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Abstract

Given a translation-invariant Hamiltonian H, a ground state on the lattice
Zd is a configuration whose energy, calculated with respect to H, cannot be
lowered by altering its states on a finite number of sites. The set formed by
these configurations is translation-invariant. Given an observable Ψ defined
on the space of configurations, a minimizing measure is a translation-invariant
probability which minimizes the average of Ψ. If Ψ0 is the mean contribution
of all interactions to the site 0, we show that any configuration of the support
of a minimizing measure is necessarily a ground state.

Keywords: bounded-spin lattice system, ergodic optimization, ground state,
minimizing probability
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1 Introduction

A dynamical system, in a very broad sense, is given by a compact metric space
Ω and a Zd-action θj : Ω → Ω, j ∈ Zd, acting continuously on Ω. A probability
measure µ is said to be translation invariant if µ(θj(B)) = µ(B) for any Borel set
B of Ω. The central matter of ergodic optimization is to understand the set of the
probability measures which minimize the average of a given continuous observable
Ψ : Ω→ R. We call minimizing ergodic value of Ψ the quantity

Ψ̄ = inf
{∫

Ψ dµ : µ is a translation-invariant probability
}
.

A minimizing measure is a translation-invariant probability which attains the above
infimum. For Z-actions, the subject has been extensively studied (for details, see
Jenkinson’s notes [5]). Apparently no general result is known for Zd-actions.
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A similar problem exists in the theory of Gibbs measures on bounded-spin
lattice systems, as described, for instance, in [1, 2, 3]. The configuration space
Ω is then given by the lattice Zd of sites whose states belong to a fixed compact
space Ω0. Formally Ω = ΩZd

0 is equipped with the product topology. The energy
of a configuration ω ∈ Ω is usually understood as an infinite-volume limit, to be
properly defined, of energies calculated on finite volumes. A finite volume is simply
a finite subset Λ of Zd and the energy of a configuration restricted to a finite
volume Λ is computed using a single continuous function HΛ : Ω → R. Usually
HΛ describes all admissible interaction energies (internal to Λ or representing some
coupling with the exterior), and has the form HΛ =

∑
A∩Λ6=∅ΦA for some family of

continuous functions ΦA : Ω→ R indexed by finite subsets A ⊂ Zd. A ground-state
configuration ω is a configuration whose energy HΛ(ω) on ea ch fixed volume Λ
cannot be lowered by changing the states of the sites restricted to Λ. We denote
by ΩGS(H) the set of ground-state configurations. Although ΩGS(H) is defined
without mentioning the temperature, it may be seen as a set containing the support
of limit Gibbs states obtained as the absolute temperature tends to zero. More
informations can be found in [2], appendix B.2. We shall not say anything on this
issue. Our goal will consist in showing that ΩGS(H) contains the support of any
minimizing measure of a particular observable Ψ0 =

∑
A30

1
#AΦA that summarizes

the total mean energy contribution to the site 0.

2 Framework and Main Results

The spin values are described here by a compact metrizable space Ω0. We introduce
then the configuration space Ω = ΩZd

0 . A configuration ω ∈ Ω is described by
giving the states ω = {ωj}j∈Zd at all sites j ∈ Zd. Endowed with the product
topology, Ω is a compact metrizable space. If d0 is a metric compatible with the
topology of Ω0 and if ‖j‖ := |j1| + . . . + |jd| denotes the L1 norm of an index
j = (j1, . . . , jd) ∈ Zd, one may define a metric on Ω compatible with the product
topology by d(ω, ω̄) =

∑
j∈Zd 2−‖j‖d0(ωj , ω̄j).

Notice that Zd acts on Ω by translation. Let {e1, . . . , ed} be the canonical basis
for the lattice Zd. For each i ∈ {1, . . . , d}, we consider the shift transformation
θi : Ω → Ω given by θi(ω) = {ωj+ei}j∈Zd . Given j = (j1, . . . , jd) ∈ Zd, we define

θj := θj11 ◦ θ
j2
2 ◦ · · · ◦ θ

jd
d .

Let F denote the collection of finite subsets of Zd. We call diameter of a set
A ∈ F the real number diam(A) = max{‖j − k‖ : j, k ∈ A}. For r > 0, we call
inner r-boundary ∂−r (A) and outer r-boundary ∂+

r (A) the two sets adjacent to A

∂−r (A) := {j ∈ A : ‖j − k‖ ≤ r for some k ∈ Zd \A},
∂+
r (A) := {j ∈ Zd \A : ‖j − k‖ ≤ r for some k ∈ A}.

