DM-IMECC-UNICAMP

16/11/2019

EXAME DE QUALIFICAÇÃO DE ANÁLISE FUNCIONAL

Aluno		1tA
Ω_{most} \tilde{a} 1	As a firmações a baixo são falsas ou ve	ordodoirea? Domonatro e

Questão 1. As afirmações abaixo são falsas ou verdadeiras? Demonstre as suas respostas. (Se a sua resposta for: "falsa", a demonstração pode ser um contraexemplo, mas não necessariamente.)

- (a) Todo espaço de Banach é reflexivo.
- (b) Sejam F um subespaço vetorial de um espaço vetorial normado E tal que $\overline{F} \neq E$. Então existe um funcional $f \in E^*$ (um funcional linear limitado em E) não nulo tal que f|F = 0 (f(x) = 0, $\forall x \in F$).
- (c) Toda sequência limitada em ℓ^1 tem uma subsequência que converge fracamente em ℓ^1 (ou seja, na topologia $\sigma(\ell^1, \ell^{\infty})$).
 - (d) Seja (X, \mathcal{M}, μ) um espaço de medida. Então $L^2(X, \mathcal{M}, \mu)$ é separável.
- 2. Seja E o espaço de Banach C([a,b]) das funções contínuas reais definidas no intervalo compacto [a,b], qualquer, munido da norma do máximo, $||f|| = \max_{x \in [a,b]} |f(x)|$. Dados números (reais) $\beta \geq \alpha$, mostre que o conjunto K das funções f não crescentes em E tais que $f(a) = \beta$, $f(b) = \alpha$ é um conjunto convexo, limitado e fechado em E.
- **3.** Sejam $(e_k)_{k=1}^{\infty}$ uma base de Schauder em um espaço de Banach $(E, \|\cdot\|)$, de dimensão infinita, e $P_n: E \to E, n=1,2,\cdots$, as projeções em relação a essa base: $P_n x = \sum_{k=1}^n x_k e_k$, se $x = \sum_{k=1}^\infty x_k e_k$.
- (a) Mostre que $||x||_1 = \sup_n ||P_n x||$ é uma norma em E e que os espaços $(E, ||\cdot||)$, $(E, ||\cdot||_1)$ são iguais topologicamente (os abertos dados pelas duas normas são os mesmos).
- (b) Mostre que $\sup_n ||P_n|| < \infty$. (Aqui, $||P_n||$ é a norma de P_n como um operador linear limitado de E em E.)
- **4.** Mostre que a inclusão $C^1([a,b]) \subset C([a,b])$ é um operador (linear) compacto. (Aqui, [a,b] é um intervalo compacto arbitrário de \mathbb{R} e as normas em $C^1([a,b])$ e C([a,b]) são dadas, respectivamente, por $||f||_1 = \sup_{x \in [a,b]} (|f'(x)| + |f(x)|)$ e $||f|| = \sup_{x \in [a,b]} |f(x)|$.)
- **5.** Sejam E um espaço de Banach e $T \in \mathcal{L}(E)$ (um operador linear limitado $T: E \to E$) tal que $T^2 = I$ e $T \neq \pm I$. Mostre que $\sigma(T) \subset \{-1, 1\}$ e determine o operador $R = (T \lambda)^{-1}$ para $\lambda \neq \pm 1$. Não comece com o operador R dado; mostre (exiba) como você determina (encontrou) o mesmo.

	1	2	Σ
ſ			

ATENÇÃO: Não é permitido destacar as folhas

Exame de Qualificação em Introdução a Topologia Algébrica — 11/12/2019

NOME:		
	NOME:	RA:

Incluir na prova, por favor, **todas** as "contas" feitas nas resoluções. Respostas não acompanhadas de argumentos que as justifiquem não serão consideradas.

Boa Prova!

