EXAME DE QUALIFICAÇÃO DE MESTRADO

MM 453 - Topologia Geral Fevereiro 2022

Nome completo: RA:

Escolha três questões para resolver entre as primeiras 5. **Na sequência**, escolha duas letras para resolver da questão 6.

- 1. Seja $\{A_i\}_{i\in I}$ uma família de subconjuntos conexos de um espaço topológico X. Seaja A um conjunto conexo de X tal que $A\cap A_i\neq\emptyset$ para cada $i\in I$. Prove que o conjunto $A\cup (\bigcup_{i\in I}A_i)$ é conexo.
- 2. Sejam X,Y espaços topológicos, com Y compacto. Se V é um subespaço aberto de $X\times Y$ contendo o conjunto $\{x_0\}\times Y$, então existe uma vizinhanza aberta W de x_0 em X tal que $W\times Y$ está contido em V.
- 3. Um subconjunto $A \subseteq \mathbb{R}^n$ é dito estrelado se existe um $a \in A$ de forma que para todo $p \in A$, o conjunto $\{ta + (1-t)p : t \in [0,1]\}$ está contido em A. Mostrar que se A é estrelado então é conexo e simplesmente conexo.
- 4. Seja $A \subset x$ um subconjunto de um espaço topológico. Denote $Y = (X A) \cup \{A\}$ (notar que $\{A\}$ é um conjunto com exatamente um elemento). Defina a aplicação $\pi : X \to Y$ por

$$\pi(x) = \begin{cases} x & \text{se } x \notin A, \\ \{A\} & \text{se } x \in A. \end{cases}$$

Considere Y com a topologia quociente.

- (a) Mostrar que se $F \subset X$ é fechado e $F \cap A = \emptyset$, então $\pi(F)$ é fechado em Y.
- (b) Mostrar que se Y é Hausdorff, então A é fechado em X.
- 5. Provar que todo espaço topológico compacto e Haussdorf é normal.
- 6. Determine se as seguintes afirmações são verdadeiras ou falsas. Justifique ampliamente sua escolha.
 - (a) Se $X=\mathbb{R}$ é dotado com a topologia do complemento finito, então a função $f:X\to X$, $f(x)=\sin x$ é continua.
 - (b) Se X e Y são espaços compactos e metricos, e $f: X \to Y$ é continua e bijetora, então f é um homeomorfismo.
 - (c) Se $K \subset X$ é um subespaço compacto, então o fecho \overline{K} é compacto.
 - (d) Seja X um espaço de Hausdorff compacto. Então X é metrizável se e somente se X tem uma base enumerável.

Boa prova!

MM 719, Álgebra Linear Exame de Qualificação ao Mestrado

Fevereiro de 2022

- 1. Seja $V = M_n(\mathbb{R})$ o espaço vetorial das matrizes $n \times n$ com coeficientes reais. Definimos a função $\langle -, \rangle \colon V \times V \to \mathbb{R}$ por $\langle A, B \rangle = tr(B^t A), A, B \in V$, onde B^t é a transposta de B e tr é o traço matricial.
 - a) (1 pt) Mostrar que esta função define um produto interno em V.
- b) (0,5 pt) Seja $P \in V$ uma matriz invertível fixa, definimos $T: V \to V$ como $T(A) = P^{-1}AP$. Mostrar que T é uma transformação linear em V.
- c) (1 pt) Encontrar a adjunta T^* da transformação T, isto é, $\langle T(A),B\rangle=\langle A,T^*(B)\rangle$ para quaisquer $A,B\in V$.
- 2. a) (0,5 pt) Seja k número natural, existe uma matriz $A \in M_n(\mathbb{R})$ tal que $A \neq I_n$, a matriz identidade $n \times n$, mas $A^k = I_n$?
- b) (1 pt) Existe uma matriz $A \in M_n(\mathbb{Q})$ tal que $A \neq I_n$, a matriz identidade $n \times n$, mas $A^{n+1} = I_n$?
- 3. Seja $T: \mathbb{C}^4 \to \mathbb{C}^4$ uma função, cuja ação sobre os vetores e_1, e_2, e_3, e_4 da base canônica de \mathbb{C}^4 é dada por

$$T(e_1) = 2e_1 + 2e_3 - e_4, T(e_2) = 4e_2, T(e_3) = -4e_1 + 2e_2 + 8e_3 - 2e_4, T(e_4) = -4e_1 + 3e_2 + 4e_3 + 2e_4.$$