We call r-boundary ∂r(A) := ∂−r (A) ∪ ∂+
r (A). For A ∈ F and ω ∈ Ω, the notation

ω|A or simply ωA will denote the restriction of the configuration ω to the set A.
The cardinality of a subset Λ ⊂ Zd is denoted by #A, and the complement by Λ{.
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The Hamiltonian of the system will be defined through a family of local inter-
actions ΦA : Ω → R, where each ΦA(ω) takes into account the local interaction
energy of the configuration ωA. More precisely, we recall a standard definition.

Definition 2.1. We call translation-invariant interaction family any collection of
continuous maps ΦA : Ω→ R, indexed by A ∈ F such that

i. Φj+A(ω) = ΦA(θj(ω)), for all j ∈ Zd and ω ∈ Ω;

ii. ωA = ω̄A implies ΦA(ω) = ΦA(ω̄).

In addition, we say that {ΦA}A∈F is absolutely summable if∑
A:0∈A

‖ΦA‖∞ <∞.

We also recall the following related notions.

Definition 2.2. A translation-invariant interaction family {ΦA}A∈F is said to have
finite-range if there exists an integer r > 0 such that ΦA ≡ 0 whenever diam(A) > r.
In this case, we also say that the translation-invariant interaction family has range
r > 0. In particular for r = 1, the interaction takes into account the nearest
neighbors only. (Notice that any translation-invariant interaction family with finite-
range is absolutely summable.) We say that {ΦA}A∈F is a long-range interaction
family if ΦA 6≡ 0 for sets A with arbitrarily large diameter.

Given a translation-invariant absolutely summable interaction family {ΦA}A∈F,
the associated Hamiltonian H : F × Ω→ R is defined by

H(Λ, ·) = HΛ :=
∑

A :A∩Λ 6=∅

ΦA, ∀Λ ∈ F. (2.1)

It follows from the absolute summability condition of the interaction family that the
associated Hamiltonian is a well defined function. For each Λ ∈ F, HΛ is actually
a continuous function obtained as a uniform limit of continuous functions on Ω.
Moreover, from its uniform continuity, it follows that HΛ is quasi-local in the sense
that

lim
Λ̄↑Zd

sup
ω,ω̄∈Ω
ωΛ̄=ω̄Λ̄

(
HΛ(ω)−HΛ(ω̄)

)
= 0.

Notice also that the Hamiltonian inherits the invariance of the interaction family

HΛ ◦ θj = Hj+Λ ∀ j ∈ Zd, ∀Λ ∈ F.

The literature is filled with examples of such a formalism. For the Ising model,
for instance, the energy of a configuration ω ∈ {−1, 1}Zd

is formally given by
the Hamiltonian H(ω) = −J

∑
<i j> ωiωj − h

∑
j ωj , where the first sum is over

pairs of adjacent spins, J is a coupling constant which describes (according to its
sign) ferromagnetic or antiferromagnetic phenomena, and h represents an external
magnetic field. In terms of translation-invariant interactions, the Ising model high-
lights the nearest-neighbor interaction family given by the functions Φ{0} = −hω0,
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Φ{0,ek} = −Jω0ωek , k = 1, . . . , d, and their translations. The classical Heisen-
berg model is another example of finite-range interaction model. In this case,
the local state space is the unit Euclidean sphere, Ω0 = {ω0 ∈ R3 : ‖ω0‖ = 1},
and the formal Hamiltonian is H(ω) = −J

∑
<i j> ωi · ωj . By its turn, Dyson

model exhibits long-range interactions with the introduction of a pair-wise cou-
pling which decreases with the distance between the spins. In this model, the
lattice is one-dimensional and, for ω ∈ {−1, 1}Z, the Hamiltonian takes the form
H(ω) = −J

∑
i>j ωiωj/(i − j)α with α ∈ (1, 2). The non-null functions of the

absolutely summable interaction family are thus Φ{0,k}(ω) = −Jk−αω0ωk, k ≥ 1,
as well as their translations. All these examples are considered in the results that
follow.

In order to be able to apply Birkhoff’s ergodic theorem, we shall consider a
unique function Ψ0 : Ω → R, which corresponds to the normalized contribution of
all interaction energies at the site 0, and is defined by

Ψ0 :=
∑

A : 0∈A

1

#A
ΦA. (2.2)

Notice that Ψ0 is a continuous real valued function thanks to the absolutely summa-
bility condition. Moreover, Ψ0 is also quasi-local:

lim
Λ̄↑Zd

sup
ω,ω̄∈Ω
ωΛ̄=ω̄Λ̄

(
Ψ0(ω)−Ψ0(ω̄)

)
= 0.

Notice also that we could have introduced a notion of energy of a configuration ω
restricted to Λ ∈ F by using the Birkhoff’s sum

SΛΨ0(ω) :=
∑
k∈Λ

Ψ0 ◦ θk(ω).

