

The literature is filled with examples of such a formalism. For the Ising model,
for instance, the energy of a configuration w € {—1, I}Zd is formally given by
the Hamiltonian H(w) = —J 3 _; ;. wiw; — h) ;w;, where the first sum is over
pairs of adjacent spins, J is a coupling constant which describes (according to its
sign) ferromagnetic or antiferromagnetic phenomena, and h represents an external
magnetic field. In terms of translation-invariant interactions, the Ising model high-
lights the nearest-neighbor interaction family given by the functions ®9y = —hwo,
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Po,e,) = —Jwowe,, k = 1,...,d, and their translations. The classical Heisen-
berg model is another example of finite-range interaction model. In this case,
the local state space is the unit Euclidean sphere, Qy = {wy € R3 : [jwo|| = 1},
and the formal Hamiltonian is H(w) = —J> _;;  wi - wj. By its turn, Dyson
model exhibits long-range interactions with the introduction of a pair-wise cou-
pling which decreases with the distance between the spins. In this model, the
lattice is one-dimensional and, for w € {—1, 1}Z, the Hamiltonian takes the form
H(w) = —J s jwiw;/(i — j)* with o € (1,2). The non-null functions of the
absolutely summable interaction family are thus @1y (w) = —Jk™ “wowy, k > 1,
as well as their translations. All these examples are considered in the results that
follow.

In order to be able to apply Birkhoff’s ergodic theorem, we shall consider a
unique function Vg : Q — R, which corresponds to the normalized contribution of
all interaction energies at the site 0, and is defined by

Tpo= Y. %@A. (2.2)

Notice that ¥g is a continuous real valued function thanks to the absolutely summa-
bility condition. Moreover, ¥y is also quasi-local:

lim  sup (¥o(w) — ¥o(w)) = 0.
AMZe wweQ
Wi =Wx

Notice also that we could have introduced a notion of energy of a configuration w
restricted to A € F by using the Birkhoff’s sum

SATo(w) := Y Wpo b (w).
keA

For w,w € © and A € F, we denote by wawgza s the configuration of 2 that

coincides with @ on A and with w on Z%\ A. Let M(Q) be the set of Borel prob-
ability measures equipped with the weak® topology. Let M(£2,6) be the subset of
translation-invariant probability measures

M(Q,0) := {u EM(Q): pobl =pu, Vje Zd}.
We shall use Birkhoff’s ergodic theorem for sequences of square boxes
Ay =[-n,n*N2Z% VneN.

Our main goal is to describe the set of ground-state configurations. We choose
two possible definitions. The first one is more general since no hypothesis of invari-
ance needs to be assumed. The second one is closer to notions that one finds in
ergodic optimization.

Definition 2.3. We say that w € Q) is a ground-state configuration with respect to
the Hamiltonian H if

Hp(w) < HA((DAOJZGZ\A)7 Voe, VAeF.
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Let Qgs(H) be the set of ground-state configurations.
We say that p € M(2,0) is a minimizing measure for the function Wy if

/\Ifodug/\lfodlj, \VIZ/EM(Q,Q)
Q Q

Let Miyin (2,0, H) be the set of minimizing measures.
We call ground-state energy of the Hamiltonian H the constant

= e 1
H .= Jrelghnnig%f TnHAn(w).

It is easy to show that ground-state configurations do exist for a translation-
invariant absolutely summable interaction family. We shall give a short proof for
completeness (see proposition 3.1). The existence of minimizing measures is clearly
guaranteed by the weak™ compactness of M(€2,0). Moreover, by the ergodic de-
composition theorem (see, for instance, [3], section 7.3), there always exist ergodic
minimizing measures.

Our theorem states that a translation-invariant probability measure is minimiz-
ing if, and only if, its support lies on the set of ground-state configurations. The
necessity part is more difficult to prove and uses a kind of maximal lemma for
ground-state configurations.

Theorem 2.4. Let H be an Hamiltonian defined by a translation-invariant abso-
lutely summable interaction family. Then, one has

i. H= lim inf Hp, (w);

n—00 n WEQ

. H:/%du, Vi € Mipin(2,0, H);
Q

= . 1
9. H —nlggo 7N,

HAn(w), VwEQG,g(H);

. (Subordination Principle) if u is a translation-invariant probability, then

SUPP(M) - QGS(H) = pc Mmln(Qv 97 H)7

v. (Main Result) if p is a translation-invariant probability, then

p € Mpin (2,6, H) = supp(p) C Qas(H).