- 1) Responda Verdadeiro ou Falso justificando a resposta.
- i- (1pt) Dada $f: S^n \to S^n$ um mapa contínuo que não é uma equivalência homotópica, então f possui um ponto fixo.
- ii- (1pt) Toda função contínua de $g: \mathbb{R}P^2 \to \mathbb{R}P^2$ tem um ponto fixo.
- iii- (1pt) Se $f: S^1 \to S^1$ então $C_f = C(S^1) \cup_f S^1$ é um espaço contrátil.
- iv- (1pt) $S^1 \vee S^1$ é um retrato de deformação de $S^1 \times S^1$.
 - 2) Calcule os seguintes grupos
- i- (1pt) $\overline{H}_*(S^n; \mathbb{Z})$,
- ii- (1pt) $H_*(S^4 \times S^2, \mathbb{Z}_4)$
- iii- (1pt) $H_*(K, \mathbb{Z}_2)$ para K a garrafa de Klein.
- vi- (1pt) $H_n(\mathbb{C}P^2\sharp\mathbb{C}P^2)$
- v- (1pt) $H_2(\mathbb{C}P^1 \times S^3)$.
- vi- (1pt) $\pi_i(\mathbb{C}P^n)$ para $1 \leq i \leq 2n+1$.

Exame de Qualificação, Doutorado Álgebra Não Comutativa 13 de dezembro de 2019

- 1. a) (0,5 pt) Definir ideal primitivo de um anel R. Enunciar o teorema sobre a densidade.
- b) (1 pt) Mostrar que um anel R (1 $\in R$) é primitivo (à direita) se e somente se R tem um módulo V_R (à direita) fiel e irredutível.
- c) (1 pt) Mostrar que se R (1 \in R) é um anel primitivo então ele é primo. A recíproca desta afirmação é válida?
- d) (1 pt) Se $1 \in R$ e R é um anel simples, mostrar que ele é primitivo. A recíproca desta afirmação é válida?
- **2.** a) (0,5 pt) Definir o radical de Jacobson J(R) de um anel R. Qual o radical de Jacobson $J(M_n(F))$ do anel das matrizes $n \times n$ sobre um corpo F?
 - b) (1 pt) Se R é qualquer anel, mostrar que

$$J\begin{pmatrix} R & R \\ 0 & R \end{pmatrix} = \begin{pmatrix} J(R) & R \\ 0 & J(R) \end{pmatrix}, \qquad J\begin{pmatrix} R & R \\ R & R \end{pmatrix} = \begin{pmatrix} J(R) & J(R) \\ J(R) & J(R) \end{pmatrix}.$$

- c) (0,5 pt) Se $R = \mathbb{Z}_{210}$, o anel dos resíduos módulo 210, qual o radical de Jacobson dos dois anéis de (b)?
- **3.** a) (1,5 pt) Sejam A e B duas álgebras unitárias sobre o corpo F, e sejam $P \subseteq A$, $Q \subseteq B$ subálgebras contendo os elementos 1 de A e de B, respectivamente. Demonstrar que o centralizador $C_{A\otimes B}(P\otimes Q)=C_A(P)\otimes C_B(Q)$. (Aqui os produtos tensoriais são sobre o corpo F.)
- b) (1 pt) Seja D um anel de divisão com centro Z=Z(D) e tal que $\dim_Z D<\infty$. Se K é um subcorpo maximal de D mostrar que $D\otimes_Z K\cong M_n(K)$ para algum número natural n.
- c) (0,5 pt) Se D é como em (b), e $L=\overline{Z}$ é o fecho algébrico de Z, mostrar que $D\otimes_Z L\cong M_m(L)$ para algum número natural m.
- **4.** (1 pt) Definir o grupo de Brauer de um corpo F. Explicitar qual a operação neste grupo e justificar que ela é bem definida. Qual o elemento neutro e como são definidos os inversos no grupo de Brauer?
- 5. a) (0,5 pt) Enunciar o teorema de Burnside sobre os grupos periódicos de matrizes.
- b) (1 pt) Se G é um subgrupo periódico de $GL_2(\mathbb{R})$, o grupo das matrizes invertíveis 2×2 com entradas reais, ele é finito?