For ω, ω̄ ∈ Ω and Λ ∈ F, we denote by ω̄ΛωZd\Λ the configuration of Ω that

coincides with ω̄ on Λ and with ω on Zd \ Λ. Let M(Ω) be the set of Borel prob-
ability measures equipped with the weak* topology. Let M(Ω, θ) be the subset of
translation-invariant probability measures

M(Ω, θ) :=
{
µ ∈M(Ω) : µ ◦ θj = µ, ∀ j ∈ Zd

}
.

We shall use Birkhoff’s ergodic theorem for sequences of square boxes

Λn := [−n, n]d ∩ Zd, ∀n ∈ N.

Our main goal is to describe the set of ground-state configurations. We choose
two possible definitions. The first one is more general since no hypothesis of invari-
ance needs to be assumed. The second one is closer to notions that one finds in
ergodic optimization.

Definition 2.3. We say that ω ∈ Ω is a ground-state configuration with respect to
the Hamiltonian H if

HΛ(ω) ≤ HΛ(ω̄ΛωZd\Λ), ∀ ω̄ ∈ Ω, ∀Λ ∈ F.
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Let ΩGS(H) be the set of ground-state configurations.
We say that µ ∈M(Ω, θ) is a minimizing measure for the function Ψ0 if∫

Ω
Ψ0 dµ ≤

∫
Ω

Ψ0 dν, ∀ ν ∈M(Ω, θ).

Let Mmin(Ω, θ,H) be the set of minimizing measures.
We call ground-state energy of the Hamiltonian H the constant

H̄ := inf
ω∈Ω

lim inf
n→∞

1

#Λn
HΛn(ω).

It is easy to show that ground-state configurations do exist for a translation-
invariant absolutely summable interaction family. We shall give a short proof for
completeness (see proposition 3.1). The existence of minimizing measures is clearly
guaranteed by the weak* compactness of M(Ω, θ). Moreover, by the ergodic de-
composition theorem (see, for instance, [3], section 7.3), there always exist ergodic
minimizing measures.

Our theorem states that a translation-invariant probability measure is minimiz-
ing if, and only if, its support lies on the set of ground-state configurations. The
necessity part is more difficult to prove and uses a kind of maximal lemma for
ground-state configurations.

Theorem 2.4. Let H be an Hamiltonian defined by a translation-invariant abso-
lutely summable interaction family. Then, one has

i. H̄ = lim
n→∞

1

#Λn
inf
ω∈Ω

HΛn(ω);

ii. H̄ =

∫
Ω

Ψ0 dµ, ∀µ ∈Mmin(Ω, θ,H);

iii. H̄ = lim
n→∞

1

#Λn
HΛn(ω), ∀ω ∈ ΩGS(H);

iv. (Subordination Principle) if µ is a translation-invariant probability, then

supp(µ) ⊆ ΩGS(H) =⇒ µ ∈Mmin(Ω, θ,H);

v. (Main Result) if µ is a translation-invariant probability, then

µ ∈Mmin(Ω, θ,H) =⇒ supp(µ) ⊆ ΩGS(H).

The previous theorem extends several results in Schrader’s article [7]. In his

work, Schrader first considers a configuration space of the form {0, 1}Zd
, which en-

ables him to identify configurations to subsets of Zd. We do not restrict our analysis
to a finite state space Ω0. In order to define the ground-state energy H̄, he only
considers Hamiltonians with free boundary conditions HΛ,F ree :=

∑
A⊆Λ ΦA. We

use the more natural Hamiltonian HΛ =
∑

A∩Λ6=∅ΦA, which takes into account the
interactions across the boundary of Λ. Moreover, Schrader does not introduce the
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normalized contribution of all interaction energies Ψ0 and makes no connection be-
tween the present notion of minimizing measures (as found in ergodic optimization
theory) and his notion of ground-state translation-invariant measures. We have
changed a little bit the terminology: we use the expression ground-state configura-
tion for configurations ω ∈ ΩGS(H), no name is given in [7]; we use the expression
minimizing measure for translation-invariant probability measures µ which mini-
mize

∫
Ψ0 dµ as in ergodic optimization theory, a similar notion is used in [7] and

is called ground state without asking the shift invariance. Part iv of theorem 2.4 is
similar to theorem 4.6 in [7], part v is similar to theorem 4.8 there. Our motivation
to extend Schrader’s article from the simple state space Ω0 = {0, 1} to any general
compact state space is to make clear the connection between two notions: a notion
of configuration with the lowest possible energy where no average is computed,
and a notion of ground-state energy which uses mean values of a unique energy
function Ψ0.

3 Proof of Theorem 2.4

From now on, without being restated each time, we assume that {ΦA}A∈F is a
translation-invariant absolutely summable interaction family. We begin by showing
that ground-state configurations do exist. We give a short proof for completeness.

Proposition 3.1. The set of ground-state configurations with respect to H is a
non-empty, closed and translation-invariant set.

