Exame de Qualificação (mestrado.2012.1) – Probabilidade

- **1.** Considere dois eventos A, B. Seja $(A_n)_{n \in \mathbb{N}}$ uma sequência de eventos tais que, para todo $k \in \mathbb{N}$ se verifica $A_{2k} = A$, $A_{2k+1} = B$.
 - Calcule $\limsup_{n\to\infty} A_n$.
 - Calcule $\liminf_{n\to\infty} A_n$.
 - Em que caso $\limsup_{n\to\infty} A_n = \liminf_{n\to\infty} A_n$?
- **2.** Sejam X_1, X_2, \ldots, X_n v.a. i.i.d. Uniformes [0, 1]. Sejam

$$U = \min_{1 \le k \le n} X_k, \quad V = \max_{1 \le k \le n} X_k.$$

Calcule a densidade conjunta de U e V.

- **3.** Sejam X_1, X_2, \ldots v.a. i.i.d., $\mathbb{E}X_1 = 0$, $\mathbb{E}X_1^2 = 1$. Seja $S_n = X_1 + \cdots + X_n$ e seja \mathcal{F}_n a σ -álgebra gerada por X_1, X_2, \ldots, X_n . Calcule $\mathbb{E}(S_{n+1}^2 S_n^2 \mid \mathcal{F}_n)$.
- **4.** Verifique se as seguintes afirmações são verdadeiras ou falsas (prove ou dê um contra-exemplo):
 - (a) se $X_n \to X$ em probabilidade, então $X_n X \to 0$ em probabilidade;
 - (b) se $X_n \to X$ em distribuição, então $X_n X \to 0$ em distribuição.
 - (c) se $X_n \to X$ em L_p , então $X_n \to X$ em probabilidade.
 - (d) se $X_n \to X$ em probabilidade, então $X_n \to X$ q.c.
- 5. Sejam X_1, X_2, \ldots v.a. independentes, X_n é uniforme no intervalo $[-\sqrt[3]{n}, \sqrt[3]{n}]$. O que podemos dizer com relação à Lei Forte dos Grandes Números e o Teorema Central de Limite para esta sequência? Caso algum destes fatos se verifique, o formule explicitamente para a sequência em questão (especificando os parâmetros).

Exame de Qualificação (mestrado.2012.2) – Probabilidade

- 1. Calcule a densidade de v.a. Z = X + Y, onde X, Y são v.a. independentes, $X \sim U[-1, 1], Y \sim Exp(1)$.
- **2.** Seja $(X_n, n \ge 1)$ uma sequência de v.a. não negativas, e tal que $X_n \to 1$ q.c. quando $n \to \infty$. O que podemos dizer sobre a sequência $(\mathbb{E}X_n, n \ge 1)$? E se tivermos a informação adicional que (considere (a), (b), (c) separadamente)
 - (a) $X_{n+1} \ge X_n$ q.c. para todo $n \ge 1$?
 - (b) $X_{n+1} \leq X_n$ q.c. para todo $n \geq 1$?
 - (c) $(X_n, n \ge 1)$ é uniformemente untegrável?

(Obs.: enuncia os teoremas utilizados.)

- **3.** Seja $(\Omega, \mathcal{F}, \mathbf{P})$ um espaço de probabilidade, $\mathcal{A} \subset \mathcal{F}$ uma sigma-álgebra, e X uma v.a. integrável.
 - (i) Dê a definição da esperança condicional $\mathbb{E}(X \mid \mathcal{A})$. Enuncie o resultado que nós permite provar a existência da esperança condicional.
 - (ii) Prove que, se X é \mathcal{A} -mensurável e $\mathbb{E}(X\mathbf{1}_A)=0$ para qualquer $A\in\mathcal{A}$, então X=0 q.c.
- **4.** Seja $p_0 > 0$ um parâmetro. Dê um exemplo de uma sequência de variáveis aleatórias $(X_n, n \ge 1)$ tal que $X_n \to 0$ em L^p para $p \le p_0$, mas X_n não converge para 0 q.c. e em L^p para $p > p_0$.
- **5.** Sejam X_1, X_2, \ldots v.a. independentes, X_n é uniforme no intervalo $[-\sqrt[3]{n}, \sqrt[3]{n}]$. O que podemos dizer sobre as Leis Fraca e Forte dos Grandes Números para esta sequência (caso o respetivo resultado valha, o formule explicitamente)?