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Abstract. Since techniques used to address the Nivat’s conjecture usually

relies on Morse-Hedlund Theorem, an improved version of this classical result

may mean a new step towards a proof for the conjecture. In this paper, consi-
dering an alphabetical version of the Morse-Hedlund Theorem, we show that,

for a configuration η ∈ AZ2
that contains all letters of a given finite alphabet

A, if its complexity with respect to a quasi-regular set U ⊂ Z2 (a finite set

whose convex hull on R2 is described by pairs of edges with identical size) is

bounded from above by 1
2
|U|+ |A| − 1, then η is periodic.

1. Introduction

Fixed a finite alphabet A (with at least two elements), for n ∈ N, the n-comple-
xity of an infinite sequence ξ = (ξi)i∈Z ∈ AZ, denoted by Pξ(n), is defined to be
the number of distinct words of the form ξjξj+1 · · · ξj+n−1 appearing in ξ. In 1938,
Morse and Hedlund [10, 11] proved one of the most famous results in symbolic
dynamics which establishes a connection between periodic sequences (sequences for
which there is an integer m ≥ 1 such that ξi+m = ξi for all i ∈ Z) and complexity.
More specifically, they proved that ξ ∈ AZ is periodic if, and only if, there exists
n ∈ N such that Pξ(n) ≤ n.

A natural extension of the complexity function to higher dimensions is obtained
when we consider, instead of words, blocks of symbols. More precisely, the n1×· · ·×
nd-complexity of a configuration η = (ηg)g∈Zd ∈ AZd

, denoted by Pη(n1, . . . , nd),
is defined to be the number of distinct n1 × · · · × nd blocks of symbols appearing
in η. Of course periodicity also has a natural higher dimensional generalization:

η ∈ AZd

is periodic if there exists a vector h ∈ (Zd)∗, called period of η, such that

ηg+h = ηg for all g ∈ Zd. If η ∈ AZ2

has two linearly independent periods, it is said
to be doubly periodic. A configuration that is not periodic is said to be aperiodic.

The Nivat’s Conjecture [12] is the natural generalization of the Morse-Hedlund
Theorem for the two-dimensional case.

Conjecture (Nivat). For a configuration η ∈ AZ2

, if there exist integers n, k ∈ N
such that Pη(n, k) ≤ nk, then η is periodic.

The first step towards the conjecture was given by Sander and Tijdeman [14]:
they showed that if Pη(n, 2) ≤ 2n (or if Pη(2, n) ≤ 2n) for some integer n ∈ N, then

η ∈ AZ2

is periodic. Other weak forms of the Nivat’s Conjecture were obtained in
[6, 13, 5, 3, 9, 8, 2]. Moreover, Sander and Tijdeman [15] found counter-examples to
the analogue of Nivat’s Conjecture in higher dimensions, that is, they showed that,
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for d ≥ 3, there exist aperiodic configurations η ∈ {0, 1}Zd

such that Pη(n, . . . , n) =
2nd−1 + 1.

The best result known so far was obtained by Bryna Kra and Van Cyr [4]. Using
the notion of expansive subspaces of R2 introduced by Boyle and Lind, they shed
a new light towards a proof for Nivat’s Conjecture by relating expansive subspaces
to periodicity. In particular, they proved that if there exist integers n, k ∈ N such

that Pη(n, k) ≤ 1
2nk, then η ∈ AZ2

is periodic.
Our main result (Theorem 2.2) is an “alphabetical” version of Cyr and Kra’s

bound, which in fact provides a slight improvement in estimation. Moreover, we
consider the complexity function with respect to a more general class of sets, called
quasi-regular sets (see Definition 2.1). In the particular case of blocks, we show

that, for a configuration η ∈ AZ2

that contains all letters of A, if there exist integers
n, k ∈ N such that

Pη(n, k) ≤ 1

2
nk + |A| − 1 =

(
1

2
+
|A| − 1

nk

)
nk, (1.1)

where |A| denotes the cardinality of the alphabet A, then η is periodic.
Here is an example of configuration that satisfies (1.1) but does not satisfy the

condition of Cyr and Kra’s Theorem. Let A be the alphabet formed by the colours

“white” and “black” and define η ∈ AZ2

as ηg := “black” if g = (a, a)+b(
∑c
i=6 i, 0),

where a ∈ Z, b ∈ {−1, 0, 1} and c ≥ 6, and ηg := “white” otherwise (see Figure 1).
Note that Pη(n, k) = n+ k when n+ k ≤ 7 and that from the symmetries of such
configuration

Pη(n, k) = n+ k +
1

2
(n+ k − 7)(n+ k − 6)

when n + k > 7. It is easy to see that there are no integers n, k ∈ N such that
Pη(n, k) ≤ 1

2nk. However, one has Pη(3, 4) = 7 = 1
2 · 12 + |A| − 1.

Figure 1. Representation of the configuration η ∈ AZ2

.

2. Initial concepts and main result

Let A be endowed with the discrete topology. It is well known that the configur-

ation space AZd

equipped with the product topology is a metrizable compact space.

For each u ∈ Zd, let Tu : AZd→ AZd

be the shift application, i.e., for η = (ηg)g∈Zd

∈ AZd

, the configuration Tuη is defined by (Tuη)g := ηg+u for all g ∈ Zd. It is
easy to see that, with respect to this topology, the Zd-action by shift applications
(Tu : u ∈ Zd) is continuous. Let Orb (η) := {Tuη : u ∈ Zd} denote the Zd-orbit of

η ∈ AZd

and set Xη := Orb (η), where the bar denotes the closure.
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Following Sander and Tijdeman [15], for a nonempty set S ⊂ Zd, the S-complexity

of η ∈ AZd

, denoted by Pη(S), is defined to be the number of distinct S-configura-
tions of the form (Tuη)|S ∈ AS , where u ∈ Zd and ·|S means the restriction to the

set S. The set of all S-configurations of η ∈ AZd

is denoted by

L(S, η) :=
{

(Tuη)|S ∈ AS : u ∈ Zd
}
.

Clearly T ⊂ S implies Pη(T ) ≤ Pη(S). If S ⊂ Zd, then Pη(S) = PTuη(S+g) for all
u, g ∈ Zd and Px(S) ≤ Pη(S) for any x ∈ Xη. We remark that for a n1 × · · · × nd
block based at the origin, i.e.,

Rn1,...,nd
:=
{

(t1, . . . , td) ∈ Zd : 0 ≤ ti < ni for every 1 ≤ i ≤ d
}
,

the previous notion Pη(n1, . . . , nd) coincides with Pη(Rn1,...,nd
).

A set S ⊂ Z2 is called convex if its convex hull in R2, denoted by conv(S), is
closed and S = conv(S)∩Z2. If S ⊂ Z2 is a convex set, a point g ∈ S is a vertex of
S when S\{g} is a convex subset, and a line segment w contained at the boundary
of conv(S) is an edge of S if it is an edge of the convex polygon conv(S) ⊂ R2. Let
V (S) and E(S) denote, respectively, the sets of vertices and edges of S.

Let FC denote the family of convex, finite and nonempty subsets of Z2, and FVolC

denote the subfamily of FC whose convex hull has positive area.
If S ⊂ Z2 is a convex set (possibly infinite) such that conv(S) has non-null area,

our standard convention is that the boundary of conv(S) is positively oriented.
With this convention, each edge w ∈ E(S) inherits a natural orientation from the
boundary of conv(S).

In the sequel, by an oriented object we mean an oriented line, an oriented line
segment or a vector. Remember that two vectors are parallel if they have the same
direction and antiparallel if they have opposite directions. Two oriented objects in
R2 are said to be (anti)parallel if the adjacent vectors to their respective orientations
are (anti)parallel.

Definition 2.1. We say that U ∈ FVolC is a quasi-regular set when, for every edge
w ∈ E(U), there is an edge w′ ∈ E(U) antiparallel to w satisfying |w′∩U| = |w∩U|.

We may now state our main result.

Theorem 2.2. If η ∈ AZ2

contains all letters of the alphabet A and there exists a
quasi-regular set U ∈ FVolC such that Pη(U) ≤ 1

2 |U|+ |A| − 1, then η is periodic.

The proof of Theorem 2.2 will be done by contradiction. The global strategy
consists basically in showing the existence of an aperiodic accumulation point which
is doubly periodic on an unbounded region, and then in arguing that the cardinality
of subconfigurations arising in the boundary of this region would be greater than
possible. We will first apply the Alphabetical Morse-Hedlund Theorem to certain
strips, defined from special generating sets, called balanced sets (see Definitions 3.8
and 4.6), to get periodic configurations, which will allow us, by an inductive argu-
ment, to construct such an accumulation point.

The rest of the paper is organized as follows. The next section reviews key con-
cepts and results. In Section 4, with an alphabetical viewpoint, we obtain a wide
range of propositions which will be useful for the proof of the main theorem. Rou-
ghly speaking, these results connect one-sided nonexpansive directions (which will
be precisely defined in Section 3) and periodicity. Following methods highlighted by
Cyr and Kra [4], in the Section 6 we provide bounds for the periods of any aperiodic
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configuration with an unbounded doubly periodic region (see Definition 5.1) and in
the last section we prove Theorem 2.2. The results of this article are based on the
PhD thesis of the first author written under the guidance of the second author.

3. Fundamental notions and facts

From now on, we will assume that the configuration η ∈ AZ2

always contains all
letters of the alphabet A, i.e., Pη({g}) = |A| for all g ∈ Z2.

3.1. Alphabetical Morse-Hedlund Theorem. We reproduce here an alphabet-
ical version of the celebrated result of Morse and Hedlund (see Theorem 7.4 in [10]).

Given a sequence ξ = (ξt)t∈U ∈ AU , where U = {a, a + 1, . . .} and a ∈ Z, the
n-complexity of ξ, denoted by Pξ(n), is defined to be the number of distinct words
of the form ξtξt+1 · · · ξt+n−1, where {t, t + 1, . . . , t + n − 1} ⊂ U . Such sequence
is said to be periodic if there exists an integer m ≥ 1 (called period) that satisfies
ξi+m = ξi for all i ∈ U .

Theorem 3.1 (Alphabetical Morse-Hedlund Theorem). Let ξ = (ξi)i∈U ∈ AU be a
sequence that contains all letters of A, where U = Z or U = {a, a+ 1, . . .} for some
a ∈ Z. Suppose there exists n0 ∈ N such that Pξ(n0) ≤ n′0, where n′0 := n0+ |A|−2.

(i) If U = {a, a+ 1, . . .}, then the sequence (ξt)t∈U+n′0
∈ AU+n′0 is periodic of

period at most n′0;
(ii) If U = Z, then the sequence ξ ∈ AZ is periodic of period at most n′0.

As an immediate consequence, we have the next result.

Corollary 3.2. Let η ∈ AZ2

and suppose Pη(S) ≤ |S|+|A|−2 for some set S ∈ FC .
If conv(S) has null area, then η is periodic.

3.2. Expansive subdynamics. Let F be a subspace of Rd. For each g ∈ Zd, de-
note dist(g, F ) := inf{‖g − u‖ : u ∈ F}, where ‖ · ‖ is the Euclidean norm in Rd.
Given t > 0, the t-neighbourhood of F is defined as

F t :=
{
g ∈ Zd : dist(g, F ) ≤ t

}
.

Let X ⊂ AZd

be a subshift (a closed subset which is invariant for shift applica-
tions). Following Boyle and Lind [1], we say that a subspace F ⊂ Rd is expansive
on X if there exists t > 0 such that x|F t = y|F t implies x = y for any x, y ∈ X.
If a subspace fails to meet this condition, it is called a nonexpansive subspace on

X. Boyle and Lind [1, Theorem 3.7] showed that if X ⊂ AZd

is an infinite subshift,
then, for 0 ≤ k < d, there exists a k-dimensional subspace of Rd that is nonexpan-
sive on X.

As an immediate corollary from Boyle and Lind’s Theorem, we highlight the
following result.

Corollary 3.3. For η ∈ AZ2

, if every one-dimensional subspace of R2 is expansive
on Xη, then η is doubly periodic.

The next result allows us to conclude that every configuration with at least two
nonexpansive one-dimensional subspaces on Xη is not periodic.

Lemma 3.4. If η ∈ AZ2

is periodic of period h ∈ (Z2)∗, then every one-dimensional
subspace F ⊂ R2 that does not contain h is expansive on Xη.
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Proof. Let t > 0 be such that {−h, h} ⊂ F t. For each g ∈ Z2, there exists an inte-
ger m ∈ Z such that g + mh ∈ F t. Since all configurations x, y ∈ Xη are periodic
of period h ∈ (Z2)∗, if x|F t = y|F t, then xg = xg+mh = yg+mh = yg. �

In the above lemma, note that there is no assumption about the expansiveness
or nonexpansiveness of the one-dimensional subspace which contains the period h,
so that doubly periodic configurations naturally satisfy its statement. Actually, if
a configuration is doubly periodic, by applying Lemma 3.4 to linearly independent
periods, we see that all its one-dimensional subspaces are expansive.

For a line ` ⊂ R2, we also use ` to denote this line endowed of a given orientation.
We believe that, according to the context, the reader will easily realize if we refer
to a line or to an oriented line.

Notation 3.5. For an oriented line ` ⊂ R2, let

`

⊂ R2 denote the oriented line
antiparallel to ` that intersects it. Obviously

`

determines the same points in R2

that `, but is endowed of the opposite orientation.