Proof. For Λ ∈ F, let ΩGS,Λ be the set of the configurations ω ∈ Ω such that

∀ω′ ∈ Ω, ω′Zd\Λ = ωZd\Λ =⇒ HΛ(ω) ≤ HΛ(ω′).

We choose a reference configuration ω̄ ∈ Ω. Notice that ΩGS,Λ clearly contains the
minimum points of the continuous map ωΛ ∈ ΩΛ

0 7→ HΛ(ωΛω̄Zd\Λ) ∈ R. Moreover,
ΩGS,Λ is closed and monotone with respect to Λ in the following sense: if Λ ⊂ Λ′,
then ΩGS,Λ′ ⊂ ΩGS,Λ. (We use the fact that HΛ′ = HΛ +

∑
A∩Λ=∅, A∩Λ′ 6=∅ΦA.)

In particular, the family {ΩGS,Λ}Λ∈F has the finite intersection property, and by
compactness, ΩGS(H) =

⋂
Λ∈F ΩGS,Λ is non-empty and translation invariant.

The proof of the main result of theorem 2.4 will be given at the end of this
section. We shall first need the following two lemmas which can be found in the
literature. We have nevertheless included short proofs for convenience of the reader
and for clarification of the notations. We show in the first lemma how one can
neglect the long-range interaction.

Lemma 3.2. lim
n→∞

1

#Λn

∑
j∈Λn

∑
A3j
A 6⊂Λn

‖ΦA‖∞ = 0.
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Proof. For Λm ⊂ Λn, we have that∑
j∈Λn

∑
A3j
A 6⊂Λn

‖ΦA‖∞ ≤
∑
j∈Λn

j+Λm⊂Λn

∑
A3j

A 6⊂j+Λm

‖ΦA‖∞ +
∑
j∈Λn

j+Λm 6⊂Λn

∑
A3j
‖ΦA‖∞

≤
∑
j∈Λn

∑
A3j

A 6⊂j+Λm

‖ΦA‖∞ + #{j ∈ Λn : j + Λm 6⊂ Λn}
∑
A30

‖ΦA‖∞

= #Λn
∑
A30
A 6⊂Λm

‖ΦA‖∞ + #
(
Λn \ Λn−m

)∑
A30

‖ΦA‖∞.

By the absolute summability, given ε > 0, there is m ∈ N with
∑

A30
A 6⊂Λm

‖ΦA‖∞ < ε
2 .

One may find n0 > m such that #(Λn\Λn−m)
#Λn

∑
A30 ‖ΦA‖∞ < ε

2 for all n ≥ n0.
Therefore, whenever n ≥ n0, we obtain∑

j∈Λn

∑
A3j
A 6⊂Λn

‖ΦA‖∞ ≤ ε#Λn,

which finishes the proof.

We show in the second lemma that the two average energies 1
#Λn

HΛn(ω) and
1

#Λn
SΛnΨ0(ω) are comparable and have uniformly controlled oscillations.

Lemma 3.3.

i. lim
n→∞

1

#Λn
sup

ωΛn=ω̄Λn

(
SΛnΨ0(ω)− SΛnΨ0(ω̄)

)
= 0;

ii. lim
n→∞

1

#Λn
sup

ωΛn=ω̄Λn

(
HΛn(ω)−HΛn(ω̄)

)
= 0;

iii. lim
n→∞

1

#Λn
‖HΛn − SΛnΨ0‖∞ = 0.

Proof. Notice first that

SΛΨ0 =
∑
j∈Λ

∑
A3j
A⊂Λ

1

#A
ΦA+

∑
j∈Λ

∑
A3j
A 6⊂Λ

1

#A
ΦA =

∑
A⊂Λ

ΦA+
∑

A∩Λ 6=∅
A∩Λ{ 6=∅

#(A ∩ Λ)

#A
ΦA. (3.1)

So for ωΛ = ω̄Λ, we have

SΛΨ0(ωΛ)− SΛΨ0(ω̄Λ) =
∑
j∈Λ

∑
A3j
A 6⊂Λ

1

#A

(
ΦA(ωΛ)− ΦA(ω̄Λ)

)

≤ 2
∑
j∈Λ

∑
A3j
A 6⊂Λ

1

#A
‖ΦA‖∞ ≤

∑
j∈Λ

∑
A3j
A 6⊂Λ

‖ΦA‖∞,
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and item i follows then from lemma 3.2.
In order to prove item iii , we decompose HΛ similarly

HΛ =
∑
A⊂Λ

ΦA +
∑

A∩Λ6=∅
A∩Λ{ 6=∅

ΦA =
∑
j∈Λ

∑
A3j
A⊂Λ

1

#A
ΦA +

∑
A∩Λ6=∅
A∩Λ{ 6=∅

ΦA. (3.2)

From the above equality and from (3.1), we have

SΛΨ0 −HΛ =
∑

A∩Λ6=∅
A∩Λ{ 6=∅

(#(A ∩ Λ)