The previous theorem extends several results in Schrader’s article [7]. In his
work, Schrader first considers a configuration space of the form {0, I}Zd, which en-
ables him to identify configurations to subsets of Z?. We do not restrict our analysis
to a finite state space €2y. In order to define the ground-state energy H, he only
considers Hamiltonians with free boundary conditions Hp pree := > 4cp Pa. We
use the more natural Hamiltonian Hx = 4+ 20 P4, which takes into account the
interactions across the boundary of A. Moreover, Schrader does not introduce the
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normalized contribution of all interaction energies ¥y and makes no connection be-
tween the present notion of minimizing measures (as found in ergodic optimization
theory) and his notion of ground-state translation-invariant measures. We have
changed a little bit the terminology: we use the expression ground-state configura-
tion for configurations w € Qgs(H ), no name is given in [7]; we use the expression
manimizing measure for translation-invariant probability measures p which mini-
mize [ Wodp as in ergodic optimization theory, a similar notion is used in [7] and
is called ground state without asking the shift invariance. Part iv of theorem 2.4 is
similar to theorem 4.6 in [7], part v is similar to theorem 4.8 there. Our motivation
to extend Schrader’s article from the simple state space Qg = {0, 1} to any general
compact state space is to make clear the connection between two notions: a notion
of configuration with the lowest possible energy where no average is computed,
and a notion of ground-state energy which uses mean values of a unique energy
function Wy.

3 Proof of Theorem 2.4

From now on, without being restated each time, we assume that {®P4}ascs is a
translation-invariant absolutely summable interaction family. We begin by showing
that ground-state configurations do exist. We give a short proof for completeness.

Proposition 3.1. The set of ground-state configurations with respect to H is a
non-empty, closed and translation-invariant set.

Proof. For A € F, let Qgs a be the set of the configurations w € €2 such that
Vo' € Q, w%d\A =wzan = Hj(w) < Hp(W).

We choose a reference configuration @ € €2. Notice that 2gg A clearly contains the
minimum points of the continuous map wy € Q4 — Hy (wawza\p) € R. Moreover,
Qasa is closed and monotone with respect to A in the following sense: if A C A/,
then Qgsa C Qasa- (We use the fact that Hy = Ha + Y5 aqp—g, annzo Pa-)
In particular, the family {Qgs a}aes has the finite intersection property, and by
compactness, Qgs(H) = (ycy Qas,a is non-empty and translation invariant. [

The proof of the main result of theorem 2.4 will be given at the end of this
section. We shall first need the following two lemmas which can be found in the
literature. We have nevertheless included short proofs for convenience of the reader
and for clarification of the notations. We show in the first lemma how one can
neglect the long-range interaction.

. 1
Lemma 3.2. nh_g)lo% Z Z |P4llooc = 0.
JEAn ADj

n
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Proof. For A,, C A,, we have that

oD d%ale<s Y D MPallet Do D [Pall

JjEAn A>j JEAn A>j JjEAn  ADj
ZAn JHAmCAn AZj+Am JHAmZAn
<3N Pl +HGEA T AR Z A} D [ Palloo
JjEA, A3 A30
AZj+Am
=#An > [1Palloo + #(An \ Anm) > [ allso
A>0 A30
A A,

By the absolute summability, given € > 0, there is m € N with 3 450 P4l < 5.
AGAm

One may find ng > m such that WZA% [®allcc < § for all n > ny.

Therefore, whenever n > ng, we obtain

3> ®allo < efthn,

JjEAn A3j

n

which finishes the proof. O

We show in the second lemma that the two average energies ﬁH A, (w) and

ﬁs A, Yo(w) are comparable and have uniformly controlled oscillations.

Lemma 3.3.

i. lim sup  (Sa, Po(w) — Sa, ¥o(@)) = 0;

n—oo #An WAn:‘DAn

7. lim sup (Hj, (w) — Hyp, (w)) =0y
n—00 # n UJAn:(DAn( ( ) ( ))

i i [[Ha, — Sy, Zolloe =0

211. nl_I)IC}O #An An Ap ®¥0llco = Y.