A convex set H ⊂ Z2 is said to be a half plane if conv(H) has non-null area and
E(H) has only a single edge. In this case, the single edge ` ∈ E(H) is a line in R2.
For an oriented line ` ⊂ R2 that contains at least one point of Z2, let H(`) ⊂ Z2

denote the unique half plane for which ` is its single (positively) oriented edge (see
Figure 2). This means not only that ` ∈ E(H(`)) but also the orientation of the
edge of the half plane H(`) agrees with the orientation of `.

`

H(`)

H(

`

)

`

Figure 2. The oriented lines ` and

`

and the half planes H(`) and
H(

`

).

Notation 3.6. If ` is a rational oriented line (i.e., an oriented line with rational
angular coefficient) that contains at least one point of Z2, let `(−) ⊂ R2 denote the
oriented line parallel to ` such that the half plane H(`(−)) is minimal (with respect
to partial ordering by inclusion) among all half planes that strictly contains H(`).
Likewise, let `(+) ⊂ R2 denote the oriented line parallel to ` such that the half plane
H(`(+)) is maximal among all half planes that are strictly contained in H(`) (see
Figure 3).

We use G1 to denote the set of all lines through the origin in R2, i.e., the set of
one-dimensional subspaces. In a slight abuse of notation, we also say that oriented
lines belong to G1. If ` ∈ G1 is a rational oriented line, let ~v` ∈ (Z2)∗ denote the
non-null vector parallel to ` of minimum norm.

In the sequel, we restate a refined version of the classical notion of expansiveness
called one-sided nonexpansiveness, and introduced by Cyr and Kra in [4].
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`

`(−)

H(`(−))

`

`(+)

H(`(+))

Figure 3. The oriented lines `(−) and `(+) and the half planes
H(`(−)) and H(`(+)).

Definition 3.7. Given η ∈ AZ2

, we say that an oriented line ` ∈ G1 is a one-sided
expansive direction on Xη if x|H(`) = y|H(`) implies x = y for any x, y ∈ Xη.
If an oriented line ` ∈ G1 fails to meet this condition, it is called a one-sided
nonexpansive direction on Xη.

As Xη is a compact subshift of AZ2

, it is easy to see that ` ∈ G1 is an expansive
line on Xη if, and only if, `,

`

∈ G1 are one-sided expansive directions on Xη. More-
over, in all the text, whenever we consider a nonexpansive line, this actually means
a nonexpansive rational line, since any irrational line is expansive on Xη if the
configuration η satisfies Pη(U) ≤ |U|+ |A| − 2 for some U ∈ FC (see Remark 3.12).

3.3. Generating sets. The notion of generating set, deeply developed in [4], un-
derlines configurations that admit a unique extension on extreme points of a given
convex set.

Definition 3.8. Let η ∈ AZ2

and suppose S ⊂ Z2 is a finite set. A point g ∈ S is
said to be η-generated by S if Pη(S) = Pη(S\{g}). A set S ∈ FC for which each
vertex is η-generated is called an η-generating set.

Note that g ∈ S is η-generated by S if, and only if, for every γ ∈ L(S\{g}, η),
there exists a unique γ′ ∈ L(S, η) such that γ′|S\{g} = γ.

Remark 3.9. If Pη(U) ≤ |U|+ |A| − 2 for some set U ∈ FC , then any convex set
S ⊂ U that is minimal among all convex sets T ⊂ U fulfilling Pη(T ) ≤ |T |+ |A|−2
is an η-generating set. The fact that 1 + |A| − 2 < |A| = Pη({g}) for all g ∈ Z2 en-
sures that S has at least two points. In particular, if w ∈ E(S), by minimality, one
has Pη(S)− Pη(S\w) ≤ |w ∩ S| − 1.

Notation 3.10. For an oriented line ` ⊂ R2 and a convex set S ⊂ Z2, we use `S
to denote the oriented line `′ ⊂ R2 parallel to ` such that S ⊂ H(`′) and `′ ∩S 6= ∅.
Note that either `S ∩ S is a vertex of S or conv(`S ∩ S) ⊂ R2 is an edge of S (see
Figure 4).

The next lemma is an immediate consequence of the existence of generating sets.
Its proof is straightforward from definitions.

Lemma 3.11. If ` ∈ G1 is an oriented line and there is a set S ∈ FC such that
`S ∩S = {g0} is η-generated by S, then ` is a one-sided expansive direction on Xη.
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H(`S)

`S `
S

Figure 4. The set S and the oriented lines ` and `S .

Remark 3.12. Given η ∈ AZ2

with Pη(U) ≤ |U| + |A| − 2 for some U ∈ FC , if
` ∈ G1 is an irrational oriented line, then there exists an η-generating set S ∈ FC
such that `S∩S = {g0} is η-generated by S and so, from Lemma 3.11, it follows that
` is a one-sided expansive direction on Xη. Furthermore, if ` ∈ G1 is a one-sided
nonexpansive direction on Xη, the above lemma also ensures that every η-generating
set S ∈ FVolC has an edge parallel to `, i.e., |`S ∩ S| ≥ 2.

The next lemma is an immediate consequence of the compactness of the subshift.

Lemma 3.13. Let ` ∈ G1 be a rational oriented line. If ` is a one-sided expansive
direction on Xη, then there is a set S ∈ FVolC such that `S ∩S = {g0} is η-generated
by S.

For ` ∈ G1, we call `-strip any lattice translation of `t = {g ∈ Z2 : dist(g, `) ≤ t},
where t > 0.

For η ∈ AZd

and U ⊂ Zd nonempty, we say that η|U ∈ AU is periodic of period
h ∈ (Zd)∗ if ηg+h = ηg for every g ∈ U ∩ (U − h). Clearly, this notion of periodicity
extend the classical one. Given ` ∈ G1, to indicate that some period h belongs to
` ∩ Z2, we say that η|U is `-periodic.

For x ∈ Xη, if S is a subset of R2, we make a slight abuse of the notation by
denoting x|S instead of x|S ∩ Z2.

Proposition 3.14. If η ∈ AZ2

is periodic and ` ∈ G1 is a one-sided nonexpansive
direction on Xη, then

`

is also a one-sided nonexpansive direction on Xη.

Proof. Suppose, by contradiction, that

`

is a one-sided expansive direction on Xη.
Thanks to Lemma 3.13 there is a set S ∈ FVolC such that

`

S∩S = {g0} is η-generated
by S. Let F ⊂ Z2 be an `-strip that contains a translation of S and consider a
finite convex set B ⊂ F such that, for any g, g′ ∈ Z2, (T gη)|B = (T g

′
η)|B implies

(T gη)|F = (T g
′
η)|F . Such a subset exists because according to Lemma 3.4 the line

` contains all periods of η. Let ˆ̀∈ G1 be the orthogonal line to ` and consider a

non-null vector v ∈ ˆ̀∩H(`). For any τ ∈ Z there exist τ ≤ t < t′ ≤ τ +Pη(B) with

(T tvη)|B = (T t
′vη)|B and hence with (T tvη)|F = (T t

′vη)|F . Since g0 ∈ S ⊂ F
is η-generated by S, it is easy to argue by induction that the restriction of η to
the half plane H(`) is periodic of period (t′ − t)v, where t′ − t ≤ Pη(B). As τ is

arbitrary, we conclude that η is ˆ̀-periodic, but this contradicts Lemma 3.4. �
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We introduce a notion motivated by the existence of sets that are not necessary
η-generating, but, with respect to a fixed direction, part of their vertices are η-gene-
rated.

Definition 3.15. Given an oriented line ` ⊂ R2, a set U ∈ FC is said to be an
(η, `)-generating set if each point of `U ∩ V (U) is η-generated by U .

Of course, every η-generating set U ∈ FC is, in particular, an (η, `)-generating
set for every oriented line ` ⊂ R2.

Remark 3.16. Given η ∈ AZ2

, suppose Pη(U) ≤ |U|+ |A|−2 for some set U ∈ FC
and let ` ∈ G1 be a rational oriented line. Set S1 := U and define Si+1 := Si\`Si
for all i ≥ 1. Let I ≥ 1 be the greatest integer such that Pη(SI) ≤ |SI | + |A| − 2.
Note that any convex set S ⊂ SI that is minimal among all convex sets T ⊂ SI
that satisfy SI\`SI ⊂ T and Pη(T ) ≤ |T | + |A| − 2 is (η, `)-generating. Again,
1 + |A| − 2 < |A| implies that S has at least two points. Moreover, if S\`S is not
empty, then

(i) Pη(S)− Pη(S\`S) ≤ |`S ∩ S| − 1,
(ii) there is a half plane H ⊂ Z2 (whose edge is parallel to `) such that S\`S =
U ∩H.

Note that, if we also suppose in the previous remark that ` ∈ G1 is a one-sided
nonexpansive direction on Xη and S ∈ FVolC , then Remark 3.12 provides the addi-
tional property |`S ∩ S| ≥ 2.

4. Periodicity and balanced sets

Balanced sets are in particular generating sets for which additional hypotheses
are imposed on their geometry and on the bounds of their complexity. Such prop-
erties fit well in the context of the Alphabetical Morse-Hedlund Theorem.

For a set U ∈ FVolC , an oriented line ` ∈ G1 and γ ∈ L(U\`U , η), the number of
distinct U-configurations of η that extend γ is denoted by

NU (`, γ) :=
∣∣{γ′ ∈ L(U , η) : γ′|U\`U = γ}

∣∣ . (4.1)

Note that NU (`, γ) = 1 means that γ′|U\`U = γ = γ′′|U\`U implies γ′ = γ′′ for
any U-configurations γ′, γ′′ ∈ L(U , η), i.e., the U\`U -configuration γ admits exactly
one extension to an U-configuration of η. It is relevant to consider how many
extensions to a specific edge of a convex set a given configuration possesses because
such a value is closely related to nonexpansiveness and hence to the number of
configurations that appear along a given direction. Conveniently, if ` ∈ G1 is a
rational oriented line, for a configuration x ∈ Xη, the set of U-configurations of x
along of ` is denoted by

L`(U , x) :=
{

(T t~v`x)|U : t ∈ Z
}
.

Lemma 4.1. For η ∈ AZ2

and a rational oriented line ` ∈ G1, let U ∈ FVolC be an
(η, `)-generating set. If x ∈ Xη and there is γ ∈ L`(U\`U , x) such that NU (`, γ) = 1,
then, for every `-strip F ⊃ U\`U and any configuration y ∈ Xη, x|F = y|F implies
that x|`U ∪ F = y|`U ∪ F .

Proof. Since γ ∈ L`(U\`U , x), there exists τ ∈ Z such that γ = (T τ~v`x)|U\`U . So,

from x|F = y|F , we obtain (T τ~v`x)|U\`U = γ = (T τ~v`y)|U\`U . As NU (`, γ) = 1,
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we have then (T τ~v`x)|U = (T τ~v`y)|U , which implies

x|(U + τ~v`) ∪ F = y|(U + τ~v`) ∪ F . (4.2)

By hypothesis, each vertex of U in `U ∩ U is η-generated by U . Hence, from (4.2)
it follows by induction that x|`U ∪ F = y|`U ∪ F , which completes the proof. �

Clearly, if ` ∈ G1 is a one-sided nonexpansive direction on Xη and U ∈ FVolC is
an (η, `)-generating set, then there are configurations x ∈ Xη such that

NU (`, γ) > 1 ∀ U\`U -configuration γ ∈ L`(U\`U , x). (4.3)

We denote by M(`,U) the set formed by the configurations x ∈ Xη that satisfy
(4.3). The configurations that belong to M(`,U) are exactly the ones for which
each U\`U -restriction admits multiple extensions to U . It is not difficult to see that
Pη(U) − Pη(U\`U ) =

∑
γ∈L(U\`U ,η)(NU (`, γ) − 1), which, for each x ∈ M(`,U),

yields

Pη(U)− Pη(U\`U ) ≥
∑

γ∈L`(U\`U ,x)

(
NU (`, γ)− 1

)
≥
∣∣L`(U\`U , x)

∣∣. (4.4)

By applying Morse-Hedlund Theorem, Cyr and Kra showed that, under certain
conditions, a suitable upper bound for Pη(U)− Pη(U\`U ) and so for |L`(U\`U , x)|,
imposes periodicity in some regions of specific configurations. In the sequel, we will
employ a similar strategy.

Let ` ∈ G1 be an oriented line. Given a set U ∈ FVolC , for each oriented line
`′ ⊂ R2 parallel to ` such that `′ ∩U 6= ∅, we denote iU (`′) and fU (`′), respectively,
the initial and the final points on `′∩U according to the orientation of `′. If |`′∩U|
is equal to 1, then iU (`′) and fU (`′) are the same point. For p ∈ N, we define (see
Figure 5)

I`,p(U) :=
{
iU (`′) ∈ Z2 : `′ is parallel to `, `′ 6= `U , |`′ ∩ U| ≥ p

}
and

F`,p(U) :=
{
fU (`′) ∈ Z2 : `′ is parallel to `, `′ 6= `U , |`′ ∩ U| ≥ p

}
.

U

U

`U `U

F`,p(U)

I`,p(U)

Figure 5. The oriented line `U and for p = 2 the sets I`,p(U) and
F`,p(U).

For x ∈ Xη, we denote by

A`,p(U , x) :=
{

(T t~v`x)|I`,p(U) : t ∈ Z
}
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the finite alphabet induced by the sequence ξt = (T t~v`x)|I`,p(U), where t ∈ Z.
This sequence is closely related to the restriction of the configuration x to the set⋃
t∈Z(I`,p(U) + t~v`) and this viewpoint will be essential in several arguments. This

motivates the following definition.

Definition 4.2. Let ` ∈ G1 be a rational oriented line and let U ∈ FVolC and p ∈ N.
The set

⋃
t∈Z(I`,p(U) + t~v`) is called an (`,U , p)-strip.