#A
− 1
)

ΦA,

‖SΛΨ0 −HΛ‖∞ ≤
∑

A∩Λ6=∅
A∩Λ{ 6=∅

‖ΦA‖∞ =
∑

A∩Λ 6=∅
A∩Λ{ 6=∅

∑
j∈A∩Λ

1

#(A ∩ Λ)
‖ΦA‖∞

=
∑
j∈Λ

∑
A3j
A 6⊂Λ

1

#(A ∩ Λ)
‖ΦA‖∞ ≤

∑
j∈Λ

∑
A3j
A 6⊂Λ

‖ΦA‖∞. (3.3)

Then item iii follows from lemma 3.2 and item ii follows from i and iii .

Remark 3.4. For a translation-invariant interaction family with finite range r, the
properties pointed out in the above lemma may be more precisely stated as follows:

i. sup
Λ∈F

sup
ωΛ=ω̄Λ

1

#∂+
1 Λ

(SΛΨ0(ω)− SΛΨ0(ω̄)) <∞;

ii. sup
Λ∈F

sup
ωΛ=ω̄Λ

1

#∂+
1 Λ

(HΛ(ω)−HΛ(ω̄)) <∞;

iii. ‖HΛ − SΛΨ0‖∞ ≤ #∂−r (Λ)
∑
A30

‖ΦA‖∞.

From lemma 3.3, item iii , we immediately obtain the following corollary which
shows that H̄ is a minimizing ergodic value of a unique observable in the context of
ergodic optimization (see [5]). We shall show soon in proposition 3.7 that we can
actually permute infω∈Ω and lim infn→+∞ and that H̄ is obtained by minimizing∫

Ψ0 dµ over all translation-invariant probabilities µ.

Corollary 3.5. The minimizing ergodic value of H is given by

H̄ = inf
ω∈Ω

lim inf
n→∞

1

#Λn
SΛnΨ0(ω).

In the following proposition, we first show that the limit in theorem 2.4, item iii ,
does exist. The proof is similar to Birkhoff’s ergodic proof for uniquely ergodic
systems. The identification of the limit to H̄ will be done in proposition 3.8.

Proposition 3.6. If ω is a ground-state configuration with respect to H, then both

limits lim
n→∞

1

#Λn
HΛn(ω) = lim

n→∞

1

#Λn
SΛnΨ0(ω) do exist.
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Proof. Let ω be a ground-state configuration for H. By lemma 3.3, item iii , it is
enough to show that the second limit exists. Set

L = lim inf
n→∞

1

#Λn
SΛnΨ0(ω).

Given ε > 0, consider a positive integer N large enough in such a way that

1

#ΛN
SΛN

Ψ0(ω) < L+ ε,

1

#ΛN
‖SΛN

Ψ0 ◦ θj −Hj+ΛN
‖∞ =

1

#ΛN
‖SΛN

Ψ0 −HΛN
‖∞ ≤ ε, (3.4)

and
1

#ΛN
sup

ω′ΛN
=ω′′ΛN

(
SΛN

Ψ0(ω′)− SΛN
Ψ0(ω′′)

)
≤ ε. (3.5)

Suppose now that the integers m,n ≥ 1 and ` ∈ {0, 1, . . . , 2N} are such that
2n + 1 = m(2N + 1) + `. We choose a subset of indices J of Λn so that the
translates of ΛN , {j + ΛN}j∈J , are pairwise disjoint, are contained inside Λn, and
essentially cover Λn in the sense that

#(Λn \ ∪j∈J(j + ΛN )) ≤ Cd,Nmd−1,

where Cd,N is a constant that depends only on d and N . We then decompose the
Birkhoff’s sum

SΛnΨ0 =
∑
j∈J

SΛN
Ψ0 ◦ θj +

∑
k∈Λn\∪j∈J (j+ΛN )

Ψ0 ◦ θk.

We define for each index j ∈ J a configuration ωj which coincides with θ−j(ω) on
j + ΛN and with ω on Zd \ (j + ΛN ). Since ω is minimizing, we have

SΛN
Ψ0 ◦ θj(ω) = Sj+ΛN

Ψ0(ω) ≤ Hj+ΛN
(ω) + ε#ΛN

≤ Hj+ΛN
(ωj) + ε#ΛN = HΛN

(θj(ωj)) + ε#ΛN

≤ SΛN
Ψ0(θj(ωj)) + 2ε#ΛN ≤ SΛN

Ψ0(ω) + 3ε#ΛN .

By adding these inequalities over j ∈ J , one obtains

SΛnΨ0(ω) ≤ #J(SΛN
Ψ0(ω) + 3ε#ΛN ) + Cd,Nm

d−1‖Ψ0‖∞.