Proof. Notice first that

SA\Ifozz:Z#;@mLZZ#:A@A:Z@mL 3 #(;EA)@A. (3.1)

JEA A3j JEA A3j ACA ANA#Q
ACA AZA AﬁAE;ﬁ(Z)

So for wp = wp, we have

1
SaWo(wa) = Sao(@a) = Y > ﬂ(‘h(w/\) — @4 (@n))
jEA A>j
AZA
1
< fz}::}::%QKH@AH“>5§§£:§£:HéAH“”
JEA A3j JEA Asj

AZA AZA
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and item i follows then from lemma 3.2.
In order to prove item 44, we decompose Hp similarly

HA:Z(I)A+ Z @A—Zz#lA(I)A—i- Z D 4. (3.2)

ACA ANAFAD JeEN Asj ANAD
ANAC£p AcCA ANAC£p

From the above equality and from (3.1), we have

B #(ANA)
ANAHAD
ANAL£p
1
1S3% — Hylw € 3 N0alle= 3 3 o [Pall
. #(ANA)
ANAF£D ANA#AD jEANA
ANAL£p ANAL£p
1
= Z Z m”@fx”m < Z Z 1@ alloo- (3.3)
JEA A>j JEAN ADj
AZA AZA
Then item 44 follows from lemma 3.2 and item 4 follows from 7 and 4. O

Remark 3.4. For a translation-invariant interaction family with finite range r, the
properties pointed out in the above lemma may be more precisely stated as follows:

1
i. sup sup ———— (SAVPg(w) — SA¥p(w)) < o0;
up sup e (SnTole) — ST (@)
ii. sup sup ;(HA(w)—HA(Q))<oo;

AET wp=lp #O;FA

iii. ||Hx — SaWolloo < #07 (M) D" [[®alloc-
A>0

From lemma 3.3, item #ii, we immediately obtain the following corollary which
shows that H is a minimizing ergodic value of a unique observable in the context of
ergodic optimization (see [5]). We shall show soon in proposition 3.7 that we can
actually permute inf,cq and liminf, , . and that H is obtained by minimizing
J Wy dp over all translation-invariant probabilities .

Corollary 3.5. The minimizing ergodic value of H is given by

i S, Yo(w).

n

H = inf liminf

weQ n—oo #

In the following proposition, we first show that the limit in theorem 2.4, item 74,
does exist. The proof is similar to Birkhoff’s ergodic proof for uniquely ergodic
systems. The identification of the limit to H will be done in proposition 3.8.

Proposition 3.6. If w is a ground-state configuration with respect to H, then both

ZA Hp, (w) = ILm ZA Sp, Vo(w) do ezist.

limits lim
n—oo
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Proof. Let w be a ground-state configuration for H. By lemma 3.3, item ¢, it is
enough to show that the second limit exists. Set

1
L = liminf ——5S), ¥p(w).
An

n—oo #
Given € > 0, consider a positive integer N large enough in such a way that

1

#TSAN\IIO(W) <L +e,

IS F0 o8 — iyl = IS0, B0~ Hayl < (3:4)
1

and sup  (SayPo(w') — SayVo(w")) <e. (3.5)
#AN wi :"JAN

Suppose now that the integers m,n > 1 and ¢ € {0,1,...,2N} are such that
2n +1 = m(2N + 1) + ¢. We choose a subset of indices J of A, so that the
translates of Ay, {j + An}jes, are pairwise disjoint, are contained inside A,,, and
essentially cover A, in the sense that

#(An \ Ujes (G + An)) < Cgym®1,

where Cy v is a constant that depends only on d and N. We then decompose the
Birkhoff’s sum

Sa,To =Y Say oot + > Ty o 6F.
jeJ k€A \Ujes (G+AN)

We define for each index j € J a configuration w’ which coincides with §~7(w) on
j+ Ay and with w on Z%\ (j + Ay). Since w is minimizing, we have

SAN\IJO o Gj(w) = SjJrAN‘lJo(w) < HjJrAN(UJ) + G#AN
< Hjpny (W) + etAn = Hay (07 (W) + e# Ay
< SpapnTo(07 (W) + 26 AN < Spp Po(w) + 3e#AN.

By adding these inequalities over j € J, one obtains
SanWo(w) < #J(Say Wo(w) + 3e#AN) + Canm™ || Wo)|o-
Since #J < #A,,/#Ay, it follows that

lim su
ey #A

Since € > 0 can be chosen as close as one wants to zero, the proof is complete. [

Wo(w) < L+ 4e.

We have then the following characterization of the minimizing ergodic value H.

Proposition 3.7 (Items i and 4 of Theorem 2.4).