Note that an (`,U , p)-strip can be seen as the intersection of Z2 with the union
of finitely many appropriated lines, i.e., an (`,U , p)-strip can be seen as a set of the
form Z2 ∩ (`1 ∪ · · · ∪ `n), where each `i is parallel to `, `i 6= `U and |`i ∩ U| ≥ p.

Similarly to Lemma 2.24 of [4], the following result shows how nonexpansiveness
is connected to periodicity in certain regions of some configurations.

Lemma 4.3. Given η ∈ AZ2

, suppose ` ∈ G1 is a one-sided nonexpansive direction
on Xη and U ∈ FVolC is an (η, `)-generating set. If x ∈M(`,U) and there is p ∈ N
such that Pη(U)− Pη(U\`U ) ≤ p+ |A`,p(U , x)| − 2, then the restriction of x to the
(`,U , p)-strip is periodic of period t~v` for some t ≤ p+ |A`,p(U , x)| − 2.

Proof. Note that, from (4.4) and by hypothesis, it follows that 1 ≤ |L`(U\`U , x)| ≤
p+ |A`,p(U , x)| − 2. Set

R :=

p−1⋃
t=0

(I`,p(U) + t~v`) ⊂ U

and let ξ = (ξt)t∈Z be the sequence defined by ξt = (T t~v`x)|I`,p(U) for all t ∈ Z.
Note that, for every τ ∈ Z, the word ξτξτ+1 · · · ξτ+p−1 is naturally identified with

theR-configuration (T τ~v`x)|R ∈ L`(R, x). If |A`,p(U , x)| = 1, then there is nothing
to argue. Otherwise, since

Pξ(p) = |L`(R, x)| ≤ |L`(U\`U , x)| ≤ p+ |A`,p(U , x)| − 2,

the Alphabetical Morse-Hedlund Theorem ensures that the sequence ξ is periodic
of period at most p+ |A`,p(U , x)|−2. Thus, the restriction of x to the (`,U , p)-strip
is periodic of period t~v` for some t ≤ p+ |A`,p(U , x)| − 2. �

We will need a version of the above lemma for half-strips. So let ` ∈ G1 be
a rational oriented line. If U ∈ FVolC and a ∈ Z, for each x ∈ Xη, the sets of
U-configurations of x from the level a along of the directions ~v` or −~v` are denoted,
respectively, by

L`a+(U , x) :=
{

(T t~v`x)|U : t ≥ a
}

and L`a−(U , x) :=
{

(T−t~v`x)|U : t ≥ a
}
.

Recall that−~v` is parallel to

`

∈ G1. Naturally, we are led to consider configurations
x ∈ Xη such that

NU (`, γ) > 1 ∀ U\`U -configuration γ ∈ L`a+(U\`U , x) (4.5)

or
NU (`, γ) > 1 ∀ U\`U -configuration γ ∈ L`a−(U\`U , x). (4.6)

We denote by Ma+(`,U) and Ma−(`,U) the sets formed by the configurations
x ∈ Xη that satisfy, respectively, (4.5) and (4.6). Note thatM(`,U) ⊂Ma+(`,U)∩
Ma−(`,U). It is clear that analogous inequalities as (4.4) also hold in this context,
i.e., for x ∈Ma±(`,U), one has

Pη(U)− Pη(U\`U ) ≥
∣∣L`a±(U\`U , x)

∣∣. (4.7)
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For a configuration x ∈ Xη, the finite alphabets induced, respectively, by the se-

quences ξt = (T t~v`x)|I`,p(U), where t ≥ a, and ξ′t = (T−t~v`x)|F`,p(U), where t ≥ a,
are denote by

A`,pa+(U , x) :=
{

(T t~v`x)|I`,p(U) : t ≥ a
}

and

A`,pa−(U , x) :=
{

(T−t~v`x)|F`,p(U) : t ≥ a
}
.

The sequences ξt and ξ′t are closely related to the restriction of the configuration x to
the sets

⋃
t≥a(I`,p(U)+ t~v`) and

⋃
t≥a(F`,p(U)− t~v`), respectively, which motivates

the following definition.

Definition 4.4. Let ` ∈ G1 be a rational oriented line and let U ∈ FVolC , p ∈ N
and a ∈ Z. The sets

F+(a) :=
⋃
t≥a

(I`,p(U) + t~v`) and F−(a) :=
⋃
t≥a

(F`,p(U)− t~v`)

are called (`,U , p)-half-strips.

Note that (`,U , p)-half-strips can be seen as the intersection of Z2 with the union
of finitely many appropriated semi-infinite lines (see Figure 6).

F+(a)

U + a~v`

F−(a)

U − a~v`

`U

`U

Figure 6. The oriented line `U and for p = 2 the (`,U , p)-half-
strips F+(a) and F−(a).

Lemma 4.5. Given η ∈ AZ2

, suppose ` ∈ G1 is a one-sided nonexpansive direction
on Xη and that U ∈ FVolC is an (η, `)-generator set. If x ∈ Ma±(`,U) and there

exists p ∈ N such that Pη(U)−Pη(U\`U ) ≤ p+|A`,pa±(U , x)|−2, then the restriction of
x to the (`,U , p)-half-strip F±(a+mx) is periodic of period ±t~v` for some t ≤ mx :=

p+ |A`,pa±(U , x)| − 2.

Proof. The proof is identical to that of the previous lemma, by taking (4.7) instead
of (4.4) and using condition (ii) instead of condition (iii) in the Alphabetical Morse-
Hedlund Theorem. �

If the set U ∈ FVolC does not have suitable geometrical properties, an (`,U , p)-
(half-)strip might be a “nonconnected” set, in the sense that its convex hull contains
further points of U than the (half-)strip itself. In such a situation, it could, for
example, not be possible to extend to a half plane the periodicity obtained for an
(`,U , p)-strip in Lemma 4.3. We will prevent this inconvenience by imposing that
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lines parallel to `U intersect U in a sufficient number of points (see condition (i) in
the next definition). This leads us to consider balanced sets, a class of generating
sets also obeying the bounds on their complexity highlighted in the previous lemmas
(see condition (ii) below).

Definition 4.6. Given η ∈ AZ2

, let ` ∈ G1 be a one-sided nonexpansive direction
on Xη. An (η, `)-generating set U ∈ FVolC is said to be (`, p)-balanced (on Xη),
p ∈ N, if the following conditions hold:

(i) for every `′ 6= `U that contains at least one point of Z2 and is parallel to `,
|`′ ∩ U| ≥ p whenever `′ ∩ conv(U) 6= ∅,

(ii) for each x ∈M(`,U) with |A`,p(U , x)| > 1, we have that Pη(U)−Pη(U\`U ) ≤
px + |A`,px(U , x)| − 2 for some positive integer px ≤ p.

Under an appropriate bound on the complexity, Proposition 4.9 ensures the exis-
tence of balanced sets. Furthermore, as x ∈ M(`,U + u) if, and only if, Tux ∈
M(`,U), it is easy to argue that the property of being an (`, p)-balanced set is
invariant by translations. If U ∈ FVolC satisfies condition (i) of Definition 4.6, it
is immediate that A`,p(U , x) = A`,px(U , x) for every positive integer px ≤ p and
x ∈ Xη.

Remark 4.7. Let U ∈ FVolC be an (`, p)-balanced set. If x ∈ Ma±(`,U) satisfies

|A`,ps±(U , x)| > 1 for infinitely many integer s ≥ a, then it is easy to see that there

exists a positive integer px ≤ p such that Pη(U)−Pη(U\`U ) ≤ px+ |A`,pxa± (U , x)|−2.

If $,$′ ∈ E(U) are antiparallel edges, where U ∈ FVolC is a quasi-regular set
(see Definition 2.1), let R,S ⊂ R2 denote the line segments connecting the initial
and the final points of $ and $′. Line segments such as R,S ⊂ R2 are called axis
of symmetry of U . It is easy to argue that each axis of symmetry S ⊂ R2 divides U
in two subsets AS and BS with AS ∩BS = S ∩ Z2, AS ∪BS = U and |AS | = |BS |.

Remark 4.8. Let U ∈ FVolC and suppose $,$′ ∈ E(U) are antiparallel edges. For
any oriented line ` ⊂ R2 parallel to $ that intersects U , if |$∩U| ≤ |$′∩U|, since
the length of $ is less or equal to the length of the line segment ` ∩ conv(U), then
|` ∩ U| ≥ |$ ∩ U| − 1.

The following result shows how a strong complexity assumption ensures the exis-
tence of balanced sets for any one-sided nonexpansive direction.

Proposition 4.9. Given η ∈ AZ2

aperiodic, suppose there exists a quasi-regular set
U ∈ FVolC for which Pη(U) ≤ 1

2 |U|+ |A| − 1. If ` ∈ G1 is a one-sided nonexpansive

direction on Xη, then there exists an (η, `)-generating set S ∈ FVolC such that

(i) |`S ∩ S| ≤ |

`

S ∩ S|,
(ii) Pη(S)− Pη(S\`S) ≤ |`S ∩ S| − 1.

In particular, it follows that S ∈ FVolC is an (`, p)-balanced set with p = |`S ∩S|−1.

Proof. Initially, let z ∈ R2 be the intersection of two distinct axis of symmetry of
U . Since U is a quasi-regular set, the oriented line parallel to ` that passes through
the point z ∈ R2 intersects antiparallel edges $,$′ ∈ E(U). Let

`′ ⊂ R2 be the
oriented line antiparallel to ` for which the half plane H(

`′) is maximal among all
half planes whose edge (antiparallel to `) has nonempty intersection with both $
and $′. By maximality, there exists a vertex on $ or $′, denoted by u ∈ V (U),
such that u ∈ `′ ∩ Z2. In particular, at most one of the initial and final points of
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$ and $′ may not belong to H(

`′). So if S ⊂ R2 is the axis of symmetry with
u ∈ S, then H(

`′) contains one of the sets AS , BS ⊂ U . Without loss of generality,
we assume that BS ⊂ H(

`′) (see Figure 7). Then, since |AS | = |BS |, we conclude
that

|U ∩ H(

`′)| ≥ |BS | ≥ |BS | −
1

2
|AS ∩BS |+ 1 =

1

2
|U|+ 1.

Denoting T := U ∩H(

`′), we have then

Pη(T )− |T | ≤ Pη(U)− |T | ≤ 1

2
|U|+ |A| − 1− |T | ≤ 1

2
|U|+ |A| − 1− 1

2
|U| − 1,

so that Pη(T ) ≤ |T |+ |A| − 2.

`′

BS

AS

U

g

u

S

Figure 7. The line and the subsets AS , BS ⊂ U .

`′ ⊂ R2

Since (by construction) `′ has nonempty intersection with $,$′ ∈ E(U) and U is
a convex set, the length of `′′∩ conv(U) is less or equal to the length of `′∩ conv(U)
for all oriented line `′′ ⊂ R2 parallel to `. This means that

|`′ ∩ U| = max {|`′′ ∩ U| : `′′ is parallel to `} . (4.8)

According to Remark 3.16, there exists a half plane H ⊂ Z2 (whose edge is paral-
lel to `) and an (η, `)-generating set S ∈ FVolC such that

S\`S = (U ∩H(

`′)) ∩H = T ∩ H, (4.9)

Pη(S)− Pη(S\`S) ≤ |`S ∩ S| − 1. (4.10)

Note that

`

S =

`

S\`S =

`

(U∩H(

`′))∩H =

`

U∩H(

`′) =

`′, where the first equality holds

for any set S ∈ FVolC and the third follows because the edge of H is antiparallel to

`′. Furthermore, from (4.9) we get

`

S ∩ S =

`

S ∩ (S\`S) =

`′ ∩ U . So by (4.8) one
has

|

`

S ∩ S| = |`′ ∩ U| ≥ |`S ∩ U| ≥ |`S ∩ S|.
Finally, we claim that S is an (`, p)-balanced set with p := |`S ∩ S| − 1. Indeed,

Remark 4.8 ensures condition (i) of Definition 4.6, and from inequality (4.10),
for each x ∈ M(`,S) with |A`,p(S, x)| > 1, we get Pη(S) − Pη(S\`S) ≤ p ≤
p+ |A`,p(S, x)| − 2, i.e., condition (ii) of Definition 4.6 holds for px = p. �

Remark 4.10. For η ∈ AZ2

aperiodic, suppose that Pη(U) ≤ |U|+ |A|−2 for some
U ∈ FC . If the antiparallel oriented lines `,

`

∈ G1 are both one-sided nonexpansive
directions on Xη, then the η-generating set S ∈ FVolC from Remark 3.9 has at least
two antiparallel edges (see Remark 3.12), which are parallel to ` and

`

. Thus, if the
edge parallel to ` is the smallest one, it is not difficult to see that S is (`, p)-balanced
with p := |`S ∩ S| − 1.
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The notion of balanced sets introduced here has some advantages. For example,
if ` ∈ G1 is a one-sided nonexpansive direction on Xη and S ∈ FVolC is an (η, `)-ge-
nerating set where Pη(S)−Pη(S\`S) ≤ |`S ∩S|− 1, then S may be (`, p)-balanced
even when |`S ∩ S| > |

`

S ∩ S|. Indeed, if |

`

S ∩ S| > 1, it is enough to have

|`S ∩ S| ≤ |

`

S ∩ S|+ |A`,p(S, x)| − 2

for every configuration x ∈M(`,S) with |A`,p(S, x)| > 1, where p := |

`

S ∩ S| − 1.