Since #J ≤ #Λn/#ΛN , it follows that

lim sup
n→∞

1

#Λn
SΛnΨ0(ω) ≤ L+ 4ε.

Since ε > 0 can be chosen as close as one wants to zero, the proof is complete.

We have then the following characterization of the minimizing ergodic value H̄.

Proposition 3.7 (Items i and ii of Theorem 2.4).

H̄ = min
µ∈M(Ω,θ)

∫
Ω

Ψ0 dµ = lim
n→∞

1

#Λn
inf
ω∈Ω

SΛnΨ0(ω) = lim
n→∞

1

#Λn
inf
ω∈Ω

HΛn(ω).
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Proof. The last equality will follow from lemma 3.3, item iii . Besides, by standard
superaditivity argument (see, for instance, Proposition 4.10 in [4]), one can ensure
that the limit limn→∞

1
#Λn

infω∈Ω SΛnΨ0(ω) exists. Therefore, we notice that

min
µ

∫
Ψ0 dµ ≥ H̄ ≥ lim

n→+∞

1

#Λn
inf
ω∈Ω

SΛnΨ0(ω) (3.6)

The second inequality of (3.6) comes from corollary 3.5. To prove the first one,
we use Birkhoff’s ergodic theorem (see, for example, Theorem 2.1.5 in [6]). Sup-
pose that µ ∈ M(Ω, θ) is ergodic. By Birkhoff’s ergodic theorem, µ-almost every
configuration ω satisfies∫

Ψ0 dµ = lim
n→∞

1

#Λn
SΛnΨ0(ω) ≥ H̄.

Hence, the first inequality of (3.6) follows from the existence of a minimizing ergodic
probability.

To conclude the proof, it thus suffices to show that

lim
n→∞

1

#Λn
inf
ω
SΛnΨ0(ω) ≥ min

µ

∫
Ψ0 dµ.

For each n, consider a configuration ωn ∈ Ω such that SΛnΨ0(ωn) = infω SΛnΨ0(ω)
and define a Borel probability measure

µn :=
1

#Λn

∑
j∈Λn

δθj(ωn) ∈M(Ω).

Let µ ∈M(Ω) be any weak* limit for a subsequence {µnk
}. Clearly by construction,

lim
n→∞

inf
ω∈Ω

SΛnΨ0(ω)

#Λn
= lim

k→∞

SΛnk
Ψ0(ωnk)

#Λnk

= lim
k→∞

∫
Ψ0 dµnk

=

∫
Ψ0 dµ.

Moreover, µ is translation-invariant: for any continuous function f , one has

∀ i = 1, . . . , d,

∣∣∣∣∫ (f ◦ θi − f) dµnk

∣∣∣∣ ≤ 2
#∂+

1 Λnk

#Λnk

‖f‖∞
k→∞−→ 0,

which indeed shows the invariance of µ.

The next proposition also contains items of our theorem.

Proposition 3.8 (Items iii and iv of Theorem 2.4).

∀ω ∈ ΩGS(H), lim
n→∞

1

#Λn
HΛn(ω) = H̄,

∀µ ∈M(Ω, θ), supp(µ) ⊂ ΩGS(H) =⇒ H̄ =

∫
Ψ0 dµ.
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Proof. Let ω ∈ Ω be a ground-state configuration. From proposition 3.6, we know
that the limit limn→∞

1
#Λn

HΛn(ω) exists. Besides, from the very definition of H̄,

we get H̄ ≤ limn→∞
1

#Λn
HΛn(ω). Let ω′ be a configuration of Ω and let Λ be a

finite subset of Zd. Define ω̄ equal to ω on Zd \ Λ and equal to ω′ on Λ. Using
equation (3.2) and the upper bound given by (3.3), we have

HΛ(ω) ≤ HΛ(ω̄) =
∑
A⊂Λ

ΦA(ω̄) +
∑

A∩Λ 6=∅
A∩Λ{ 6=∅

ΦA(ω̄)

≤ HΛ(ω′) + 2
∑

A∩Λ6=∅
A∩Λ{ 6=∅

‖ΦA‖∞ ≤ HΛ(ω′) + 2
∑
j∈Λ

∑
A3j
A 6⊂Λ

‖ΦA‖∞.

We thus obtain, thanks to lemma 3.2 and for any configuration ω′,

lim
n→∞

1

#Λn
HΛn(ω) ≤ lim inf

n→∞

1

#Λn
HΛn(ω′),

which yields limn→∞
1

#Λn
HΛn(ω) ≤ H̄.

If µ is translation invariant and has support included in ΩGS(H), by Birkhoff’s
ergodic theorem, the support of µ contains a generic configuration ω, which implies
that µ is minimizing thanks to lemma 3.3, item iii , and the first part of the proof.

Before proving item v of Theorem 2.4, we will need the following estimate.