H = i Uodp = i f S, ¥ li f H
(S 0= B S0 = Ji, o )
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Proof. The last equality will follow from lemma 3.3, item 4. Besides, by standard
superaditivity argument (see, for instance, Proposition 4.10 in [4]), one can ensure
that the limit lim,, oo ﬁ inf,cq Sa, Po(w) exists. Therefore, we notice that

i >H> Il i :
min /\IIO du > H > nll)riloo Y. Uirelg Sh, Yo (w) (3.6)
The second inequality of (3.6) comes from corollary 3.5. To prove the first one,
we use Birkhoff’s ergodic theorem (see, for example, Theorem 2.1.5 in [6]). Sup-
pose that p € M(€,0) is ergodic. By Birkhoff’s ergodic theorem, p-almost every
configuration w satisfies

1 _
= lim —— >
/\IJO du nl;rglo #AHSAn\IIO(w) > H.
Hence, the first inequality of (3.6) follows from the existence of a minimizing ergodic

probability.
To conclude the proof, it thus suffices to show that

1
. . > mi .
nh_)rrolo Y. 1gf Sp, Yo(w) > min /\Ilo du
For each n, consider a configuration w™ € Q such that Sp, ¥o(w") = inf,, Sp, Yo(w)
and define a Borel probability measure

. 1
Hn = A,

Z (59j(wn) S M(Q)

JEAR
Let p € M(£2) be any weak™ limit for a subsequence { i, }. Clearly by construction,

e S, Yo(w) _ Sh,, Yo(w™™) .
lim inf 2200y P PO Ty [ — [wydp
e oirelg #A, k1—>1 00 #An, k—>1 00/ 0 dfin / o dy

Moreover, p is translation-invariant: for any continuous function f, one has

e —0,
a1

which indeed shows the invariance of p. O

<2

Vi=1,....d, '/(fo@i—f) dfin,

The next proposition also contains items of our theorem.

Proposition 3.8 (Items i and iv of Theorem 2.4).

Vw € QGS(H), lim

n—oo #A,

Ve M(Q,0), supp(p) C Qes(H) = H= /\Podu-

Hp, (w)=H
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Proof. Let w € € be a ground-state configuration. From proposition 3.6, we know
that the limit lim, o ﬁH A, (w) exists. Besides, from the very definition of H,

we get H < limy,_y00 ﬁHAn (w). Let w’ be a configuration of ) and let A be a

finite subset of Z¢. Define @ equal to w on Z% \ A and equal to w’ on A. Using
equation (3.2) and the upper bound given by (3.3), we have

Hy(w) S Hy@) = ) ®a@)+ > @a@)

ACA ANAH#D
ANAL£p
SHAMW) 42 Y [Pallee S HAW) +2) > 1@4]loo-
ANAAD jeEN A>j
ANAC£0 AZA

We thus obtain, thanks to lemma 3.2 and for any configuration w’,

1 1 )
n—00 #A (w)_ n—00 #An n(w)’

which yields lim,, oo ﬁH A, (W) < H.

If p is translation invariant and has support included in Qg g(H), by Birkhoff’s
ergodic theorem, the support of p contains a generic configuration w, which implies
that p is minimizing thanks to lemma 3.3, item 74, and the first part of the proof.

O

Before proving item v of Theorem 2.4, we will need the following estimate.

Lemma 3.9. For any A € F and M € N,

(LA DI N1 S0 W ST

ANA#Q A30
diam(A)<2dM AZA M

Proof. Indeed

1
Hy — Z Dy = Z @A:Z Z mm

ANAZD ANAAD keA  Adk
diam(A)<2dM diam(A)>2dM diam(A)>2dM

The result follows then from the translation invariance of the family {®4}4cy. O

We conclude by the proving the main result of this paper. The proof uses an
estimate which is similar to the one that we find in the proof of the ergodic maximal
lemma.

Proposition 3.10 (Item v of Theorem 2.4). The support of any minimizing prob-
ability is included in the set of ground-state configurations Qgs(H).

Proof. The proof is done by contradiction. Let 4 be an ergodic minimizing prob-
ability whose support is not included in Qggs(H). The open set U = Q \ Qgs(H)
intersects supp(u) and satisfies u(U) > 0. We choose a generic configuration w € U
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in the following sense. Let {V;}/>0 be a countable basis of open sets for the product
topology of Q. For each ¢ > 0, consider the characteristic function x, : 2 — {0,1}
of V,. By Birkhoff’s ergodic theorem, there exists a Borel set B C U such that
w(B) = p(U) and, for any w € B and ¢ > 0,

lim San Po(w)

noeo A, = pu(Va). (3.7)

— / Vodp and nlggo 5. A;X,EW)

We choose once for all w € B N supp(p).
Since w is not a ground-state configuration, there exist @ € Q, N € N and n>0
such that
‘I)Zd\AN = Wzd\A g and Hy g (W) < Hy (w) — 7. (3.8)
Notice that @ is not any more generic. Thanks to lemma 3.9 and the summability
condition of {® 4} ey, we may choose a positive integer M such that