4.1. Extending periodicity from strips. For an (`, p)-balanced set T ∈ FVolC ,
we define

Φp(`, T ) := Pη(T )− Pη(T \`T )

if |A`,p(T , x)| = 1 for every x ∈M(`, T ) and

Φp(`, T ) := max
{
px + |A`,px(T , x)| − 2 : x ∈M(`, T ) and |A`,px(T , x)| > 1

}
otherwise, where px ≤ p is the smallest integer fulfilling Definition 4.6. Although
the definition of Φp(`, T ) may seem somewhat elaborate, we prefer to use it to make
it clear that we can extend periodicity beyond strips even without explicitly using
any hypothesis about complexity. When we consider our alphabetical upper bound
for complexity, however, the function Φp(`, T ) may be replaced by a nice expression
(see inequality (5.7)).

The next lemma will allow us to extend the periodicity to larger strips and then
to half planes.

Lemma 4.11. Given η ∈ AZ2

, suppose ` ∈ G1 is a one-sided nonexpansive direction
on Xη and U ∈ FVolC is an (`, p)-balanced set. If the restriction of x ∈ Xη to the
(`,U , p)-strip F is periodic of period t′~v` for some t′ ∈ N, then x|`U ∪ F is periodic
of period t~v`, where t = t′ if x 6∈ M(`,U) and t ≤ 2Φp(`,U) otherwise.

Proof. Initially, if x 6∈ M(`,U), since x|F is periodic of period t′~v`, that is, x|F =

(T t
′~v`x)|F , from Lemma 4.1 it follows that x|`U ∪ F = (T t

′~v`x)|`U ∪ F .
Suppose x ∈ M(`,U) and |A`,p(U , x)| > 1. In this case, from (4.4) we obtain

that |L`(U\`U , x)| ≤ px +
∣∣A`,px(U , x)

∣∣− 2 ≤ Φp(`,U) where px ≤ p is the smallest
integer fulfilling Definition 4.6. Therefore,

∣∣L`(U , x)
∣∣− Φp(`,U) ≤

 ∑
γ∈L`(U\`U ,x)

NU (`, γ)

− ∣∣L`(U\`U , x)
∣∣

=
∑

γ∈L`(U\`U ,x)

(
NU (`, γ)− 1

)
≤

∑
γ∈L(U\`U ,η)

(
NU (`, γ)− 1

)
= Pη(U)− Pη(U\`U ) ≤ px +

∣∣A`,px(U , x)
∣∣− 2, (4.11)

which yields

|L`(U , x)| ≤ Φp(`,U) + px + |A`,px(U , x)| − 2 ≤ 2Φp(`,U).

By the Pigeonhole Principle, we can assume, without loss of generality, that there
exists a positive integer t ≤ 2Φp(`,U) such that x|U = (T t~v`x)|U . If we also have
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x|U ∪ F = (T t~v`x)|U ∪ F , since U ∈ FVolC is an (η, `)-generating set, by induction,
we obtain

x|`U ∪ F = (T t~v`x)|`U ∪ F .
So to finish this case, it is enough to show that x|F is periodic of period t~v`. Indeed,
let ξ = (ξi)i∈Z be the sequence defined by ξi := (T i ~v`x)|I`,px(U) for all i ∈ Z. As

|A`,px(U , x)| > 1 and

Pξ(px) ≤ |L`(U\`U , x)| ≤ px + |A`,px(U , x)| − 2,

let 1 < p0 ≤ px be the smallest integer such that Pξ(p0) ≤ p0 + |A`,p0(U , x)| − 2. It
is easy to see that by minimality Pξ(p0) = Pξ(p0 − 1), which means that a word of
p0− 1 symbols admits exactly one extension to a word of p0 symbols. Hence, since
from x|U = (T t~v`x)|U one has ξ0ξ1 · · · ξp0−1 = ξtξt+1 · · · ξt+p0−1, by induction it
follows that the sequence ξ is periodic of period t. In other words, x|F is periodic
of period t~v`.

Suppose x ∈ M(`,U) and |A`,p(U , x)| = 1. In this case, there exists a unique
U\`U -configuration γ ∈ L`(U\`U , x) and, therefore,∣∣L`(U , x)

∣∣− 1 ≤ NU (`, γ)− 1 ≤ Pη(U)− Pη(U\`U ).

As before, we can assume that there is a positive integer t ≤ Pη(U)−Pη(U\`U ) + 1

such that x|U = (T t~v`x)|U . Since |A`,p(U , x)| = 1, x|F is in particular periodic of
period t~v`. The same argument as in the previous case allows us to conclude that
the restriction of x to `U∪F is periodic of period t~v`. Finally, as Pη(U) > Pη(U\`U ),
note that

Pη(U)− Pη(U\`U ) + 1 ≤ 2
(
Pη(U)− Pη(U\`U )

)
= 2Φp(`,U).

This completes the proof. �

A key element of the proof of the main result will be the possibility of extending
periodicity to wider half-strips (see Lemma 4.13). It is necessary to avoid doubts
regarding orientations and to introduce a precise notation for each situation. There-
fore, for (`,U , p)-half-strips F+(a), F−(a) ⊂ Z2, we define (see Figure 8)

(`U ∪ F+)(a) := F+(a) ∪ {iU (`U ) + t~v` : t ≥ a} (4.12)

and
(`U ∪ F−)(a) := F−(a) ∪ {fU (`U )− t~v` : t ≥ a}. (4.13)

U + a~v`

U − a~v`

`U

`U

(`U ∪ F+)(a)

(`U ∪ F−)(a)
g

g′

Figure 8. The points g = iU (`U )+a~v` and g′ = fU (`U )−a~v` and
the sets (`U ∪ F+)(a) and (`U ∪ F−)(a).
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Lemma 4.12. For η ∈ AZ2

and a rational oriented line ` ∈ G1, let U ∈ FVolC be an
(η, `)-generating set. If x 6∈ Ma±(`,U), then, for every (`,U , p)-half-strip F±(a)
with conv(F±(a))∩Z2 = F±(a) and any configuration y ∈ Xη, x|F±(a) = y|F±(a)
implies x|(`U ∪ F±)(a) = y|(`U ∪ F±)(a).

Proof. The proof is identical to that one of Lemma 4.1. �

Next lemma is the analogous of Lemma 4.11 for half-strips (recall that −~v` = ~v `).

Lemma 4.13. Given η ∈ AZ2

, suppose ` ∈ G1 is a one-sided nonexpansive direction
on Xη and U ∈ FVolC is an (`, p)-balanced set. If the restriction of x ∈ Xη to the
(`,U , p)-half-strip F±(a), a ∈ Z, is periodic of period ±t′~v` for some t′ ∈ N, then
x|(`U ∪ F±)(a) is periodic of period ±t~v`, where t = t′ if x 6∈ Ma±(`,U) and t ≤
2Φp(`,U) otherwise.

Proof. The proof is similar to that one of Lemma 4.11. If x 6∈ Ma±(`,U), we use

Lemma 4.12 instead of Lemma 4.1. If x ∈ Ma±(`,U) and |A`,pa±(U , x)| > 1, since

the sequence (T±t~v`x)t≥a ⊂ Ma±(`,U) has an accumulation point z ∈ M(`,U)
with |A`,p(U , z)| > 1, then there exists a smallest integer pz ≤ p fulfilling Definition

4.6. Due to periodicity of x|F±(a), we have A`,pz (U , z) = A`,pza± (U , x). So just use
(4.7) instead of (4.4). �

Proposition 4.14. Let η ∈ AZ2

and suppose ` ∈ G1 is a one-sided nonexpansive
direction on Xη and U ∈ FVolC is an (`, p)-balanced set. If the restriction of x ∈ Xη

to the (`,U , p)-strip is periodic of period t′~v` for some t′ ∈ N, then, for any transla-
tion U ′ of U with U ′ ⊂ H(

`
U ), the restriction of x to the (`,U ′, p)-strip is periodic of

period t~v`, where t ≤ max{t′, 2Φp(`,U)}. In particular, the configuration x|H(

`

U )
is `-periodic.

Proof. Let u ∈ (Z2)∗ be such that `+u = `(−) (recall Notation 3.6). Let PU denote
the set of κ ∈ Z+ such that the restriction of x ∈ Xη to the (`,U + κu, p)-strip is
periodic of period τ ′~v` for some τ ′ ≤ max{t′, 2Φ`,p(U)}. Suppose, by contradiction,
that PU does not coincide with Z+. Let κ′ ∈ PU be the largest integer for which
i ∈ PU for every 0 ≤ i ≤ κ′. Since the restriction of x to the (`,U + κ′u, p)-strip
Fκ′ is periodic of period τ ′~v` for some integer τ ′ ≤ max{t′, 2Φp(`,U)}, according
to Lemma 4.11, the configuration x|`(U+κ′u) ∪ Fκ′ is periodic of period τ~v`, where

τ = τ ′ if x 6∈ M(`,U + κ′u) and τ ≤ 2Φp(`,U + κ′u) otherwise. The fact that

x ∈M(`,U+κ′u) if, and only if, Tκ
′ux ∈M(`,U) implies Φp(`,U+κ′u) = Φp(`,U).

So we have that the restriction of x to the (`,U + (κ′ + 1)u, p)-strip is periodic
of period τ~v` with τ ≤ max{t′, 2Φp(`,U)}, which contradicts the maximality of
κ′ ∈ Z+. �

The thesis of corollary below was first obtained in Proposition 3.14 for periodic
configurations. Here, as a consequence of the previous results this hypothesis can
be replaced by the existence of a balanced set.

Corollary 4.15. If U ∈ FVolC is (`, p)-balanced, then the oriented line

`

, antipar-
allel to ` ∈ G1, is also a one-sided nonexpansive direction on Xη.

Proof. Let x, x′ ∈ Xη be configurations where x|H(`) = x′|H(`), but xg 6= x′g for

some g ∈ `(−)∩Z2. Let U ′ ∈ FVolC denote a translation of U ∈ FVolC such that `U ′ =

`(−). It follows by Lemma 4.1 that x, x′ ∈ M(`,U ′). Thanks to Lemma 4.3, the
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restrictions of x and x′ to the (`,U ′, p)-strip are `-periodic. Proposition 4.14 ensures
then that the restrictions of x and x′ to the half plane H(

`

U ′) are `-periodic of peri-
ods h, h′ ∈ (Z2)∗. Suppose, by contradiction, that

`

∈ G1 is a one-sided expansive

direction on Xη. Since x|H(

`

) = (Thx)|H(

`

) and x′|H(

`

) = (Th
′
x′)|H(

`

), it follows
by expansiveness that x, x′ ∈ Xη are `-periodic. Thus, due to Proposition 3.14, the
oriented lines `,

`

∈ G1 are both one-sided expansive directions on both subshifts
Orb (x) and Orb (x′). With respect to the others lines, from Lemma 3.4 we get
that they are also expansive on both subshifts. Hence, Corollary 3.3 implies that
x, x′ ∈ Xη are doubly periodic. Therefore, as x|H(`) = x′|H(`), we conclude that
x and x′ are equals, which is a contradiction. �

Note that, by the very definition, the vertices of an edge of an (`, p)-balanced set
parallel to

`

are not necessarily generated. Thus, it is not a surprise that, to extend
periodicity to the entire plane, one has to simultaneously consider (`, p)-balanced
and (

`

, q)-balanced sets. The following result shows how balanced sets impose peri-
odicity for some configurations.

Proposition 4.16. For η ∈ AZ2

, suppose ` ∈ G1 is a one-sided nonexpansive dir-
ection on Xη and U , T ∈ FVolC are, respectively, (`, p)-balanced and (

`

, q)-balanced.
If the restriction of x ∈ Xη to the (`,U , p)-strip is periodic of period t′~v` for some
t′ ∈ N, then, for any translation U ′ of U , the restriction of x to the (`,U ′, p)-strip is
periodic of period t~v`, where t ≤ max{t′, 2Φp(`,U)}. In particular, the configuration
x is `-periodic. Similarly, if the restriction of a configuration to the (

`

, T , q)-strip
is periodic, then the configuration is

`
-periodic.

Proof. Initially, it follows from Proposition 4.14 applied to each one of the sets
U , T ′ ∈ FVolC that x is `-periodic, where T ′ is a translation of T with T ′ ⊂ H(

`

U ).

So let u ∈ (Z2)∗ be such that `(−) + u = `. Let QU be the set of κ ∈ Z+ such that
the restriction of x ∈ Xη to the (`,U+κu, p)-strip is periodic of period τ~v` for some
τ ≤ max{t′, 2Φp(`,U)}. Suppose, by contradiction, that QU does not coincide with
Z+. Let κ′ ∈ QU denote the largest integer for which i ∈ QU for every 0 ≤ i ≤ κ′.
Thus, Lemma 4.3 and Proposition 4.14 imply that x 6∈ M(`,U + κu) for all integer
κ > κ′. Since x is `-periodic, the Pigeonhole Principle ensures that there are integers
i > I ≥ κ′ such that x|F + iu = x|F + Iu, where F ⊂ Z2 denotes the (`,U , p)-strip.
We can further assume that I ≥ κ′ is the smallest integer with this property. Since
x|F + iu = x|F + Iu = (T (I−i)ux)|F + iu and x 6∈ M(`,U + iu), from Lemma 4.1,
we get x|(F + iu) ∪ `(U+iu) = (T (I−i)ux)|(F + iu) ∪ `(U+iu). Since F + (i − 1)u ⊂
`(U+iu) ∪ (F + iu), one has x|F + (i− 1)u = x|F + (I − 1)u and so I = κ′ (by
minimality of I). Hence, the restriction of x to the (`,U + iu, p)-strip is periodic
of period τ~v` for some τ ≤ max{t′, 2Φp(`,U)}. Therefore, by applying Proposi-
tion 4.14, one contradicts the maximality of κ′ ∈ QU . �

5. (`, `′)-periodic maximal K-configurations

If η ∈ AZ2

is an aperiodic configuration with Pη(n, k) ≤ 1
2nk for some n, k ∈ N,

in [4] the authors proved that there always exists another aperiodic configuration

ϕ ∈ AZ2

whose restriction to a largest convex set K is doubly periodic, say, both
`-periodic and `′-periodic. We will obtain the same result, but in a more general con-
text (see Proposition 5.3). Such an aperiodic configuration ϕ is called an (`, `′)-pe-
riodic maximal K-configuration; see the next definition for accuracy.
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Definition 5.1. Let `, `′ ∈ G1 be rational oriented lines, with ` ∩ `′ = {0}, such
that ~v`′ ∈ H(`). Let K ⊂ Z2 be a convex set with semi-infinite edges parallel to `

and `′. An aperiodic configuration ϕ ∈ AZ2

is said to be an (`, `′)-periodic maximal
K-configuration if (i) ϕ|K is doubly periodic with periods in `∩(Z2)∗ and `′∩(Z2)∗,
and (ii) K is maximal among all convex sets (positively oriented) with semi-infinite
edges parallel to ` and `′ that satisfy condition (i).