Lemma 3.9. For any Λ ∈ F and M ∈ N,∥∥∥HΛ −
∑

A∩Λ 6=∅
diam(A)≤2dM

ΦA

∥∥∥
∞
≤ #Λ

∑
A30
A 6⊂ΛM

‖ΦA‖∞.

Proof. Indeed

HΛ −
∑

A∩Λ6=∅
diam(A)≤2dM

ΦA =
∑

A∩Λ6=∅
diam(A)>2dM

ΦA =
∑
k∈Λ

∑
A3k

diam(A)>2dM

1

#(A ∩ Λ)
ΦA.

The result follows then from the translation invariance of the family {ΦA}A∈F.

We conclude by the proving the main result of this paper. The proof uses an
estimate which is similar to the one that we find in the proof of the ergodic maximal
lemma.

Proposition 3.10 (Item v of Theorem 2.4). The support of any minimizing prob-
ability is included in the set of ground-state configurations ΩGS(H).

Proof. The proof is done by contradiction. Let µ be an ergodic minimizing prob-
ability whose support is not included in ΩGS(H). The open set U = Ω \ ΩGS(H)
intersects supp(µ) and satisfies µ(U) > 0. We choose a generic configuration ω ∈ U
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in the following sense. Let {V`}`≥0 be a countable basis of open sets for the product
topology of Ω. For each ` ≥ 0, consider the characteristic function χ` : Ω→ {0, 1}
of V`. By Birkhoff’s ergodic theorem, there exists a Borel set B ⊂ U such that
µ(B) = µ(U) and, for any ω ∈ B and ` ≥ 0,

lim
n→∞

SΛnΨ0(ω)

#Λn
=

∫
Ψ0 dµ and lim

n→∞

SΛnχ`(ω)

#Λn
= µ(V`). (3.7)

We choose once for all ω ∈ B ∩ supp(µ).
Since ω is not a ground-state configuration, there exist ω̃ ∈ Ω, Ñ ∈ N and η̃ > 0

such that
ω̃Zd\ΛÑ

= ωZd\ΛÑ
and HΛÑ

(ω̃) < HΛÑ
(ω)− η̃. (3.8)

Notice that ω̃ is not any more generic. Thanks to lemma 3.9 and the summability
condition of {ΦA}A∈F, we may choose a positive integer M such that∥∥∥HΛÑ

−
∑

A∩ΛÑ 6=∅
diam(A)≤2dM

ΦA

∥∥∥
∞

=
∥∥∥ ∑

A∩ΛÑ 6=∅
diam(A)>2dM

ΦA

∥∥∥
∞
≤ η̃

8
. (3.9)

Set M̃ = Ñ + 2dM . Note that by the triangular inequality

diam(A) ≤ 2dM and A ∩ ΛÑ 6= ∅ =⇒ A ⊂ ΛM̃ .

We now choose an open neighborhood V` of ω in the following way. The map

ω′ ∈ Ω 7→ P (ω′) := ω′ΛM̃\ΛÑ
ω̃Zd\(ΛM̃\ΛÑ ) ∈ Ω

is continuous. Then, there is an open set V` containing ω such that, for all ω′ ∈ V`,∣∣∣ ∑
A∩ΛÑ 6=∅

diam(A)≤2dM

ΦA ◦ P (ω′)−
∑

A∩ΛÑ 6=∅
diam(A)≤2dM

ΦA ◦ P (ω)
∣∣∣ ≤ η̃

8
, (3.10)

∣∣HΛÑ
(ω′)−HΛÑ

(ω)
∣∣ ≤ η̃

8
. (3.11)

We choose once for all such a neighborhood V`.
Notice that V` ∩ supp(µ) 6= ∅ and in particular µ(V`) > 0. Since ω is generic in

the sense of the two equalities in (3.7), we can choose n large enough so that

SΛnχ`(ω)

#Λn+Ñ

≥ µ(V`)

2
and

HΛn+Ñ
(ω)

#Λn+Ñ

< H̄ +
η̃

8

µ(V`)

#Λ2M̃

. (3.12)

Denote An := {j ∈ Λn : θj(ω) ∈ V`}. Let then Bn ⊂ An be a maximal subcollection
of indices such that (j+ΛM̃ )∩ (k+ΛM̃ ) = ∅ whenever j, k ∈ Bn are distinct. Since
for all j ∈ An there must exist k ∈ Bn such that (j+ ΛM̃ )∩ (k+ ΛM̃ ) 6= ∅, we have

#An ≤ #
{

(j, k) ∈ An ×Bn : (j + ΛM̃ ) ∩ (k + ΛM̃ ) 6= ∅
}

≤
∑
k∈Bn

#(An ∩ (k + ΛM̃ − ΛM̃ )) ≤ #Bn #Λ2M̃ ,
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which together with (3.12) yields

#Bn
#Λn+Ñ

>
µ(V`)

2#Λ2M̃

. (3.13)

Let ωn ∈ Ω be the configuration which coincides with θ−j(ω̃) on j + ΛÑ for every
j ∈ Bn and with ω on the complement Zd \ tj∈Bn(j + ΛÑ ):

∀ j ∈ Bn, ωnj+ΛÑ
=
(
θ−j(ω̃)

)
j+ΛÑ

and ωnZd\tj∈Bn (ΛÑ+j) = ωZd\tj∈Bn (ΛÑ+j).