_ 1
= 3 e =] X e <5 @9
ANA 540 ANA #£0
diam(A)<2dM diam(A)>2dM

Set M = N + 2dM. Note that by the triangular inequality
diam(A) <2dM and ANAg#0 = ACAy.
We now choose an open neighborhood V; of w in the following way. The map
WweN— P(w/) = w;\M\AN(DZd\(AM\AN) €N

is continuous. Then, there is an open set V; containing w such that, for all w’ € V,

Y @aoPW)- Y @a0PW)|< g (3.10)
ANA 5 #0 ANA 5 #0
diam(A)<2dM diam(A)<2dM
|Ha (W) — Ha ()] < g (3.11)

We choose once for all such a neighborhood V.
Notice that V; Nsupp(u) # 0 and in particular p(V;) > 0. Since w is generic in
the sense of the two equalities in (3.7), we can choose n large enough so that

w(Ve)
and .
#An+N T2 #An+N #AzM

Denote A, := {j € A, : 6/ (w) € V;}. Let then B,, C A,, be a maximal subcollection
of indices such that (j+A ;)N (k+A,;) = 0 whenever j, k € By, are distinct. Since
for all j € A, there must exist k € B,, such that (j +Ay) N (k+Ay) # 0, we have

#Ang#{(]ak)EAnXBn(]“’A]\?[)m(k‘_FAM)#@}

< Z #(An N (k‘ +AM - AM)) < #B, #AQMa
keB,

Sanxe(w) > w(Ve) HAnJrN(w) <+

0|

(3.12)
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which together with (3.12) yields

#Bn . p(Vo)
#An+N 2#A2M '

(3.13)

Let w™ €  be the configuration which coincides with 677 (@) on j + A for every
j € By, and with w on the complement Z? \ Ujep, (j + Ay ):

V] & Bn, w;?+AN = (9_] (a}))j'FAN and wgd\ujeBn (Ag+d) = de\UjGBn (A +9)-

Notice that 67(w™) coincides with & on Ay and with 67(w) on Ay, \ Ag. From the
definition of the map P, we obtain that

(Hj(w"))A = (P(Hj(w”)))A ~and P(@j(w")) = P(@j(w)), Vje€ B,

M M

Hence, since 67(w) € V; for any j € By, thanks to (3.10) we get

S wEE<it Y @) (3.14)
AQAN#@ AQAN#Q
diam(A)<2dM diam(A)<2dM

We decompose Hy o (w") = HYw™) 4+ HT(w™)+ H™(w") in three terms, where
for a configuration w of €

HI(Q_J) = Z Dy (w),
AN(Ujep, G+A )70
diam(A)<2dM
HY(o) := > ®4(@),
AmAHN;«é@

AN(Ujep, (1+Agx))=0

i
I
N

@A((D).

—~

Am(UjeBn
diam(A

G+ ) A0
>2dM

N
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For the first term, we obtain
({7 + A7 }jeB, are disjoint)

)= Y ea@w)
jEBn  ANAg#0
diam(A)<2dM
< #Bn( Z Dy(w) + g) (inequality (3.14))
AQAN¢®
diam(A)<2dM
(inequality (3.9))

< #Ba(Hg @) + 1)
(inequality (3.8))

(inequality (3.11))

517)
<Y (Hag @) - )
J€Bn
< Z Z A0 (w)) — Q) (inequality (3.9))
JEBn  ANAg#D
diam(A)<2dM
Dy(w) — g#Bn ({j + Ay }jeB, are disjoint)

= 2

AN(Ujep, G+AR))#0
diam(A)<2dM

= H'(w)— J#B,
For the second term, we use the fact that w™ and w coincide on Z\ Ujep, (j + Ay )
so that
H' ") = > Ca(w) = H'(w)
AﬂAn+N75®

AN(Ujep, (1+Ag))=0
For the third term, we use again twice inequality (3.9). Here A may intersect several

J+Ag,j€ By, but
(I)A(wn) — @A(w)

>

HM(w") — HMw) =
AN(Ujen, G+A5))#0
diam(A)>2dM
[@4(67 (") ~ @a@ W) < J#Ba.

DD

AﬂAN#@

JE€Bn
diam(A)>2dM
We finally collect the three terms and obtain for n sufficiently large
HA7L+N ((;}) < HAn+J\7 (wn) < HAnJrN ((U) o ﬁ #Bn < _H o ﬁ M(W)
T #A Ly T #ALR ANy T B# Ny
O

inf
we #A 5
which contradicts the characterization of the constant H in proposition 3.7.
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Since any periodic configuration gives rise to a translation-invariant probability
measure supported on its orbit, we point out an immediate corollary.

Corollary 3.11. A periodic configuration w € ) that verifies

is a ground-state configuration with respect to H.
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