In the above definition, ~v`′ ∈ H(`) means that (with respect to the orientation
inhered from the boundary of conv (K)) the edge parallel to ` precedes the edge par-
allel to `′ (see Figure 9.A). In particular, only (`,S, p)-half-strips of the form F−(a),
a ∈ Z, and (`′,S ′, q′)-half-strips of the form F+(a′), a′ ∈ Z, may be contained in K
(see Definition 4.4 to recall the notion of half-strips).

K1

w

w′

(A) ϕ is an (`, `′)-periodic maximal
K1-configuration.

K2

w′

w

(B) ϕ is an (

`′, `)-periodic maximal
K2-configuration.

K3

w′

w

(C) ϕ is an (`′,

`

)-periodic maximal
K3-configuration.

K4

w′

w

(D) ϕ is an (

`

,

`′)-periodic maximal
K4-configuration.

Figure 9. Fixed two oriented lines, the four types of infinite
convex regions over which periodic maximal configurations may
be found are represented above. In each case, the semi-infinite
edges w,w′ ∈ E(Ki), i = 1, 2, 3, 4, are parallel to the corresponding
oriented lines.

From now on, whenever we mention an (`, `′)-periodic maximal K-configuration,
we are supposing that `, `′ ∈ G1 are rational oriented lines with ` ∩ `′ = {0} and
~v`′ ∈ H(`), as well as that K is a convex set with semi-infinite edges parallel to `
and `′.

Note that, if η ∈ AZ2

is an (`, `′)-periodic maximal K-configuration, the max-
imality of K and Lemma 3.13 imply that `, `′ ∈ G1 are one-sided nonexpansive
directions on Xη.

Definition 5.2. For U ∈ FVolC , a convex set T ⊂ Z2 is said to be weakly E(U)-enve-
loped if, for every edge $ ∈ E(T ), there exists an edge w ∈ E(U) parallel to $ with
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|w∩U| ≤ |$∩T |. A set T ∈ FVolC weakly E(U)-enveloped verifying |E(T )| = |E(U)|
is said to be E(U)-enveloped.

It is clear that every set U ∈ FVolC is E(U)-enveloped.

Proposition 5.3. For η ∈ AZ2

aperiodic, suppose there is a set U ∈ FC such that
Pη(U) ≤ |U|+ |A|−2. If there exist an (`, r)-balanced set and an (

`

, q)-balanced set,
then one may always obtain a rational oriented line `′ ∈ G1 and an infinite convex
region K ⊂ Z2 for which there exists an (l, `′)-periodic or an (`′, l)-periodic maximal
K-configuration ϕ ∈ Xη, where l ∈ {`,

`

}1.

Proof. Let S ∈ FVolC be an η-generating set as in Remark 3.9 and suppose, without
loss of generality, |`S ∩S| ≤ |

`

S ∩S|. (As effect of this choice, l = ` in this proof and
we come across either the situation described in Figure 9.A or the one presented in
Figure 9.B.) According to Remark 4.10, the set S fulfills all properties to be (`, p)-
balanced with p := |`S ∩S|− 1. Since ` ∈ G1 is a one-sided nonexpansive direction
on Xη, there must exist x, y ∈ Xη such that x|H(`) = y|H(`), but xg 6= yg for some

g ∈ `(−) ∩ Z2. Translating S if necessary, we can further assume that (0, 0) ∈ S
and that `S = `(−). Thanks to Lemma 4.1, x, y ∈ M(`,S). So Lemma 4.3 and
Proposition 4.16 imply that x and y are `-periodic, but the fact that xg 6= yg for

some g ∈ `(−) ∩ Z2 prevents both configurations x|H(`(−)) and y|H(`(−)) from
being doubly periodic. Thus, we can assume the restriction of x to the half plane
H(`(−)) is not doubly periodic.

Note that, for every `-strip F , with S\`S ⊂ F , and any finite set B ⊂ F , there
always exists x′ ∈ Xη such that x|B = x′|B, but x|F 6= x′|F . Indeed, otherwise,
since x|B = (T gη)|B for some g ∈ Z2, the restriction of T gη to the (`,S, p)-strip
would be `-periodic and then Proposition 4.16 would imply that η is periodic,
contradicting the aperiodicity of η. This fact allows us to construct a sequence of
E(S)-enveloped sets

A0 ⊂ B1 ⊂ A1 ⊂ B2 ⊂ A2 ⊂ · · · ⊂ Bi ⊂ Ai ⊂ · · · ,
with A0 ⊂ S and B1 := S, and configurations (ϕi)i∈N ∈ Xη such that, for each
i ≥ 1,

(i) Bi ∈ FVolC is an E(S)-enveloped set with `Bi
= `S ,

(ii) Bi contains both Ai−1 and [−i+ 1, i− 1]2 ∩H(`(−)),
(iii) x|Bi = ϕi|Bi, but x|Fi 6= ϕi|Fi,
(iv) either Ai is a maximal set among all E(S)-enveloped sets T ∈ FVolC such

that Bi ⊂ T ⊂ F+
i and x|T = ϕi|T or Ai is a maximal set among all

E(S)-enveloped sets T ∈ FVolC such that Bi ⊂ T ⊂ F−i and x|T = ϕi|T ,2

where

Fi :=
⋃
j∈Z

(
Bi + j~v`

)
, F+

i :=
⋃
j≥0

(
Bi + j~v`

)
and F−i :=

⋃
j≥0

(
Bi − j~v`

)
.

We need consider two cases separately. We will focus on the case where there
exist infinitely many indexes i for which Ai is a maximal set among all E(S)-enve-
loped sets T ∈ FVolC such that Bi ⊂ T ⊂ F+

i and x|T = ϕi|T (see Figure 10).

1As `′ represents in this statement an arbitrary oriented line, note that all the situations present

in Figure 9 are in fact contemplated.
2If there is not a maximal E(S)-enveloped set Bi ⊂ Ai ⊂ F+

i , then there must exist a maximal

E(S)-enveloped set Bi ⊂ Ai ⊂ F−i , since, otherwise, η would be periodic.
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By passing to a subsequence, we can assume this holds for all i. For each integer
i ≥ 1, we have `S ∩ S ⊂ `Ai ∩ Ai ⊂ `(−). So let g1 := fA1(`(−)) be the final point
of `A1

∩A1 (with respect to the orientation of `(−)) and, for each i ≥ 1, let ki ∈ N
be such that fAi−ki~v`(`

(−)) = g1. Setting Âi := Ai − ki~v`, since

(T ki~v`x)|Âi = x|Ai = ϕi|Ai = (T ki~v`ϕi)|Âi,

then each Âi is a maximal set among all E(S)-enveloped sets T ∈ FVolC such that
Bi−ki~v` ⊂ T ⊂ F+

i −ki~v` and (T ki~v`x)|T = (T ki~v`ϕi)|T . As x ∈ Xη is `-periodic,

then there exists an integer k ≥ 0 such that T k~v`x = T ki~v`x for infinitely many i.
By passing to a subsequence, we can assume this holds for all i.

B1

A1

B2

A2

B3

A3

`(−)

F+
1 F+

2 F+
3

Figure 10. The sets B1 ⊂ A1 ⊂ B2 ⊂ A2 ⊂ · · · .

Suppose wi(0), wi(1), . . . , wi(K), wi(K + 1) ∈ E(Âi) are enumerated according

to the orientation inherited from the boundary of conv(Âi), where wi(0) is parallel
to ` and wi(K + 1) is parallel to

`

. Since
⋃∞
i=1Ai = H(`(−)), let 1 ≤ kmin ≤ K

be the smallest integer such that |wi(kmin)∩ Âi| < |wi+1(kmin)∩ Âi+1| for infinity
many i. By passing to a subsequence, we can assume that this holds for all i and,
if kmin > 1, that |wi(k) ∩ Âi| = |wi+1(k) ∩ Âi+1| for every 1 ≤ k ≤ kmin − 1 and

all i ≥ 1. In particular, Â∞ :=
⋃∞
i=1 Âi is a convex weakly E(S)-enveloped set (see

Figure 11), with two semi-infinite edges, one of which is parallel to ` ∈ G1 and the
other one is parallel to the edges wi(kmin).

We define ϕ̂i := T k~v`ϕi for all i and x̂ := T k~v`x. Since ϕ̂i′ |Âi = ϕ̂i|Âi for all
1 ≤ i ≤ i′, by the compactness of Xη, the sequence {ϕ̂i}i∈N has an accumulation
point ϕ ∈ Xη with ϕ|Â∞ = x̂|Â∞. In particular, it follows that ϕ|Â∞ is an `-perio-
dic configuration.

For each 0 ≤ j ≤ kmin, let lj ⊂ R2 denote the oriented line parallel to the edges

wi(j) ∈ E(Âi) such that wi(j) ⊂ lj for all i, and let ℘m+1 := ℘
(−)
m for all m ≥ 0,

where ℘0 := lkmin
. Writing Â

(m)
∞ := H(lkmin−1) ∩ (Â∞∪ ℘0 ∪ ℘1 ∪ · · · ∪ ℘m) for all

m ≥ 0, we claim that there exists n ≥ 0 such that

ϕ|Â(n)
∞ = x̂|Â(n)

∞ , but ϕ|Â(n+1)
∞ 6= x̂|Â(n+1)

∞ . (5.1)
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B1

Â1

Â2

Â3

`(−)

Â4

g1

Figure 11. The sets B1 ⊂ Â1 ⊂ Â2 ⊂ · · · ⊂ Â∞.

Indeed, suppose, by contradiction, that ϕ|Â(m)
∞ = x̂|Â(m)

∞ for all integer m ≥ 1. As

each set Âi is E(S)-enveloped and lkmin−1 and lkmin
are fixed, then, for a sufficiently

large ı, there exists an integer m ≥ 1 for which both lkmin−1∩℘m and lkmin+1∩℘m
belong to Z2, with the distance from lkmin−1 ∩ ℘m to lkmin+1 ∩ ℘m greater than
the length of w1(kmin), where lkmin+1 ⊂ R2 denotes the oriented line parallel to

wι(kmin + 1) ∈ E(Âι) such that wι(kmin + 1) ⊂ lkmin+1. Hence, one has that

Â(m)
ı := H(lkmin−1)∩

(
Âı ∪ ℘0 ∪ ℘1 ∪ · · · ∪ ℘m

)
∩H(lkmin+1) ⊂ (F+

ı −kı~v`)∩ Â(m)
∞

is an E(S)-enveloped set. From our assumption it follows that ϕ|Â(m)
ı = x̂|Â(m)

ı ,

which contradicts the maximality of Âı.
We fix once for all n ≥ 0 fulfilling (5.1). Let `′ ∈ G1 be the oriented line parallel

to the edges wi(kmin). Suppose T ∈ FVolC is a translation of S such that `′T = ℘n+1

and a ∈ Z satisfies T \`′T + a~v`′ ⊂ Â
(n)
∞ . We claim that ϕ ∈ Ma+(`′, T ). In fact,

if there exists a T \`′T -configuration γ ∈ L`
′

a+(T \`′T , ϕ) with NT (`′, γ) = 1, from

ϕ|Â(n)
∞ = x̂|Â(n)

∞ , it follows that

ϕ|Â(n)
∞ ∪ (T + i~v`′) = x̂|Â(n)

∞ ∪ (T + i~v`′) (5.2)

for some i ≥ a. Although Â
(n)
∞ may be not weakly E(S)-enveloped, both Â

(n)
∞ and

T have suitable geometries to fully take advantage of (5.2). Then, as T is an η-ge-

nerating set, from (5.2) it follows by induction that ϕ|Â(n+1)
∞ = x̂|Â(n+1)

∞ , which
contradicts (5.1).

Note that `′ ∈ G1 is a one-sided nonexpansive direction on Xη, since, otherwise,
from Lemma 3.13 we could get (5.2) for some integer i ≥ a and, exactly as above,

reach an absurd. Our goal now will be to construct a convex subset K of Â
(n)
∞ (with

two semi-infinite edges parallel to the oriented lines `, `′ ∈ G1) such that ϕ|K is
both `-periodic and `′-periodic.