- a) (0,5 pt) Mostrar que existe uma única transformação linear T em \mathbb{C}^4 com esta ação sobre os vetores da base canônica.
- b) (2 pt) Encontrar a forma canônica de Jordan de
 Te uma base de Jordan para Te
m $\mathbb{C}^4.$
- 4. (1,2 pt) Sejam V, W \mathbb{R} -espaços vetoriais. Responder **verdadeira** ou **falsa** a cada uma das afirmações abaixo. (Respostas sem a devida justificativa serão desconsideradas!)
 - 1) $\mathbb{R} \otimes_{\mathbb{R}} \ldots \otimes_{\mathbb{R}} \mathbb{R}$ é isomorfo a \mathbb{R} .
 - 2) $\mathbb{R} \otimes_{\mathbb{R}} W$ é isomorfo a W.
 - 3) $V^* \otimes_{\mathbb{R}} \ldots \otimes_{\mathbb{R}} V^*$ é isomorfo a $(V \otimes_{\mathbb{R}} \ldots \otimes_{\mathbb{R}} V)^*$.
 - 4) $Hom(V, W) = V^* \otimes_{\mathbb{R}} W$.
- 5. (0,8 pt) Seja V um espaço vetorial de dimensão $n < \infty$ sobre \mathbb{C} e seja $P: V \to V$ uma transformação linear tal que $P^2 = P$. Mostrar que o traço de P é igual ao posto de P.
 - 6. (2,5 pt) Enunciar e demonstrar o Teorema Espectral.

Exame de Qualificação de Mestrado Análise no \mathbb{R}^n

Departamento de Matemática, UNICAMP 21 de Fevereiro de 2022

Q	Notas
1.	
2.	
3.	
4.	
\sum	

Nome:	\sum
RA:	
Assinatura:	

Observação: É proibido desgrampear as folhas da prova. Respostas sem justificativas, ou que não incluam os cálculos necessários, não serão consideradas. Desejo-vos uma boa prova!

- (1) (**2,5 pontos**)
 - (a) (1,5 pontos) Seja $f: \mathbb{R}^n \to \mathbb{R}^m$ diferenciável. Suponha que $||Df(x)|| \le 1$ para todo $x \in \mathbb{R}^n$. Mostre que

$$||f(x) - f(y)|| \le ||x - y||.$$

(Dica: Use o teorema de valor médio definindo uma função apropriada de uma variável.)

(b) (1,0 ponto) Fornece um contra-exemplo para a seguinte generalização engênua de Teorema do valor médio: Dada $f: \mathbb{R}^n \to \mathbb{R}^m$ diferenciável e pontos $x, y \in \mathbb{R}^n$, existe algum ponto c na reta que liga x e y tal que

$$f(x) - f(y) = Df(c)(x - y).$$

- (2) (2,5 pontos) Seja $f: \mathbb{R}^n \to \mathbb{R}^n$ de classe \mathcal{C}^1 .
 - (a) (1.3 ponto) Mostre que o conjunto $S \subset \mathbb{R}^n$ formado pelos pontos $x \in \mathbb{R}^n$ onde Df(x) possui rank (posto) n é aberto.
 - (b) (1.2 ponto) Use o teorema da aplicação inversa para mostrar que $f(S) \subset \mathbb{R}^n$ também é aberto.
- (3) (2,5 pontos) Seja M uma k-variedade compacta em \mathbb{R}^n . Sejam $h: \mathbb{R}^n \to \mathbb{R}^n$ uma isometria e N = h(M). Seja $f: N \to \mathbb{R}$ uma função continua. Mostre que N é uma k-variedade em \mathbb{R}^n , e

$$\int_N f \, dV = \int_M (f \circ h) \, dV.$$

Mais ainda, conclua que M e N tem o mesmo volume.

- (4) **(2,5 pontos)** Considere a variedade $M = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1 \ z \ge \frac{1}{2}\}$ e a 2-forma $\beta = 2x \, dx \wedge dz + 2z \, dy \wedge dz$.
 - (a) (0.5 pontos) Encontre uma forma α tal que $\beta = d\alpha$.
 - (b) (1.0 ponto) Exibe parametrização de ∂M .
 - (c) (0,5 pontos) Calcule $\int_M \beta$.