Notice that θj(ωn) coincides with ω̃ on ΛÑ and with θj(ω) on ΛM̃ \ ΛÑ . From the
definition of the map P , we obtain that

(
θj(ωn)

)
ΛM̃

=
(
P (θj(ωn))

)
ΛM̃

and P (θj(ωn)) = P (θj(ω)), ∀ j ∈ Bn.

Hence, since θj(ω) ∈ V` for any j ∈ Bn, thanks to (3.10) we get

∑
A∩ΛÑ 6=∅

diam(A)≤2dM

ΦA(θj(ωn)) ≤ η̃

8
+

∑
A∩ΛÑ 6=∅

diam(A)≤2dM

ΦA(ω̃). (3.14)

We decompose HΛn+Ñ
(ωn) = H I(ωn)+H II(ωn)+H III(ωn) in three terms, where

for a configuration ω̄ of Ω

H I(ω̄) :=
∑

A∩(
⊔

j∈Bn
(j+ΛÑ ))6=∅

diam(A)≤2dM

ΦA(ω̄),

H II(ω̄) :=
∑

A∩Λn+Ñ 6=∅
A∩(

⊔
j∈Bn

(j+ΛÑ ))=∅

ΦA(ω̄),

H III(ω̄) :=
∑

A∩(
⊔

j∈Bn
(j+ΛÑ ))6=∅

diam(A)>2dM

ΦA(ω̄).
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For the first term, we obtain

H I(ωn) =
∑
j∈Bn

∑
A∩ΛÑ 6=∅

diam(A)≤2dM

ΦA(θj(ωn)) ({j + ΛM̃}j∈Bn are disjoint)

≤ #Bn

( ∑
A∩ΛÑ 6=∅

diam(A)≤2dM

ΦA(ω̃) +
η̃

8

)
(inequality (3.14))

≤ #Bn

(
HΛÑ

(ω̃) +
η̃

4

)
(inequality (3.9))

≤ #Bn

(
HΛÑ

(ω)− 3η̃

4

)
(inequality (3.8))

≤
∑
j∈Bn

(
HΛÑ

(θj(ω))− 5η̃

8

)
(inequality (3.11))

≤
∑
j∈Bn

∑
A∩ΛÑ 6=∅

diam(A)≤2dM

(
ΦA(θj(ω))− η̃

2

)
(inequality (3.9))

=
∑

A∩(
⊔

j∈Bn
(j+ΛÑ )) 6=∅

diam(A)≤2dM

ΦA(ω)− η̃

2
#Bn ({j + ΛM̃}j∈Bn are disjoint)

= H I(ω)− η̃

2
#Bn

For the second term, we use the fact that ωn and ω coincide on Zd \tj∈Bn(j+ ΛÑ )
so that

H II(ωn) =
∑

A∩Λn+Ñ 6=∅
A∩(

⊔
j∈Bn

(j+ΛÑ ))=∅

ΦA(ω) = H II(ω).

For the third term, we use again twice inequality (3.9). Here A may intersect several
j + ΛÑ , j ∈ Bn, but

H III(ωn)−H III(ω) =
∑

A∩(
⊔

j∈Bn
(j+ΛÑ ))6=∅

diam(A)>2dM

ΦA(ωn)− ΦA(ω)

≤
∑
j∈Bn

∑
A∩ΛÑ 6=∅

diam(A)>2dM

|ΦA(θj(ωn))− ΦA(θj(ω))| ≤ η̃

4
#Bn.

We finally collect the three terms and obtain for n sufficiently large

inf
ω̄∈Ω

HΛn+Ñ
(ω̄)

#Λn+Ñ

≤
HΛn+Ñ

(ωn)

#Λn+Ñ

≤
HΛn+Ñ

(ω)

#Λn+Ñ

− η̃

4

#Bn
#Λn+Ñ

≤ H̄ − η̃

8

µ(V`)

#Λ2M̃

,

which contradicts the characterization of the constant H̄ in proposition 3.7.



An Ergodic Description of Ground States 15

Since any periodic configuration gives rise to a translation-invariant probability
measure supported on its orbit, we point out an immediate corollary.

Corollary 3.11. A periodic configuration ω ∈ Ω that verifies

lim
n→∞

1

#Λn
HΛn(ω) = H̄

is a ground-state configuration with respect to H.
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