Let p′ := |`′T ∩ T | − 1. If |A`
′,p′

a+ (T , ϕ)| = 1, then the restriction of ϕ to the
(`′, T , p′)-half-strip F+(a) is trivially periodic of period ~v`′ . Otherwise, by minimali-
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ty, one has Pη(T ) − Pη(T \`′T ) ≤ p′ ≤ p′ + |A`
′,p′

a+ (T , ϕ)| − 2 (recall Remark 3.9).
Hence, Lemma 4.5 implies, in particular, that, for some b ≥ a, the restriction of ϕ
to the (`′, T , p′)-half-strip F+(b) ⊂ F+(a) is periodic of period h′ := t′~v`′ for some
t′ ≥ 1. Let g′0, g

′
1 ∈ `′T ∩T be the two distinct vertices of T . Since T is convex and

|`T ∩ T | ≤ |

`

T ∩ T |, then the set R ∈ FVolC whose vertices are

g′0, g
′
0 − (|`T ∩ T | − 1)~v`, g

′
1 and g′1 − (|`T ∩ T | − 1)~v`

is contained in T . So any oriented line `′′ ⊂ R2 parallel to `′ satisfying `′′ ∩R 6= ∅
also satisfies |`′′ ∩R| ≥ |`′R ∩R|− 1 = |`′T ∩ T | − 1. This means that the (`′,R, p′)-
half-strip F+

R(b) lies in the (`′, T , p′)-half-strip F+(b). Let Q ⊂ H(`R+b~v`′ )∩ Â
(n)
∞ be

an E(S)-enveloped set large enough so that, for any integers 0 ≤ r < s, ϕ|Q+ rh′ =
ϕ|Q+ sh′ implies

ϕ|FQ + rh′ = ϕ|FQ + sh′ = T (s−r)h′ϕ|FQ + rh′, (5.3)

where FQ is defined to be the set
(⋃

i∈Z(Q− i~v`)
)
∩ Â(n)
∞ . Of course this is possible

because ϕ|Â(n)
∞ is `-periodic. We claim that if 0 < r < s satisfy (5.3), then the res-

triction of ϕ to the set H(`R+b~v`′ )∩ Â
(n)
∞ ∩H(

`

Q+rh′) is periodic of period (s−r)h′.
In fact, since ϕ|Â(n)

∞ is periodic of period h := t~v ` for some t ≥ 1 (recall that
~v `= −~v`), then

ϕ|(F+
R(b) + ιh) ∪ (FQ + rh′) = T (s−r)h′ϕ|(F+

R(b) + ιh) ∪ (FQ + rh′), (5.4)

where ι ≥ 1. Let `0 := `Q+rh′ and set `i+1 := `
(−)
i for all i ≥ 1. Fix ι > |T |.

Since any translation of T is η-generating and |`1 ∩ (F+
R(b) + ιh)| ≥ |`T ∩ T | − 1,

from (5.4) we can, by induction, enlarge the set where ϕ and T (s−r)h′ϕ coincide by

including a subset of `1 ∩ Â(n)
∞ which can be so large as we want (see Figure 12).

The `-periodicity of ϕ|`1 ∩ Â(n)
∞ and T (s−r)h′ϕ|`1 ∩ Â(n)

∞ implies then ϕ|`1 ∩ Â(n)
∞ =

T (s−r)h′ϕ|`1 ∩ Â(n)
∞ . The same idea applied to the lines `i for i = 2, . . . ,M , where

`M = `R+b~v`′ , allows us to conclude that the restriction of ϕ to the set H(`R+b~v`′ )∩
Â

(n)
∞ ∩H(

`

Q+rh′) is periodic of period (s−r)h′, which proves the claim. Since there
exist 0 < t′0 ≤ Pη(Q) and infinitely many indexes r > 0 so that (5.3) holds for r

and s := r+ t′0, from the previous discussion, we conclude that ϕ|H(`R+b~v`′ ) ∩ Â
(n)
∞

is periodic of period t′0h
′.

For K′ := H(`R+b~v`′ ) ∩ Â
(n)
∞ , let K ⊂ Z2 denote the maximal set among all

convex sets W ⊃ K′ such that ϕ|W is both `-periodic and `′-periodic.
Since K is convex and K′ has two semi-infinite edges parallel, respectively, to `

and `′ (recall that ℘n is parallel to `′), the inclusions K′ ⊂ K ⊂ H(`)∩H(℘n) ensure
that K has two semi-infinite edges parallel, respectively, to ` and `′. To conclude
the proof, it is enough to show that K ⊂ H(`) ∩ H(℘n). If K 6⊂ H(℘n), then

℘n+1∩ conv(K) is a half line. As ϕ|K and x̂ are `-periodic and ϕ|Â(n)
∞ = x̂|Â(n)

∞ ,

it follows that ϕ|Â(n)
∞ ∪ (℘n+1 ∩ K) = x̂|Â(n)

∞ ∪ (℘n+1 ∩ K). But this equality is
stronger than (5.2) and, by a similar reasoning that the one that succeeds it, one
contradicts (5.1). Now, if K 6⊂ H(`), then `′′ ∩ conv(K) is a half line for every
line `′′ ⊂ H(`(−)) parallel to `. This allows us to transfer the doubly periodicity

of x̂|K ∩ Â(n)
∞ ∩H(`(−)) to x̂|H(`(−)), which is an absurd, since we are assuming

x|H(`(−)) is not doubly periodic.
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T + b~v`′

R+ b~v`′

Â
(n)
∞

`1`2
`M

FQ + rh′

T1

F+
R(b) + ιh

`

Q+rh′

Figure 12. In the figure on the left, one has the sets T + b~v` and
R+ b~v`. In the figure on the right, the grey region represents the
set where the restrictions of ϕ and T (s−r)h′ϕ coincide. The set T1
denotes the translation of T such that u1 := fF+

R(b)+ιh(`1) is the

final point of `T1 ∩T1 (with respect to the orientation of `T1). The
white points denote the new set where the restrictions of ϕ and
T (s−r)h′ϕ also coincide.

Finally, from Lemma 3.13 and maximality of K, it follows that `, `′ ∈ G1 are one-
sided nonexpansive directions on Orb (ϕ), which means that ϕ ∈ Xη is aperiodic
and so an (`, `′)-periodic maximal K-configuration.

The proof of the case where there exist infinitely many i for which Ai is a maximal
set among all E(S)-enveloped sets T ∈ FVolC such that Bi ⊂ T ⊂ F−i and x|T =
ϕi|T is analogous to the previous one by doing the obvious changes. Differently from
the first case, here we get an (`′, `)-periodic maximal K-configuration ϕ ∈ Xη. �

We highlight a class of η-generating sets whose existence comes naturally from
a strong condition on the complexity. Although it is a concept derived immedi-
ately from our key hypothesis, whose fundamental properties could be absorbed
in technical arguments, our main goal in introducing this notion is to simplify the
statements of results and the expositions of proofs that will follow.

Definition 5.4. Given η ∈ AZ2

, an η-generating set S ∈ FC is said to be a minimal
lower complexity (mlc) η-generating set if

(i) Pη(S) ≤ 1
2 |S|+ |A| − 1,

(ii) if T ( S is convex and nonempty, then Pη(T ) > 1
2 |T |+ |A| − 1.

The existence of mlc η-generating sets is a straightforward consequence of our
alphabetical bound assumption for complexity. As a matter of fact, if there exists
a set U ∈ FC such that Pη(U) ≤ 1

2 |U|+ |A| − 1, then any convex set S ⊂ U that is

minimal among all convex sets T ⊂ U fulfilling Pη(T ) ≤ 1
2 |T | + |A| − 1 is an mlc

η-generating set. The fact that 1
2 + |A| − 1 < |A| = Pη({g}) for all g ∈ Z2 ensures

that S has at least two points. In particular, if η is an aperiodic configuration,
since 1

2 |S|+ |A| − 1 ≤ |S|+ |A| − 2, from Corollary 3.2, we get S ∈ FVolC .
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Due to condition (ii) of Definition 5.4, if T ( S is convex and nonempty, it is
clear that Pη(S)− Pη(T ) < 1

2 |S\T |, which yields

Pη(S)− Pη(T ) ≤
⌈1

2

∣∣S\T ∣∣⌉− 1, (5.5)

where as usual d · e denotes the ceiling function.

Lemma 5.5. For η ∈ AZ2

, if S ∈ FVolC is an mlc η-generating set, then |`S∩S| ≥ 3
whenever ` ∈ G1 is a one-sided nonexpansive direction on Xη.

Proof. From (4.4), one has Pη(S\`S) < Pη(S) and so (5.5) applied to T = S\`S
provides |`S ∩ S| ≥ 3. �

Remark 5.6. Given η ∈ AZ2

aperiodic, suppose Pη(U) ≤ 1
2 |U|+ |A| − 1 for some

quasi-regular set U ∈ FVolC . If ` ∈ G1 is a nonexpansive line on Xη, Proposition 4.9
and Corollary 4.15 imply that the oriented lines `,

`

∈ G1 are both one-sided non-
expansive directions on Xη. In particular, if S ∈ FVolC is an mlc η-generating set,
then S is (`, p)-balanced with p = |`S ∩S|−1 or (

`

, q)-balanced with q = |

`

S ∩S|−1,
since, clearly, conditions (i) and (ii) of Proposition 4.9 hold in one of the two cases.

Let ` ∈ G1 be a one-sided nonexpansive direction on Xη and suppose S ∈ FVolC

is an mlc η-generating set such that |`S ∩ S| ≤ |

`

S ∩ S| – in particular, an (`, p)-
balanced set with p := |`S ∩ S| − 1. Since 1 ≤ |A`,p(S, x)| ≤ d 12 |`S ∩ S|e − 1 for

every x ∈M(`,S) (see (4.4)) and d 12 |`S ∩ S|e ≤ p, for each x ∈M(`,S), there is a
positive integer px ≤ p such that⌈1

2

∣∣`S ∩ S∣∣⌉− 1 = px +
∣∣A`,p(S, x)

∣∣− 2, (5.6)

which yields Pη(S) − Pη(S\`S) ≤ px + |A`,px(S, x)| − 2. Moreover, from (5.6) it
follows that

2Φp(`,S) ≤ 2
⌈1

2

∣∣`S ∩ S∣∣⌉− 2 ≤
∣∣`S ∩ S∣∣− 1. (5.7)

From the previous discussion, Lemmas 4.3, 4.11, 4.5 and 4.13 can be restated as
follows. Recall that, for a rational oriented line `, the vector ~v `= −~v` (of minimum
norm) is antiparallel to ` and parallel to

`

.

Proposition 5.7. Given η ∈ AZ2

, if there exists an mlc η-generating set S ∈ FVolC

and ` ∈ G1 is a one-sided nonexpansive direction on Xη with |`S ∩ S| ≤ |

`

S ∩ S|,
then S is an (`, p)-balanced set for p = |`S ∩ S| − 1 and satisfies the following con-
ditions.

(i) For x ∈ M(`,S), the restriction of x to the (`,S, p)-strip F is periodic of
period t~v` for some t ≤ d 12 |`S ∩ S|e − 1;

(ii) If the restriction of x ∈ Xη to the (`,S, p)-strip F is periodic of period t′~v`
for some t′ ≥ 1, then x|`S ∪ F is periodic of period t~v`, where t = t′ if
x 6∈ M(`,S) and t ≤ 2d 12 |`S ∩ S|e − 2 otherwise;

(iii) For x ∈Ma±(`,S), with a ∈ Z, the restriction of x to the (`,S, p)-half-strip
F±(a+ p) is periodic of period ±t~v` for some t ≤ d 12 |`S ∩ S|e − 1;

(iv) If the restriction of x ∈ Xη to the (`,S, p)-half-strip F±(a) is periodic of
period ±t′~v` for some t′ ≥ 1, then x|(`S ∪ F±)(a) is periodic of period ±t~v`,
where t = t′ if x 6∈ Ma±(`,S) and t ≤ 2d 12 |`S ∩ S|e − 2 otherwise.
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For an mlc η-generating set, roughly speaking, its complexity is bounded from
above by the sum of the complexity of any proper convex subset and the cardinality
of the complement of this subset, as already seen in (5.5). The key point in the
proof of Theorem 2.2 is to contradict such a property by taking into account a con-
venient proper convex subset. In order to estimate the complexity of this subset
with respect to an (`, `′)-periodic maximal K-configuration ϕ, it is useful to relate
it to the complexity of a suitable small part. This essentially can be done due to
the fact that the periods of ϕ can be bounded by expressions depending on the car-
dinality of the edges of an mlc η-generating set (see Proposition 5.9).

If T ∈ FC and ` ∈ G1, from now on, let diam`(T ) denote the number of distinct
oriented lines parallel to ` that have nonempty intersection with T .

Lemma 5.8. Given η ∈ AZ2

, if S ∈ FVolC is mlc η-generating and `,

`

∈ G1 are anti-
parallel one-sided nonexpansive directions on Xη, then there exists an η-generating
set T ⊂ S with diam`(T ) ≤ d 12 diam`(S)e.

Proof. Initially, choose `1, `2 ⊂ R2 antiparallel oriented lines, with `1 parallel to `,
such that U1 := S ∩ H(`1) and U2 := S ∩ H(`2) satisfy diam`(U1) = d 12 diam`(S)e
and diam`(U2) = d 12 diam`(S)e. Since U1 ⊂ S\`S , U2 ⊂ S\

`

S and `,

`

∈ G1 are one-
sided nonexpansive directions on Xη, one has Pη(U1) < Pη(S) and Pη(U2) < Pη(S).
Hence, if |U1| ≥ 1

2 |S|, then

Pη(U1)−|U1| < Pη(S)−|U1| ≤
1

2
|S|+ |A|−1−|U1| ≤

1

2
|S|+ |A|−1− 1

2
|S| = |A|−1,

that is, Pη(U1) ≤ |U1|+|A|−2. Thus, from Remark 3.9, there exists an η-generating
set T ⊂ U1 and, in particular, diam`(T ) ≤ d 12 diam`(S)e. If |U1| < 1

2 |S|, it is clear

that |U2| ≥ 1
2 |S| and the same argument as before concludes the proof. �

We will make use in the next pages of a theorem that is a classic in the combi-
natorics of words and appears in the main textbooks. For the convenience of the
reader, we recall its statement here.

Fine-Wilf Theorem ([7]). Assuming the ξ = (ξi)i∈N and ξ′ = (ξ′i)i∈N are periodic
sequences of periods q and q′, respectively, if ξi = ξ′i for at least q + q′ − gcd(q, q′)
consecutive entries, then ξ = ξ′.

The next result generalizes Claim 5.4 in [4]. We state it for an mlc η-generating
set S ∈ FVolC with |`S∩S| ≤ |

`

S∩S| and an (`, `′)-periodic maximal K-configuration,
but an analogous statement holds for (`′, `)-periodic maximal K-configurations by
considering F+(a) instead of F−(a). The proposition shows that the existence of
an mlc generating set provides upper bounds for the periods of restrictions to K of
(`, `′)-periodic maximal K-configurations, with one of these periods even remaining
outside the convex region K. The strategy of its proof consists in arguing that there
exists a suitable translation of the mlc generating set such that each restriction to
the associated half-strip admits multiple extensions, so that one may apply Propos-
ition 5.7. Some notions used here can be recalled in Notations 3.6 and 3.10, Defin-
ition 4.4 and (4.13). Furthermore, recall that Ma+(`,U) and Ma−(`,U) are the
sets formed by the configurations x ∈ Xη that satisfy, respectively, (4.5) and (4.6).

Proposition 5.9. For η ∈ AZ2

, suppose there exists an (`, `′)-periodic maximal
K-configuration ϕ ∈ Xη. Let R′ ∈ FVolC be an (`′, r′)-balanced set and let S ∈ FVolC
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be an mlc η-generating set such that `S = `
(−)
K and |`S ∩S| ≤ |

`

S ∩S|. Then the fol-
lowing conditions hold:

(i) ϕ|K is periodic of period t0~v ` for some t0 ≤ d 12 |`S ∩S|e − 1 and periodic of
period t′0~v`′ for some t′0 ≤ |`′S ∩ S| − 2,

(ii) denoting p := |`S∩S|−1, for any (`,S, p)-half-strip F−(a), a ∈ Z, contained
in K, ϕ|(`S ∪ F−)(a) is periodic of period τ0~v `for some τ0 ≤ d 12 |`S∩S|e−1.

Proof. Let h = κ~v `and h′ = κ′~v`′ , with κ, κ′ ∈ N, denote periods of ϕ|K. Recall

that `, `′ ∈ G1 are one-sided nonexpansive directions on Orb (ϕ) and so one-sided

nonexpansive directions on Xη. Note that any accumulation point ψ ∈ Orb (ϕ) of

T j~v`′ϕ, j ≥ 0, is `′-periodic. Indeed, as the restriction of ψ to the half plane H(`′K)
is `′-periodic and R′ ∈ FVolC is an (`′, r′)-balanced set, Proposition 4.16 implies that
ψ is `′-periodic. Moreover, due to Lemma 3.13, the maximality of K prevents `′

from being a one-sided expansive direction on Orb (ψ). Hence, Proposition 3.14

implies that

`′ ∈ G1 is a one-sided nonexpansive direction on Orb (ψ) and then on
Xη. In particular, Lemma 5.5 ensures that |`′S ∩ S| ≥ 3 and |

`′
S ∩ S| ≥ 3.

Let a ∈ Z be such that the (`,S, p)-half-strip F−(a) is contained in K. Since S is

an (`, p)-balanced set and (Thϕ)|F−(a) = ϕ|F−(a) = (Th
′
ϕ)|F−(a), Lemma 4.12

and maximality of K provide ϕ ∈Ma−(`,S). Thanks to condition (iii) of Proposi-
tion 5.7, the restriction of ϕ to the (`,S, p)-half-strip F−(a+p) is periodic of period
t0~v `for some

t0 ≤
⌈1

2

∣∣`S ∩ S∣∣⌉− 1. (5.8)

Moreover, since ϕ|K is `-periodic and F−(a+ p) ⊂ F−(a) ⊂ K, it is clear that the
restriction of ϕ to the (`,S, p)-half-strip F−(a) is also periodic of period t0~v `.

To conclude the proof of the first condition it is enough to show that ϕ|K is peri-
odic of period t′0~v`′ for some integer t′0 ≤ |`′S ∩S|− 2. Indeed, in this case, F−(a)∩
(F−(a) + t′0~v`′) 6= ∅ and, from the Fine-Wilf Theorem [7], we obtain that ϕ|K is
periodic of period t0~v `.

We prove such a fact by considering two cases separately.

Case 1. Suppose |`′S ∩ S| ≤ |

`′
S ∩ S| and define q′ := |`′S ∩ S| − 1. Let S ′ be

a translation of S with `′S′ = `′
(−)
K and let a′ ∈ Z be such that the (`′,S ′, q′)-half-

strip F+(a′) is contained in K. As before, Lemma 4.12 and maximality of K imply
that ϕ ∈ Ma′+(`′,S ′). Thus, condition (iii) of Proposition 5.7 ensures that the
restriction of ϕ to F+(a′ + q′) and therefore to F+(a′) is periodic of period t′0~v`′

for some integer

t′0 ≤
⌈1

2

∣∣`′S′ ∩ S ′∣∣⌉− 1 =
⌈1

2

∣∣`′S ∩ S∣∣⌉− 1 ≤
∣∣`′S ∩ S∣∣− 2. (5.9)

Clearly, for each j ≥ 0, ϕ|F−(a) = (T jh
′
ϕ)|F−(a) and ϕ|F+(a′) = (T jhϕ)|F+(a′).

Let m,m′ ∈ N be such that

W := (F−(a) +m′h′) ∩ (F+(a′) +mh)

contains a translation of S\{`S , `′S}. Let

`′
1 :=

`′(−)
W and define

`′
i+1 :=

`′
i
(−) for all

i ≥ 1. For each i ≥ 1, we write

(Z2\H(

`

W)) ∩

`′
i =: {gi + t~v`′ : t ≥ 0}.

Thanks to Lemma 5.8 there exists an η-generating set T ⊂ S with diam`(T ) ≤
d 12 diam`(S)e. If Ti is the translation of T where gi is the initial point of

`′
Ti
∩ Ti
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(with respect to the orientation of

`′), by (5.9) we have Ti−t′0~v`′ ⊂ F−(a)+m′h′ (see
Figure 13). Since ϕ|F−(a) +m′h′ is periodic of period t0~v `, from (5.8) it follows

T

T− t′0~v`′

g1

`′
1

Figure 13. The sets T1 and T1 − t′0~v`′ . The dashed region rep-
resents F+(a′) +mh.

that the restriction of ϕ to the set (F−(a) + m′h′) ∪ (F+(a′) + mh) is periodic of
period t′0~v`′ . In particular,

ϕ|T1\{g1} = (T−t
′
0~v`′ϕ)|T1\{g1},

which yields ϕg1 = (T−t
′
0~v`′ϕ)g1 , because T1 is an η-generating set. Applying an

identical reasoning to the points g1+t~v`′ , we obtain by induction that the restriction
of ϕ to the set

(F−(a) +m′h′) ∪ (F+(a′) +mh) ∪ {g1 + t~v`′ : t ≥ 0}

is periodic of period t′0~v`′ . By repeating the reasoning for the others lines

`′
i, we

conclude by induction that the restriction of ϕ to the set

(F−(a) +m′h′) ∪ (F+(a′) +mh) ∪ {gi + t~v`′ : i ≥ 1, t ≥ 0}

is periodic of period t′0~v`′ . Since by hypothesis ϕ|K is doubly periodic with periods
in `∩(Z2)∗ and `′∩(Z2)∗, using the Fine-Wilf Theorem it is not difficult to conclude
that ϕ|K is also periodic of period t′0~v`′ , which completes this case.

Case 2. Suppose |`′S ∩ S| > |

`′
S ∩ S| and define q′ := |

`′
S ∩ S| − 1. If for some

translation S ′ of S there is a′ ∈ Z such that ϕ ∈Ma′−(

`′,S ′) and the (

`′,S ′, q′)-half-
strip F−(a′) lies in K, then exactly as argued in Case 1 we have that ϕ|K is periodic
of period t′0~v`′ for some t′0 ≤ d 12 |

`′
S ∩ S|e − 1 < |

`′
S ∩ S| − 1 ≤ |`′S ∩ S| − 2, which

completes this case. From now on, we suppose ϕ 6∈ Ma′−(

`′,S ′) for all translation S ′
of S and any a′ ∈ Z such that the (

`′,S ′, q′)-half-strip F−(a′) is contained in K. Let

ψ ∈ Orb (ϕ) be an accumulation point of the sequence T j~v`′ϕ, j ≥ 0. Note that ψ 6∈
M(

`′,S ′) for all translation S ′ of S such that S ′ ⊂ H(`′K). In fact, for a′ ∈ Z with

S ′+a′~v`′ ⊂ K, let γ ∈ L

`′

a′−(S ′\

`′
S′ , ϕ) be such thatNS′(

`′, γ) = 1. The `′-periodicity
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of ϕ|K ensures that γ ∈ L

`′
(S ′\

`′
S′ , ψ), which implies that ψ 6∈ M(

`′,S ′). On the
other hand, we claim that there is a translation S ′1 of S such that ψ ∈ M(

`′,S ′1).
Indeed, suppose not. Let S ′ be a translation of S such that S ′ 6⊂ H(`′K). For t′ ≥ 1,
we define

Q := (S ′ + ~v`′) ∪ · · · ∪ (S ′ + t′~v`′).

By the Pigeonhole Principle, there exist 0 ≤ i < j ≤ Pψ(Q) such that ψ|Q+ i~v` =
ψ|Q+ j~v` (see Figure 14). Since the accumulation point ψ is `′-periodic, we may
consider t′ ≥ 1 large enough so that

(T (i−j)~v`ψ)|F ′ + j~v` = ψ|F ′ + i~v` = ψ|F ′ + j~v`, (5.10)

where F ′ denotes an (

`′,S ′, q′)-strip. The contradiction hypothesis allows us to apply

`′K

K

`′K

F ′ + j~v`

F ′ + i~v`
Q+ j~v`

Q+ i~v`

K

`′Q+j~v`

Figure 14. The sets Q+ i~v` and Q+ j~v` and the half plane H(`′Q+j~v`
).

Lemma 4.1 successively. Then, from (5.10), we obtain that the restriction of ψ to
the half planeH(`′Q+j~v`

) is periodic of period (i−j)~v`. Recall that any accumulation

point of T j~v`′ϕ, j ≥ 0, is `′-periodic with a common bound for their periods (see
Proposition 4.16). From this fact is not difficult to argue that there exists a half

line Γ ⊂ `′(−)K such that ϕ|Γ is `′-periodic. Obviously any half line contained in Γ
fulfills the same property. So we can suppose Γ is such that K∪ (Γ ∩Z2) is convex.
As ψ and T j~v`′ϕ coincide on arbitrarily large regions, this allows us to contradict
the maximality of K, since the set of doubly periodicity of ϕ would now include the
half line Γ , which proves the claim.

So, let S ′1 be a translation of S such that ψ ∈M(

`′,S ′1) and define S ′j+1 := S ′1−ju
for all j ≥ 1, where u ∈ Z2 satisfies `′ + u = `′(−). Let J ≥ 1 be the largest integer
such that ψ ∈M(

`′,S ′J). Thanks to condition (ii) of Proposition 5.7, the restriction
of ψ to

`′
S′J
∪ F ′J is periodic of period t′0~v`′ for some

t′0 ≤ 2d1
2
|

`′
S ∩ S|e − 2 ≤ |

`′
S ∩ S| − 1 ≤ |`′S ∩ S| − 2,

where F ′J denotes the (

`′,S ′J , q′)-strip. Thus, since ψ 6∈ M(

`′,S ′j) for all j > J , con-
dition (ii) of Proposition 5.7 ensures that the restriction of ψ to the half plane
H(`′S′J

) is periodic of period t′0~v`′ . Hence, as ψ and T j~v`′ϕ coincide on arbitrarily

large regions, it is easy to argue using the Fine-Wilf Theorem that ϕ|K is also pe-
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riodic of period t′0~v`′ . This concludes the proof of condition (i) in the statement of
proposition.

We also prove condition (ii) by considering two cases separately. We begin by
assuming that

(T i ~v

`

ϕ)|S 6= (T j ~v

`+h′ϕ)|S ∀ i, j ≥ a, (5.11)

where h′ = κ′~v`′ is a period of ϕ|K. Clearly,

(T t~v

`

ϕ)|S\`S = (T t~v

`+h′ϕ)|S\`S ∀ t ≥ a. (5.12)

For A := {(T t~v `

ϕ)|S : t ≥ a} and B := {(T t~v `+h′ϕ)|S : t ≥ a}, from (5.11) and
(5.12) one has |A|+ |B| = |A ∪B| ≤

∑
γ∈C NS(`, γ), where

C := {(T t~v `+h′ϕ)|S\`S : t ≥ a}.
In particular, as |C| ≤ |B|, then

|A| ≤

∑
γ∈C

NS(`, γ)

− |C| ≤∑
γ∈C

(
NS(`, γ)− 1

)
≤ Pη(S)− Pη(S\`S).

Hence, (5.5) applied to T = S\`S provides |A| ≤ d12 |`S ∩S|e−1. Let ξ = (ξt)t≥a be

the sequence defined by ξt := (T t~v

`

ϕ)|F`,p(S) ∪ {fS(`S)} for all integer t ≥ a and

consider n := d 12 |`S ∩ S|e − 1. If Pξ(1) = 1, then ξ is trivially periodic. Otherwise,
from the fact that n < |`S ∩ S| − 1 we have that Pξ(n) ≤ |A| ≤ n ≤ n+ Pξ(1)− 2.
The Alphabetical Morse-Hedlund Theorem implies that (ξt)t≥a+n is periodic of
period at most n. This means, even if Pξ(1) = 1, that the restriction of ϕ to the
set (`S ∪F−)(a+n) is periodic of period τ0~v `for some τ0 ≤ d 12 |`S ∩S|e− 1. Being
ϕ|(`S ∪ F−)(a) `-periodic (see Lemma 4.13), the inclusion (`S ∪ F−)(a + n) ⊂
(`S ∪ F−)(a) ensures that ϕ|(`S ∪ F−)(a) is also periodic of period τ0~v `, which
concludes this case.

In the second case, we assume that there exist integers i, j ≥ a such that

ϕ|S + i~v `= (T i ~v

`

ϕ)|S = (T j ~v

`+h′ϕ)|S = (Th
′
ϕ)|S + j~v `. (5.13)

As guaranteed by condition (i), ϕ|F−(i) and (Th
′
ϕ)|F−(j) are periodic of period

t0~v `for some t0 ≤ d 12 |`S ∩ S|e − 1. Hence, (5.13) and Remark 4.8 allow us to get

ϕ|F−(i) ∪ (S + i~v `) = (Th
′
ϕ)|F−(j) ∪ (S + j~v `).

Being S an η-generating set, by induction, it follows that the restrictions of ϕ to the
sets (`S ∪F−)(i) and (`S ∪F−)(j) +h′ ⊂ K coincide. Thus, since the restriction of
ϕ to (`S ∪F−)(j) + h′ is periodic of period t0~v `, then ϕ|(`S ∪ F−)(i) and therefore
ϕ|(`S ∪ F−)(a) is periodic of period t0~v `. �

6. Proof of the main result

For the convenience of the reader, we recall the statement of the main result.

Theorem 2.2. If η ∈ AZ2

contains all letters of the alphabet A and there exists a
quasi-regular set U ∈ FVolC such that Pη(U) ≤ 1

2 |U|+ |A| − 1, then η is periodic.

In addition to the fundamental notion given in Definition 2.1 (quasi-regular set),
the reader may find it beneficial to review Definitions 3.7 ((non)expansive dir-
ection), 3.8 (η-generating set), and 4.6 ((`, p)-balanced set). For the proof, two
concepts discussed in the preceding section will be crucial: it is useful to keep in
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mind the notions of (`, `′)-periodic maximal K-configuration (Definition 5.1) and of
mlc η-generating set (Definition 5.4).

Regarding the proof strategy, supposing, by contradiction, that the thesis of
Theorem 2.2 does not hold, following steps highlighted by Cyr and Kra, we will
reach an absurd from the existence of an (`, `′)-periodic maximal K-configuration.
The main idea is to argue that the number of configurations arising in the boundary
of the doubly periodic maximal region would be greater than possible. We do not
prove the Claims 6.1 and 6.2, but their proofs can be found, respectively, after
Claim 5.7 and in Subsubsection 5.4.3 of [4]. The proof of the main theorem will
be done by considering an mlc η-generating set S ∈ FVolC with |`S ∩ S| ≤ |

`

S ∩ S|
and by supposing the existence of an (`, `′)-periodic maximal K-configuration3.
The alphabetical viewpoint will be not explicitly used here. Actually, our strong
hypothesis on the complexity will be inherited by S, providing thus a common
bound (see (5.7)) for px + |A`,px(S, x)| for all x ∈M(`,S), where px is the smallest
integer fulfilling Definition 4.6.

Proof of Theorem 2.2 By contradiction, suppose η is aperiodic. Let S ∈ FVolC be an
mlc η-generating set. Corollary 3.3 ensures that there is at least one nonexpansive
line on Xη, which is denoted by ` ∈ G1. As observed in Remark 5.6, the antiparallel
lines ` and

`

are both one-sided nonexpansive directions on Xη. This allows us
to assume, without loss of generality, |`S ∩ S| ≤ |

`

S ∩ S|. Hence, according to
the proof of Proposition 5.3, there exists an (`, `′)-periodic or an (`′, `)-periodic
maximal K-configuration ϕ ∈ Xη. We suppose ϕ ∈ Xη is an (`, `′)-periodic maximal
K-configuration. Recall that `′ ∈ G1 is a one-sided nonexpansive directions on

Orb (ϕ) and so also on Xη which satisfies ~v`′ ∈ H(`). We denote by ψ ∈ AZ2

the
unique doubly periodic configuration such that ϕ|K = ψ|K. Translating S, we

can assume that the (`,S, p)-half-strip F−(0) lies in K and that `S = `
(−)
K , where

p := |`S ∩S|−1. As Proposition 4.9 guarantees the existence of a balanced set with
respect to every given one-sided nonexpansive direction, by Proposition 5.9, ϕ|K
and so ψ are doubly periodic configurations of periods h := t0~v ` and h′ := t′0~v`′ ,
where

t0 ≤
⌈1

2
|`S ∩ S|

⌉
− 1 ≤ |`S ∩ S| − 2, t′0 ≤ |`′S ∩ S| − 2. (6.1)

Let

`

0 :=

`

S and denote

`

i+1 :=

`(+)
i for all i ≥ 1. For suitable integers d ≥ 1,

we define

S(d) :=

d−1⋃
i=0

{fS(

`

i) + t~v` : 0 ≤ t ≤ p− 2} ,

where fS(

`

i) ∈ Z2 is the final point of

`

i ∩S (with respect to the orientation of

`

i).
Consider S∗ := S\{iS(

`

i) : 0 ≤ i ≤ n}, where n ≥ 1 is such that

`

n ∩ Z2 = `S ∩ Z2

(See Figure 15). Recall that, thanks to Lemma 5.5, p ≥ 2. Since S∗ is a proper
convex subset of S and S is an mlc η-generating set, by (5.5) one has

Pη(S)− Pη(S∗) ≤
⌈1

2
|S\S∗|

⌉
− 1 < |S\S∗| − 1. (6.2)

Let ℘0 ⊂ R2 be the oriented line parallel to ` such that ℘0 ∩ (S\S∗) = iS(`′S)

and denote ℘i+1 = ℘
(+)
i for all i ≥ 0. If m′ ≥ 1 is such that ℘m′ ∩ (S\S∗) = fS(`′S),

3For the case of an (`′, `)-periodic maximal K-configuration (which is the other possible situ-
ation according to the proof of of Proposition 5.3) the reasoning is analogous.
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K

S

`

0

`S

S(d)

`

d−1

S∗

Figure 15. Representation of the sets S(d) and S∗.

define zi := ℘i ∩ (S\S∗) for each 0 ≤ i ≤ m′. By (6.1) there exist integers 0 ≤ i <
j ≤ m′ such that t′0~v`′ = zj − zi. Thus, we define

d′ := min {j − i : 0 ≤ i < j ≤ m′, ψ is periodic of period zj − zi} .
Identifying the vector zj − zi to an oriented line segment Sij ⊂ R2, note that
j − i+ 1 represents the number of distinct oriented lines `′′ ⊂ R2 parallel to ` such
that `′′∩Z2 6= ∅ and `′′∩Sij 6= ∅. Then, writing diam`(S) = (|`′S ∩S|−1)µ+ 1 + r,
where µ := j − i for any 0 ≤ i < j ≤ m′ such that ~v`′ = zj − zi and r ≥ 0, by (6.1)
one has

diam`(S) > (|`′S ∩ S| − 2)µ+ 1 + r ≥ t′0µ+ 1,

which yields d′ ≤ t′0µ < diam`(S)− 1. In particular, `S ∩ S(d′) = ∅. Defining d̄ :=
|S\S∗| − d′ = diam`(S) − d′ > 1, it is clear that (S(d′) + lu) + i~v `⊂ K for every
i ≥ 0 and 0 ≤ l ≤ d̄− 1.

Let u ∈ Z2 be such that `+u = `(−). For each integer l ≥ 0, we define Sl := S+lu
and S∗l := S∗+lu. Since ϕ ∈ Xη is aperiodic and ` ∈ G1 is a one-sided nonexpansive

direction on Orb (ϕ), from Proposition 4.9, Corollary 4.15 and Proposition 4.16, we
conclude that the restriction of ϕ to every (`,Sl, p)-strip is not `-periodic. For each
integer 0 ≤ l ≤ d̄ − 1, let al ∈ Z be the smallest integer for which the restriction
of ϕ to the set (`Sl ∪ F−)(al) is `-periodic, where F−(al) denotes as usual the
corresponding (`,Sl, p)-half-strip. We remark that the existence of al follows from
Lemma 4.13 applied successively in order to get a larger region that contains K and
such that the restriction of ϕ is `-periodic (but not doubly periodic).

In the next two claims, we will count the number of configurations that arise in
the boundary of the doubly periodic maximal region. The strategy is to show that
there are so many such configurations that (6.2) may be contradicted.

Claim 6.1 (Claim 5.7 of [4]). The following conditions hold.

(i)
∣∣{ϕ|S∗l + (al − 1)~v `: 0 ≤ l ≤ d̄− 1}

∣∣ = d̄.

(ii) For each integer 0 ≤ l ≤ d̄−1, there exist at least two distinct Sl-configura-
tions γ′, γ′′ ∈ L(Sl, η) such that γ′|S∗l = (T (al−1)~v `

ϕ)|S∗l = γ′′|S∗l .

For each integer 0 ≤ l ≤ d′ − 1, let ul denote the vector zm′ − zm′−d′+l. Let

T be a translation of S such that `′T = `′
(−)
K and T \`′T ⊂ K, and let T ∗ be the

corresponding translation of S∗. Since zi belongs to S\S∗ and does not belong to
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`′S∗ for every 0 ≤ i ≤ m′, it is not difficult to check that T ∗ + ul ⊂ K for every

integer 0 ≤ l ≤ d′ − 1 (even when zm′−d′+l ∈ `′(−)S∗ ).

Claim 6.2 (Subsubsection 5.4.3 of [4]). The following conditions hold.

(iii)
∣∣{ϕ|T ∗ + ul : 0 ≤ l ≤ d′ − 1}

∣∣ = d′.
(iv) For each integer 0 ≤ l ≤ d′−1, there exist at least two distinct T -configura-

tions γ′, γ′′ ∈ L(T , η) such that γ′|T ∗ = (Tulϕ)|T ∗ = γ′′|T ∗.

To reach a contradiction and thus to conclude the proof, it is enough to show that
the S∗-configurations of condition (i) are different from S∗-configurations of con-
dition (iii). As a matter of fact, if this is the case, there exist at least d̄+d′ = |S\S∗|
distinct S∗-configurations γ ∈ L(S∗, η) such that |{γ′ ∈ L(S, η) : γ′|S∗ = γ}| > 1,
which means that

Pη(S)− Pη(S∗) ≥ d̄+ d′ = |S\S∗|,
contradicting (6.2). Note then that, since every configuration of condition (iii)
belongs to L(S∗, ψ), it is enough to show that, for each integer 0 ≤ l ≤ d̄− 1,

(T lu+i ~v

`

ϕ)|S∗ 6∈ L(S∗, ψ), ∀ i ≥ 0,

where `+ u = ` (−1). Suppose, by contradiction, that there exist 0 ≤ l ≤ d̄− 1 and
i ≥ 0 such that

(T lu+i ~v

`

ϕ)|S∗ ∈ L(S∗, ψ). (6.3)

Since ψ is doubly periodic of periods t0~v `and zj − zi, with 0 ≤ i < j ≤ m′ such
that d′ = j − i, the very definition of S(d′) ⊂ S∗ ensures

∀ γ′, γ′′ ∈ L(S∗, ψ), γ′|S(d′) = γ′′|S(d′) implies γ′ = γ′′. (6.4)

As (S(d′) + lu) + i~v `⊂ K and ϕ|K = ψ|K, then (T lu+i ~v

`

ϕ)|S(d′) ∈ L(S(d′), ψ).

Since h′ = t′0~v`′ is a period of ϕ, (T lu+i ~v

`

ϕ)|S(d′) = (T lu+i ~v

`+mh′ϕ)|S(d′) for all
m ≥ 1. Note that, for m sufficiently large, we have (S∗ + lu) + i~v `+mh′ ⊂ K and

therefore (T lu+i ~v

`+mh′ϕ)|S∗ ∈ L(S∗, ψ). Thus, by (6.3) and (6.4) it follows that

(T lu+i ~v

`

ϕ)|S∗ = (T lu+i ~v

`+mh′ϕ)|S∗.
For a half line Γ := `S ∩ (`S ∪ F−)(0), the above equality implies, in particular,

that the restrictions given by ϕ|Γ and (Tmh
′
ϕ)|Γ coincide in at least |`S ∩ S| − 2

consecutive indexes. Since ϕ|Γ and (Tmh
′
ϕ)|Γ are, respectively, periodic of periods

k~v `and t0~v `, with k, t0 ≤ d 12 |`S∩S|e−1 (condition (ii) of Proposition 5.9 and (6.1)),
then, as k+ t0− gcd(k, t0) ≤ |`S ∩S|− 2, from Fine-Wilf Theorem, we obtain that

ϕ|Γ = (Tmh
′
ϕ)|Γ , which contradicts the maximality of K and concludes the proof

of the theorem. �
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